
This is a repository copy of Implementation of MCA in the framework of LIGGGHTS.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/127187/

Version: Accepted Version

Proceedings Paper:
Salman, N, Wilson, M, Neville, A orcid.org/0000-0002-6479-1871 et al. (1 more author)
(2017) Implementation of MCA in the framework of LIGGGHTS. In: Wriggers, P, Bischoff,
M, Onate, E, Owen, DRJ and Zohdi, T, (eds.) 5th International Conference on
Particle-Based Methods - Fundamentals and Applications (PARTICLES 2017).
PARTICLES 2017, 26-28 Sep 2017, Hannover, Germany. International Center for
Numerical Methods in Engineering (CIMNE) , pp. 767-777. ISBN 9788494690976

This is an author produced version of a paper published in the proceedings of PARTICLES
2017.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

V International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2017

P. Wriggers, M. Bischoff, E. Oñate, D.R.J. Owen, & T. Zohdi (Eds)

IMPLEMENTATION OF MCA IN THE FRAMEWORK OF LIGGGHTS

NADIA SALMAN¹, MARK WILSON¹, ANNE NEVILLE¹ AND ALEXEY SMOLIN²

 ¹ University of Leeds
Centre of Doctoral Training in Integrated Tribology

Woodhouse Lane, LS2 9JT, Leeds, UK
email: mnnsa@leeds.ac.uk , webpage: https://www.leeds.ac.uk

² Institute of Strength Physics and Materials Science
Siberian Branch of Russian Academy of Sciences
pr. Akademicheskiy 2/4, 634021, Tomsk, Russia

email: asmolin@ispms.tsu.ru , webpage: http://www.ispms.ru

Key words: Movable Cellular Automata, LIGGGHTS, Plastic Deformation, Solid Behaviour.

Abstract. We describe the implementation of the Movable Cellular Automata Method
(MCA) within the framework of the open-source code LIGGGHTS to simulate complex solid
behaviour; most importantly plastic deformation, on different scales. The developed code
extends the capabilities of the MCA method, as well as that of LIGGGHTS software; which
simulates granular behaviour and is based on the discrete element method. The main
difference between MCA and DEM is that the interaction between the particles is based on a
many-body forces form of inter-automata interactions, similar to the embedded atom method
used in molecular dynamics, because pair-wise interactions between elements used in DEM
are insufficient to simulate irreversible strain accumulation (plasticity) in ductile consolidated
materials. We first give an overview of the MCA method and its significance, followed by the
implementation approach. The code has been successfully verified against analytical data.

1 INTRODUCTION

The Movable Cellular Automata Method (MCA) method was first introduced by Psakhie,
Horie et al in 1995 [1] as a simulation tool within the framework of mesomechanics. MCA is
a hybrid particle-based method based on the classical cellular automata (CA), discrete element
(DEM) and molecular dynamics (MD) methods; combining their advantages. This method
allows the modelling of complex materials behaviour and processes. Many developments in
MCA have been made since 1995, and the latest description of the method can be found in
[2]; where MCA is presented as a discrete approach to model the behaviour of materials on
different length scales and is used as a multi-scale modelling approach.

MCA represents the medium as an ensemble of contacting or linked particles to simulate
fracture and material deformation, as in the widely known discrete element methods.
However, one of the fundamental problems with some particle-based methods, including
DEM, is the correct representation of the inter-particle interaction forces, which is the most
sensitive and time consuming part of any particle-based simulation [3]. The forces that
describe the particle-particle interactions determine the physical and mechanical response of
the system. In DEM, these take an approximated pair-wise form to describe materials on the

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

2

microscale. This form assumes that the total energy of the system is just the sum of the pair
bonds, the same as in the Lennard-Jones potentials [4], which has been proven to often fail to
describe the material on the macroscale and damage generation at scales lower than the size of
the discrete element; that is why they are often coupled with continuum approaches.

Research showed that this problem can be solved by using a many-body interaction form
which provides an accurate description of highly consolidated solids where elastic-plastic
deformation occurs [2,3,5]. Hence, the authors of the MCA method applied the many-body
interaction concept of the embedded atom method (EAM) [6,7], widely used in MD, to the
MCA equations of motion. This allowed them to connect the average stresses and strains for
the volume of each particle with the forces of interaction with its neighbouring particles.
Meaning each automaton in the system follows the applied constitutive laws, leading to an
accurate mechanical response of the whole system, and the capability of correct simulation of
irreversible strain accumulation (plasticity) in ductile materials.

