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A series of numerical simulations of the dynamo process operating inside gas giant planets has been per-
formed. We use an anelastic, fully nonlinear, three-dimensional, benchmarked MHD code to evolve the
flow, entropy and magnetic field. Our models take into account the varying electrical conductivity, high
in the ionised metallic hydrogen region, low in the molecular outer region. Our suite of electrical conduc-
tivity profiles ranges from Jupiter-like, where the outer hydrodynamic region is quite thin, to Saturn-like,
where there is a thick non-conducting shell. The rapid rotation leads to the formation of two distinct
dynamical regimes which are separated by a magnetic tangent cylinder - mTC. Outside the mTC there
are strong zonal flows, where Reynolds stress balances turbulent viscosity, but inside the mTC Lorentz
force reduces the zonal flow. The dynamic interaction between both regions induces meridional circula-
tion. We find a rich diversity of magnetic field morphologies. There are Jupiter-like steady dipolar fields,
and a belt of quadrupolar dominated dynamos spanning the range of models between Jupiter-like and
Saturn-like conductivity profiles. This diversity may be linked to the appearance of reversed sign helic-
ity in the metallic regions of our dynamos. With Saturn-like conductivity profiles we find models with
dipolar magnetic fields, whose axisymmetric components resemble those of Saturn, and which oscillate
on a very long time-scale. However, the non-axisymmetric field components of our models are at least

ten times larger than those of Saturn, possibly due to the absence of any stably stratified layer.

© 2018 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The magnetic fields and zonal wind structure of Jupiter and Sat-
urn can be modeled using the anelastic MHD spherical dynamo
equations. A key feature distinguishing Saturn from Jupiter is the
depth where the transition between molecular hydrogen and its
high-pressure metallic phase occurs (Lorenzen et al., 2011). Jupiter
models, such as Jones (2014) or Duarte et al. (2013), which success-
fully reproduce the magnetic field dipolarity and dipole tilt, have
a shallow hydrodynamic layer and a thick dynamo region deeper
down. We therefore extend and generalise these studies by using
the thickness of the deeper dynamo zone as a parameter, con-
sidering the resulting differential rotation and magnetic fields. In
particular, we discuss the implications for Saturn. Gas giant plan-
ets have deep atmospheres with a radial outward decay of static
density, pressure and temperature, probably overlying a relatively
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small rocky core. This makes a compressible approach, such as the
anelastic approximation, a useful basis on which to build models.

The main challenge of numerical MHD models covering the
global atmospheric dynamics and magnetic field induction process
of gas giants stems from the enormous range of time and length
scales characteristic of a rapidly rotating, planet-sized spherical
fluid body. Additionally, electric currents and their associated mag-
netic forces constitute another level of complexity. The nonlinear
interaction and relative importance of the governing forces (buoy-
ancy, Coriolis, Lorentz, dissipation) leads to characteristic phe-
nomena such as predominantly columnar convective flows, deep-
reaching zonal wind systems, and dynamo-generated magnetic
fields. The ratios of those forces are typically quantified by a set of
nondimensional numbers, e.g. the Ekman, Rayleigh, hydrodynamic
and magnetic Prandtl number. For some of these, e.g the Ekman
number, the natural value is far beyond that possible in numerical
models. We must therefore use enhanced diffusivities and surface
heat flux, hoping that the small scales they eliminate are not so
important in determining the larger scale flows and fields we are
most interested in.

0019-1035/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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1.1. Zonal flows

Both Saturn and Jupiter feature a prograde jet at the equator,
which is broader and more energetic on Saturn, and multiple al-
ternating bands at higher latitudes (Sanchez-Lavega et al., 2000;
Porco et al., 2003). One possible cause for the surface zonal flow
structure are rotationally organised convective motions filling the
whole planetary atmosphere and generating geostrophic differen-
tial rotation. There have been plenty of numerical and theoretical
studies regarding the emergence of differential rotation in rotat-
ing convection. For hydrodynamic models, convection emerges in
accord with the Taylor-Proudman theorem as columnar structures
aligned with the rotation axis (Busse, 1970). The columns exhibit a
consistent tilt leading to Reynolds stress, which pumps zonal an-
gular momentum outwards, e.g. Busse (1976); Christensen (2001);
Aubert (2005). This leads to a run-away growth of differential ro-
tation ultimately balanced by the tiny viscosity and hence giving
enormous jet amplitudes.

More recently, such zonal flows have been successfully mod-
elled in anelastic systems as well (e.g. Jones and Kuzanyan, 2009;
Gastine and Wicht, 2012). Those models are usually strongly
geostrophic, and harbour a broad prograde jet close the equator
and a retrograde one at greater depth. Low Ekman number global
3D models can give Jupiter-like zonal flows, but only if the model
is restricted to the non-metallic region, and crucially uses a stress-
free lower boundary (Heimpel et al., 2005).