Since MCA is a particle-based method, it can be implemented within an MD or DEM code
with some modifications as they have the same main functionalities. We chose LIGGGHTS
as a framework for this task. LIGGGHTS [8] stands for LAMMPS Improved for General
Granular and Granular Heat Transfer Simulations, which is a DEM open-source code,
distributed under the GNU general public licence (GPL). LIGGGHTS was extended from
LAMMPS [9], a powerful MD software developed at Sandia National Lab, to include the
simulation of granular materials on larger scale levels. They are massive parallel computing
software and designed for large scale simulations; by using spatial decomposition techniques
to break down the simulation space into smaller 3D sub-domains; where each is assigned to a
different processor. Message Passing Interface (MPI) exchange is used for communication
between the processors allowing large simulation domains to be scaled in memory and speed.

In this paper we briefly describe the MCA methodology, more details can be found in
[2,3,5], then present its implementation into the open-source code LIGGGHTS to enable the
simulation of solid behaviour and plasticity in a 3D framework. This is done by adding our
own commands and classes to the code, mainly a new atom style, pair style, bond style, and
some fix styles, to implement MCA functionalities within LIGGGHTS; which is explained in
section 3. LIGGGHTS source code, examples and documentation can be found at [10].

2 THEORETICAL BACKGROUND: THE MCA METHOD

MCA assumes that the simulated system is discretised into a series of small elements of
finite size, known as the movable cellular automata. These automata are in contact and/or
chemically linked (bonded) or unlinked (unbonded), and when an external load is applied they
interact with each other, rotating and moving from one position to another. The interactive
state between automata could be changed and they can form new automata pairs; describing
mechanical deformation processes [5]. The motion of the automata is simulated according to
their inter-automata interactions; using the Newton-Euler equations of motion; including the
pair relationship, many-body forces and bond forces.

Hence, the simulation of automata motion is governed by the Newton-Euler equations to
simulate the translational and rotational motion of pairs of automata:

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

3

ቐ࢏࢓ ૛࢚ࢊ࢏ሬሬԦࡾ૛ࢊ ൌ σ ࢘࢏ࢇ࢖࢐࢏ሬሬԦࡲ ൅ ୀ૚࢐࢏ࡺπ࢏ሬሬԦࡲ ൌ σ ࢔࢐࢏ሬሬԦࡲ ൅ ࢚࢐࢏ሬሬԦࡲ ൌ ࢏෠ࡶୀ૚࢐࢏ࡺ ࢏ሬሬԦࡲ ࢚ࢊ࢏ሬ࣓ሬሬԦࢊ ൌ σ ୀ૚࢐࢏ࡺ࢐࢏ሬሬሬԦࡹ (૚)

where ݉ ௜, ܴపሬሬሬԦ, ప߱ሬሬሬሬԦ, ܬመ௜ are the mass, location vector, rotation velocity and moment of inertia of
automaton i respectively. ܨԦ௜ is the total force acting on i from its surrounding neighbours (௜ܰ),
and ܯሬሬԦ௜௝ is the momentum of the system. This form for the inter-automata interaction forces is
borrowed from the embedded atom method (EAM) [6,7]. By analogy, the total force ܨԦ௜
consists of a pair-wise component (ܨԦ௜௝௣௔௜௥) which depends on the displacement of i relative to j,
and the volume-dependent component (ܨԦ௜π) which depends on the combined effects of all the
neighbours of automata i. ܨԦ௜ can be described as the sum of the normal/central (ܨԦ௜௝௡) and
tangential/shear (ܨԦ௜௝௧) components of interaction forces, and are characterized by the
corresponding specific normal (ߪ௜௝) and shear (ɒ௜௝) response forces:

 ൝ࡲሬሬԦ࢔࢐࢏ ൌ ࢚࢐࢏ሬሬԦࡲ ࢐࢏ࡿ࢐࢏࣌ ൌ (૛) ࢐࢏ࡿ࢐࢏ሬԦ࣎

where ܵ ௜௝ is the area of contact between automata i and j. Within the framework of multi-
body interactions, forces acting on the automata are calculated using deformation parameters
such as: elastic constants (shear modulus ܩ௜ and bulk modulus ܭ௜), plastic constants (yield
stress ߪ௬ and work hardening ߝ௛), relative overlap (ο݄௜௝) for translational interaction, and
tangential/shear displacement (ο݈௜௝௦௛௘௔௥ሻ for rotational interaction, as shown in Figure 1.

Figure 1: Schematic showing the (a) translational (b) rotational interactions between a pair of automata
 ቊο࢐࢏ࢎ ൌ ο࢏ࢊ࢐࢏ࣈȀ૛ ൅ ο࢐ࢊ࢏࢐ࣈȀ૛ ο࢒Ԧ࢘ࢇࢋࢎ࢙࢐࢏ ൌ οࢂሬሬԦ࢘ࢇࢋࢎ࢙࢐࢏ο࢚Ȁ࢐࢏࢘ ൌ ο࢐࢏ࢗ࢐࢏ࢽ ൅ ο࢏࢐ࢗ࢏࢐ࢽ (૜)

where normal strain (ߦ௜௝) and shear strain (ߛ௜௝) are the parameters of deformation. Hence,
the response of an isotropic elastic material can be described by the generalized Hooke's law:

 ቊο࢐࢏࣌ ൌ ૛࢏ࡳο࢐࢏ࣈ ൅ ሺ૚ െ ૛࢏ࡳȀ࢏ࡷሻ࢏ࡼο࣎ሬԦ࢐࢏ ൌ ૛࢏ࡳ൫οࢽሬሬԦ࢐࢏൯ (4)

where ܲ݅ is the pressure in volume (ߗ௜) of automaton i, also known as the mean stress ɐഥ୫ୣୟ୬୧ .

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

4

In 3D representation, bending and torsional deformation of the pair of automata also occur
due to the difference in automaton rotation:

 ο࢐࢏ࡷ ൌ െ൫࢏ࡳ ൅ ࢐൯ሺ࣓࢐ࡳ െ (૞) ࢚ሻο࢏࣓

where ܭ௜௝ is the torque of automata pair, which is used to calculate the momentum in Eq. 1.
To calculate these parameters of deformation, in the many-body interaction form it is

assumed that the stresses and strains are uniformly distributed in the volume of an automaton
i. The average stresses and strains in the volume of i are determined by the average stress
tensor (ߪതఈఉ௜ ሻ and average strain tensor (ߝ ҧఈఉ௜), which are used to calculate mean stress ௜ܲ and the
tensor invariants such as the equivalent stress (ߪത௘௤௜) and equivalent strain (ߝ ҧ௘௤௜) :

۔ۖەۖ
ۓ ࢏ࢼࢻഥ࣌ ൌ ૚π࢏ σ ࢼሻ࢐࢏ሬሬԦ࢔ሺ࢐࢏࣌ൣࢻሻ࢐࢏ሬሬԦ࢔ሺ࢐࢏ࢗ࢐࢏ࡿ ൅ ୀ૚࢐࢏ࡺ൧ࢼሻ࢐࢏Ԧ࢚ሺ࢐࢏࣎ ࢏ࡼ ൌ െ࣌ഥ࢏࢔ࢇࢋ࢓ ൌ െ ࢏࢞࢞ഥ࣌ ା ࣌ഥ࢏ ࢟࢟ ା ࣌ഥ࢏ࢠࢠ૜ ࢏ࢗࢋഥ࣌ ൌ ૚ξ૛ ටሺ࣌ഥ࢏࢞࢞ െ ࢏࢟࢟ഥ࣌ ሻ૛ ൅ ሺ࣌ഥ࢏࢟࢟ െ ࢏ࢠࢠഥ࣌ ሻ૛ ൅ ሺ࣌ഥ࢏ࢠࢠ െ ࢏࢞࢞ഥ࣌ ሻ૛ ൅ ૟ൣሺ࣌ഥ࢏࢟࢞ ሻ૛ ൅ ሺ࣌ഥ࢏ࢠ࢟ ሻ૛ ൅ ሺ࣌ഥ࢏ࢠ࢞ ሻ૛൧ (૟)

where ߙǡ ߚ ൌ ܺǡ ܻǡ ܼ are the coordinates of the system, ݍ௜௝ is the distance between the mass
centre of i and its contact point with j, ሺ ሬ݊Ԧ௜௝ሻఈǡఉ and ሺݐԦ௜௝ሻఉ are the projections of unit-normal
(ሬ݊Ԧ௜௝ሻ and unit tangential (Ԧ߬௜௝ሻ, vectors on X,Y,Z coordinates. The average strain tensor in the
automaton i can be computed by increments of elastic stress tensor at each time step [3]

The stress/strain tensor components are then used to realize the different elastic and plastic
deformation models developed in continuum mechanics. This means that the forces of inter-
automata interactions are directly obtained by the constitutive laws of the modelled medium.