The magnetic field created in the deep interior can attenu-
ate the zonal flow and alter its pattern. Earlier models of gi-
ant planet atmospheres including the magnetic field relied on
the simpler Boussinesq approach (Heimpel et al., 2005; Heimpel
and Aurnou, 2007; Gémez-Pérez et al., 2010). More recent stud-
ies used a polytropic perfect gas, or an interior state model cover-
ing the strong radial decline of density, temperature and pressure
in the framework of the anelastic approximation (Gastine et al.,
2012; Duarte et al., 2013; Jones, 2014). Those models indicated
that when the dynamo is active, the main force balance is al-
tered from a geostrophic to a magnetostrophic regime. Then the
run-away growth of differential rotation due to Reynolds stresses
is stopped in the metallic hydrogen region by the influence of
Maxwell stresses. Such models successfully reproduced the mag-
netic field morphology of Jupiter and the equatorial prograde jet
(Jones, 2014). However, the high latitude alternating structures in
giant planets are suppressed by the Maxwell stresses, so it is more
likely they are a surface effect not related to the deep interior. Ul-
timately, the depth of the surface zonal flows may be observation-
ally constrained with gravity measurements by the Juno mission
(Hubbard, 1982; Kaspi et al., 2010; Zhang et al., 2015).

1.2. Magnetic fields, parity and classification

Jupiter’s magnetic field is rather Earth-like in terms of dipo-
larity and mean dipole tilt (Connerney, 2007). However, Saturn’s
field is peculiar as it seems entirely axisymmetric (e.g. Smith et al.,
1980; Cao et al, 2011). Stevenson (1982) suggested that zonal
flows in a stably stratified layer could make the surface magnetic
field axisymmetric even if the field generated by the dynamo is
significantly non-axisymmetric. Such a scenario was further ex-
plored in numerical models by Christensen and Wicht (2008);
Stanley (2010); Stanley and Bloxham (2016). However, these mod-
els ignored the other main characteristic of Saturn’s atmospheric
interior, the variable radial conductivity and the combination of a
deep dynamo and an outer hydrodynamic shell. In this study, we
exclude the uncertain stably stratified layer that may occur in Sat-
urn, and study the induction of magnetic fields when the electrical
conductivity is a function of radius. Then, from the modeling point

of view, the essential difference between Jupiter and Saturn is the
depth of the conductivity drop-off level.

The magnetic fields of dynamo models are usually classified
by the percentage contribution of the dipole mode (Duarte et al.,
2013). It turned out that dipole dominated fields are rather hard
to isolate in the most advanced Jupiter models (Jones, 2014). They
seem to coexist with other leading order field symmetries in close
proximity in the parameter space explored so far. It is also known
that strong anelasticity and the use of smaller (more realistic)
hydrodynamic Prandtl numbers yield a rich zoology of dynamos
(Simitev and Busse, 2005; Christensen and Aubert, 2006; Duarte
et al., 2013). Though the global magnetic fields of the Sun, the
Earth, Jupiter and Saturn are predominantly dipolar, the ice giants
and also Mercury are found to harbour strong non-dipolar contri-
butions, including a significant quadrupolar component.

The process of selecting a leading order equatorial symmetry
is not well understood. In terms of the simpler kinematic the-
ory, Roberts (1972) and Proctor (1977) showed that a combina-
tion of a-effect, shear and meridional circulation controls the time-
dependence and leading order field parity. Their results suggest
that, steady dipolar and quadrupolar dynamos are typically excited
at similar parameter values in a2-dynamos. The presence of strong
shear gives preference to dipolar waves of «Q2-type (Parker, 1955).
If there exists additionally a significant meridional circulation, ei-
ther quadrupolar or dipolar steady solutions are selected by the
sign of the product of the «-effect and 2 (Proctor, 1977). Later on,
Sreenivasan and Jones (2011) proposed that the magnetic field it-
self enhances the efficiency of the induction process by increasing
the kinetic helicity, leading to a dipolar preference over all.

Dynamo generated global magnetic fields in natural objects,
such as planets or stars, can vary substantially in field symme-
try and time-dependence. Magnetic fields with leading quadrupo-
lar (equatorially symmetric) parity have been observed in stellar
dynamos, e.g. for Bp-type stars (Thompson and Landstreet, 1985;
Kochukhov, 2006). These stars are substantially more massive than
the Sun (M > 1.5Mg) hence they are convectively unstable in the
core and stably stratified in the radiative outer region, which is
known to develop differential rotation (Triana et al., 2015). Fur-
ther the quadrupolar magnetic moment of the Sun can be sub-
stantial at periods during the solar cycle, and was suggested to
dominate over the axial and equatorial dipole components at the
time of grand solar minima (Knobloch et al, 1998; Beer et al.,
1998; DeRosa et al., 2011). The magnetic fields of the ice giants
are best described with a strong contribution from the equato-
rial dipole mode (Holme and Bloxham, 1996; Stanley and Blox-
ham, 2004). Hence they have substantial equatorially symmetric
and non-axisymmetric components. Finally, the dynamos in low-
mass dwarfs generate an azimuthal magnetic structure harbouring
a wide variability of axisymmetric and non-axisymmetric modes
(Donati, 2011).