For elastic-plastic behaviour, the von Mises model for plastic flow theory is used by
adopting the Wilkins algorithm [11,12]. Here, if the stress intensity (ߪത௘௤௜ ሻ exceeds the plastic
stress (ߪത௣௟௜) which is the radius of Von Misses yield circle, then the corrected stress for i is:

࢏ࢼࢻഥ࣌) ሻԢ ൌ ሺ࣌ഥ࢏ࢼࢻ െ ࢏ࡹሻ࢏ࡼ ൅ (7) ࢏ࡼ

where (ߪതఈఉ௜ ሻԢ is the corrected (returned) average stress tensor, ߪതఈఉ௜ is the elastic stress tensor
calculated before, and ࢏ࡹ ൌ ത௣௟௜ߪ Ȁߪത௘௤௜ is the coefficient of stress drop. Thus the corrected normal ሺ࢐࢏࣌ሻԢ and tangential ሺ࢐࢏࣎ሻԢ forces are:

 ቊሺ࢐࢏࣌ሻĄ ൌ ሺ࢐࢏࣌ െ ࢏ࡹሻ࢏ࡼ ൅ ሻĄ࢐࢏࣎ሺ࢏ࡼ ൌ (8) ࢏ࡹ࢐࢏࣎

For fracture and bonding behaviour, a pair of automata can be considered to be linked or
unlinked, and they can switch their state by using a switching criteria defined by the
deformation of the material. These switching criteria could be a fracture or bonding criteria,
and it is possible to apply any of the well known criteria used in continuum mechanics such as
Mohr-Coulomb, Humber-Mises-Hencky, Drucker- Prager and others for this.

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

5

3 IMPLEMENTATION OF MCA IN LIGGGHTS: SOFTWARE DEVELOPME NT

Here we describe the implementation of the MCA 3D elastic-plastic model into
LIGGGHTS and the relevant code parts that were added to describe MCA functionalities.

3.1 General data structure

LIGGGHTS is written in C++ using an object-oriented structure making it possible to
modify and extend. The flowchart in

Figure 2 outlines the general structure of the LIGGGHTS program, which is quite similar
to any general particle-based simulation program, showing their relevant functions in the
source code in their order of execution.

Figure 2: Flow chart of program structure and the relevant functions in LIGGGHTS

The system is first initialised using the input data which is defined in an input script by

commands relevant to the acquired simulation. The initial positions and velocities are
assigned to the particles. Then the time-stepping starts by integration; we use the Velocity-
Verlet integration scheme [13], which is the most commonly used in MD and DEM
simulations to calculate position and velocity as a function of time. According to the
Velocity-Verlet integration scheme, as shown in Algorithm 1, the first step is to update the
velocities by a half time-step and positions by one step. Then compute the interaction forces
between the particles and their neighbours. Then update the velocities by another half-step.

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

6

Algorithm 1 : Velocity-Verlet integration scheme

1- Calculate: ݒԦ ቀݐ ൅ ଵଶ οݐቁ ൌ ሻݐԦሺݒ ൅ ଵଶ Ԧܽሺݐሻοݐ

2- Calculate: ݔԦሺݐ ൅ οݐሻ ൌ ሻݐԦሺݔ ൅ Ԧݒ ቀݐ ൅ ଵଶ οݐቁ οݐ

3- Derive ܽԦሺݐ ൅ οݐሻ from the interaction forced using ݔԦሺݐ ൅ οݐሻ

4- Calculate: : ݒԦሺݐ ൅ οݐሻ ൌ Ԧݒ ቀݐ ൅ ଵଶ οݐቁ ൅ ଵଶ Ԧܽሺݐ ൅ οݐሻοݐ

LIGGGHTS works by calling the main functions in the order shown in the flowchart in
Figure 2. Steps 1 and 2 in Algorithm 1 occur in the 'initial_integrate' function shown in the

flowchart, step 3 by computing the forces (mainly 'pair' and 'bond' computes), and step 4 by
'final_integrate'. The calculation of the inter-particle forces is the most time consuming part of
any particle-based simulation. The higher the number of particles, the relative distances and
velocities between the neighbouring pairs, the higher the computational time to evaluate the
forces between them. The computational time is reduced by using cut-off distance, neighbour
lists and linked cell list algorithms to identify the nearby particles and only update and
calculate the forces on the particles within the neighbour area within a given time step.

Each command in LIGGGHTS corresponds to a relevant class that defines that specific
functionality. The following are the new commands added relevant to MCA implementation
and examples of how they are defined in the input script:

atom_style mca radius ${rp} packing fcc n_bondtypes ${bt} bonds_per_atom ${bpa}
pair_style mca ${skin}
bond_style mca
fix integr nve_group nve/mca
fix bondcr all bond/create/mca 1 1 1 ${cutoff} 1 ${bpa}
fix topV_fix top mca/setvelocity 0 0 v_vel_up

Algorithm 2 shows the functions and the relevant MCA classes that were added to

LIGGGHTS in the order of execution as shown in Figure 2, to implement our new commands
by adding MCA functionalities to the source-code.

Algorithm 2 : Programme structure with relevant new MCA implemented classes

1- init() / setup() [AtomVecMCA],[FixBondCreateMCA],[FixMCASetvel]
2- initial_integrate() [FixNVEMCA]
3- post_integrate() [FixBondCreateMCA]
4- pre_exchange() [FixBondExchangeMCA]
5- pre_force() [FixMeanStressMCA]
6- pair_compute() [PairMCA]
7- bond_compute() [BondMCA]
8- post_force() [FixMCASetvel]
9- final_integrate() [FixNVEMCA]

The main features that were added/implemented and their relevant classes according to

Algorithm 2 are explained below. For the sake of ease of writing, the terms 'automata' and
'atoms' are used interchangeably having the same meaning.

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

7

3.2 Initialization

3.2.1 Initialise atom positions: AtomVecMCA

Before time-stepping begins the atoms are generated, the necessary structures are allocated
in their memory locations and each atom is assigned with a position and velocity. In MCA,
same as MD, the particles are placed in an appropriate lattice structure (SC, FCC, HCP).

Although the size of an automaton is characterized by a diameter (݀௜), the shape of the
automaton is not always a sphere. The real shape is determined by the area of its contact with
its neighbor (ܵ௜௝), they have face-face interactions. This equivalent shape is characterized by a
new radius parameter which is calculated from the initial volume of the automata.

Thus, some new automata parameters need to be defined in LIGGGHTS, which is done in
a new class called 'AtomVecMCA'. These parameters are: mca radius, orientation vector,
inertia, contact area, contact distance, volume, mean stress, equivalent stress, equivalent strain
and number of bonded automata. Initial contact area and volume of automata are also defined
and computed here based on the radius and packing.

3.2.2 Create bonds between atoms: FixBondCreateMCA

Each automaton forms bonds with its neighbours, and the maximum number of bonds of
an automaton depends on the coordination number; 6 bonds for SC and 12 bonds for
FCC/HCP. Each two neighboring automata form an automata pair, and are considered to be
in contact. Initially, if the simulated specimen is a consolidated solid, then the contacts are
assumed to be linked (bonded). If there are damages or cracks, then they are assumed to be
unlinked (unbonded). This is implemented in the new class 'FixBondCreateMCA'.

3.2.3 Initialise atom velocities: FixMCASetvel

Atoms should also be initialised with a velocity before the time stepping begins. It is also
sometimes useful to set boundary conditions or loading via velocity. This can be done in the
new class 'FixMCASetvel'.

3.2.4 Initial integration: FixNVEMCA

Here the time stepping (run) begins and, as explained, according to the Velocity Verlet
integration scheme, the first step is to update the velocities by a half time-step and positions
by one step. In MCA, we also update the rotation velocity ሬ߱ሬԦ by half-step.

3.2.5 Post integration: FixBondCreateMCA

After the first half of integration, the bond list and number of bonds need to be updated.
This is also done in the class 'FixBondCreateMCA'.

3.3 Neighbour list generation and update

As explained, neighbour lists are produced and /or checked at every time step to exclude
computing the interaction forces for any far away automata. This also includes checking the
bonds between automata at every time step, erasing any broken bonds from this list and

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

8

adding any new bonds created. This is done in a new fix called 'FixExchangeBondMCA' is to
exchange data of MCA bonds across processors at every time step.

3.4 Force calculation

3.4.1 Mean stress predictor: FixMeanStressMCA

Before starting the force calculation on each automaton, the predictor for ߪത௠௘௔௡௜ estimation
should be calculated because the specific forces of interaction between the automata at the
current time step is calculated using ߪത௠௘௔௡௜ as shown in Eq. 4. This is done by the 'pre_force'
function in the FixMeanStressMCA' class. Usually for elastic behaviour, there is no need for a
predictor corrector, while for accurate elasto-plastic behaviour two cycles are usually enough.

3.4.2 Pair and many-body force interactions: PairMCA

Algorithm 3 shows how the forces on the atoms are calculated, which is done in the new
class 'PairMCA'. The elastic specific forces are calculated first, then the corrector for
plasticity is calculated using the equivalent stress as described before, and the new total forces
are obtained. Rotation is also taken into consideration and added to the code.

3.4.3 Bond forces: BondMCA

In this class the breaking of bonds is implemented. To do so the contact distances between
automata are calculated, then using the equivalent stress criterion it checks if any bonds have
broken using the Drucker- Prager criterion or any new bonds have been created.

3.5 Final integration

Before the final integration step, boundary conditions are added if needed which is done in
the new 'FixMCASetVel' class. Then according to the velocity Verlet integration, the last step
is updating the velocity and rotations for another half step, as shown in Algorithm 1, to obtain
the final location and velocities of the automata. This is also implemented in 'FixNVEMCA'
and this is then the end of the current time step. If it is not the last time-step of the simulation,
the cycle is repeated starting from step 4 in the flowchart of Figure 2.

Algorithm 3: MCA forces computation algorithm - calculation in every time step

1- Calculate ߪ௜௝, ߬Ԧ௜௝ and ܭ௜௝ at current time step (n+1), from equations 3,4 and 5.

2- Calculate corresponding values of ߪത௫௫௜ ത௬௬௜ߪ , ത௫௬௜ߪ , ത௭௭௜ߪ , ത௠௘௔௡௜ߪ , and ߪത௘௤௜ , from equation 6.

3- Examine the value of ߪത௘௤௜ , then calculate ܯ௜ if required.

4- Calculate ߪԢ௜௝ and ߬ Ԣ௜௝, from equations 7 and 8.

5- Calculate the forces and torques of automata, from equations 2,4 and 5.

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

9

4 VERIFICATION OF ELASTIC-PLASTIC MODEL

To verify the elastic-plastic MCA developed model in LIGGGHTS, 3D samples under uni-
axial compression/tension and shear were modeled. The response function parameters of the
material were checked to demonstrate correct macroscopic mechanical response. The
simulated samples are 3D Aluminum samples, with equal-sized FCC packed automata as
shown in Figure 3. The internal structure is assumed to be homogenous and free of
discontinuities (damages or cracks), and all automata are assumed to be initially bonded. The
material parameters are: Young’s modulus ܧ ൌ ͹Ͳ ܽܲܩ, Poisson’s ratio ߤ ൌ ͲǤ͵, density ߩ ൌʹ͹ͲͲ ݇݃Ȁ݉ଷ, yield stress ߪ௬ ൌ ௛ߝ and work hardening modulus ܽܲܯ ʹ ൌ ͳͲ ܽܲܩ. The bottom
layer of particles are fixed (velocity = 0) and the upper layer moves vertically
(tension/compression) or horizontally (shear) with a low constant velocity to simulate quasi-
static deformation regime. Both layers are free in the horizontal direction.

 (a) (b)

Figure 3: Initial structure of MCA 3D model sample simulated in LIGGGHTS under (a) tension (b) shear

To study fracture behaviour, uni-axial tension/compression and shear tests were simulated
with the setup shown in Figure 3. Their stress/strain curves (blue curves) are plotted against
the analytical solution (red line) of Young's modulus for tension/compression and shear
modulus for shear behaviour in Figure 4.

 (a) (b)

Figure 4: Stress/strain curves of uni-axial (a) tension and (b) shear compared to analytical solution (red line).

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

10

Both tension and compression showed correct macroscopic response and very close
agreement with the analytical solution as shown in Figure 4(a). It is important to mention that
here we only tested with large automata sizes because MPI exchange has not been
implemented yet to allow for parallel processing. More accurate results are obtained by
decreasing the automata size relatively to the required behaviour. However, still the results
show how the implementation of the many-body interaction forces form resulted in correct
macroscopic response; which is not possible when only pair-wise interactions are considered.
The same is shown by the shear behaviour in Figure 4(b). The results show the possibility of
modelling fracture under tension/compression and shear loading as the material fails after
reaching a critical value.

Furthermore, to test correct plasticity behaviour, uni-axial loading/unloading was also
simulated for tension and shear as shown in Figure 5. The results show a typical loading-
unloading curve, which means the model is capable of modelling correct elasto-plastic
behaviour.

 (a) (b)

Figure 5: Stress/strain curves of uni-axial loading/unloading by (a) tension and (b) shear compared to
analytical solution (red line).

5 CONCLUSIONS

- A new elastic-plastic model was developed within LIGGGHTS open-source code.
The model is based on the MCA particle-based method.

- This implementation allows for the modelling of correct fracture and elasto-plastic
behaviour, as shown by the verification tests.

- The current limitation of the code is that it does not allow MPI exchange for parallel
processing, however this will still be implemented within the code.

- Further work will also include testing the bond breaking of the particles, as well more
complex materials systems, with smaller automata size and different boundary
conditions.

REFERENCES

[1] S.G. Psakhie, Y. Horie, S.Y. Korostelev, A.Y. Smolin, A.I. Dmitriev, E. V. Shilko, S.
V. Alekseev, Method of movable cellular automata as a tool for simulation within the
framework of mesomechanics, Russ. Phys. J. 38 (1995) 1157–1168.

Nadia Salman, Mark Wilson, Anne Neville and Alexey Smolin

11

[2] E. V. Shilko, S.G. Psakhie, S. Schmauder, V.L. Popov, S. V. Astafurov, A.Y. Smolin,
Overcoming the limitations of distinct element method for multiscale modeling of
materials with multimodal internal structure, Comput. Mater. Sci. 102 (2015) 267–285.

[3] S.G. Psakhie, E. V Shilko, A.S. Grigoriev, S. V Astafurov, A. V Dimaki, A
mathematical model of particle – particle interaction for discrete element based
modeling of deformation and fracture of heterogeneous elastic – plastic materials, Eng.
Fract. Mech. 130 (2014) 96–115.

[4] S. Plimpton, Fast Parallel Algorithms for Short–Range Molecular Dynamics, J.
Comput. Phys. 117 (1995) 1–19.

[5] S. Psakhie, E. Shilko, A. Smolin, S. Astafurov, V. Ovcharenko, Development of a
formalism of movable cellular automaton method for numerical modeling of fracture of
heterogeneous elastic-plastic materials, Frat. Ed Integrita Strutt. 24 (2013) 26–59.

[6] M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to
impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443–6453.

[7] M.S. Daw, S.M. Foiles, M.I. Baskes, The Embedded-Atom Method: A Review of
Theory and Applications, Elsevier Sci. Publ. N/A (1993) 251–310.

[8] C. Kloss, C. Goniva, LIGGGHTS: a new open source discrete element simulation
software, in: Proc. Fifth Int. Conf. Discret. Elem. Methods, London, UK, 2010: pp. 25–
26.

[9] S.J. Plimpton, Large-scale Atomic/Molecular Massively Parallel Simulator, LAMMPS,
(n.d.). http://lammps.sandia.gov.

[10] Christoph Kloss, LIGGGHTS, (n.d.). https://github.com/CFDEMproject/LIGGGHTS-
PUBLIC.

[11] M.L. Wilkins, Calculations of elastic-plastic flow, Academic Press, New York, 1964.
[12] M.L. Wilkins, Computer simulation of dynamic phenomena, 1999.
[13] N. Martys, R.D. Mountain, Velocity Verlet algoritm for dissipative-particle-dynamics-

based models for suspensions, Phys. Rev. E. 59 (1999) 3733–3736.