1.3. Radially variable electrical conductivity

In Jupiter and Saturn the transition from metallic to molecu-
lar hydrogen leads to a steep decrease in the electrical conduc-
tivity (Chabrier et al., 1992; French et al.,, 2012). The conductivity
profile then follows an exponential decay in the metallic hydro-
gen region deeper inside accompanied by a super-exponential de-
cay outside the metallic hydrogen region (Jones, 2014). This implies
an active magnetic field generation process deep inside the planet
where hydrogen exhibits metallic electrical conductivity. The drop-
off radius separating the hydrodynamic outer shell from the mag-
netic interior shell is closer to the surface for massive Jupiter (at
90% of the planetary radius), but is much deeper for Saturn (at
65%-70%). From the modeling perspective, this leads to an inner
conducting shell where the magnetic field dominates the dynam-
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Fig. 1. Schematic model setup denoting the inner, no-slip and outer, free slip wall.
The imaginary cylindrical boundary attached to the inner boundary is termed the
tangent cylinder (TC). The red line denotes the radial position of the conductivity
drop-off (ry4) separating an inner magnetic shell with high electrical conductivity
harbouring the dynamo process from an outer hydrodynamic one. The red dashed
line gives the position of the cylindrical magnetic tangent cylinder (mTC). (For in-
terpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

ics surrounded by an outer hydrodynamic shell where the strong
Coriolis force reigns. For Saturn, it has been suggested that a stably
stratified region is formed underneath the conductivity drop-off, as
He might become immiscible (Stevenson and Salpeter, 1977). How-
ever, more recently it was shown that the He-droplets sink down
towards the solid core and may not build up a stratifying composi-
tional gradient between the deep-seated dynamo and non-metallic
shallower regions (Piistow et al., 2016). Hence we do not include
any stable stratification in the models and focus on the effect of a
radially varying electrical conductivity.

A non-constant electrical conductivity has been investigated
in Boussinesq systems (Gomez-Pérez et al, 2010; Heimpel and
Gomez Pérez, 2011) and recently in anelastic models (Duarte et al.,
2013; Jones, 2014; Gastine et al., 2014). These studies focused on
Jupiter, hence the effect of a deeper metallicity region has not
yet been fully explored. Our models are based upon the study of
Jones (2014), but investigate a deeper conductivity drop-off, more
applicable to Saturn-sized planets, and cover a broader range in
model parameters. Gomez-Pérez et al. (2010) and Heimpel and
Gomez Pérez (2011) found that models with thick non-conducting
regions have much stronger zonal flows than those which are mag-
netic almost everywhere. An important issue is at what radius the
magnetic field first becomes dynamically important. A spherical
boundary termed the ‘planetary tachocline’ at a depth of r; was
suggested to separate the hydrodynamic outer from the magnetic
inner region (Gémez-Pérez et al., 2010; Heimpel and Gémez Pérez,
2011). We give a precise definition of r; below, but it coincides
roughly with the transition from the non-magnetic H/He region
to the metallic hydrogen region. Our results suggest the boundary
between the hydrodynamic and the magnetically controlled region
has cylindrical geometry, a ‘magnetic tangent cylinder’ - mTC (see
Fig. 1) due to the strong rotational influence. This virtual cylinder
is attached to r; at the equator.

This indicates that surface zonal flows outside the mTC are deep
reaching, geostrophic differential rotation systems, whereas the al-
ternating jet structures observed at higher latitudes on Saturn and
Jupiter are rather shallow phenomena (Jones, 2014).

Varying r, effectively changes the geometry of the dynamo re-
gion. This shares some similarities with models featuring constant
conductivity, but where the aspect ratio is changed. Goudard and
Dormy (2008) found in a Boussinesq model that when the dynamo
aspect ratio exceeds r;/r; = 0.65, the previously preferred steady
dipole solutions are replaced by oscillating dipolar or quadrupolar

solutions. Interestingly, the dynamos are reported to jump between
the dipolar and quadrupolar branch over their temporal evolution
(Goudard and Dormy, 2008).

We start off the paper by discussing the implementation of a
radially variable electrical conductivity in Section 2. There follows
the introduction of the MHD model and the computational aspects
(Section 3). Section 4 then provides a detailed description of the
results subdivided into an analysis of zonal flows and their main-
tenance (Section 4.1), the kinetic helicity (Section 4.2), a classifica-
tion of the emerging dynamo solutions in terms of butterfly dia-
grams (Section 4.3) and the ‘magnetic trigram’ (Section 4.4). The
results are compared to Saturn in Section 4.5, before the paper
concludes in Section 5.

2. Variable electrical conductivity and magnetic Reynolds
number

To model the radially varying magnetic diffusivity (A~1 = uqo,
with o the electrical conductivity), a hyperbolic fitting formula
(Jones, 2014)

A(r) = exp <u+\/m> , (M

where u and v are

u=%[(g1+gz)r—gz—g4] (2)

V= (g1 —82)(g3r —84) — & , (3)

r being radius in metres, was used. With the values g; = —4.279 .
1076, g, =274, g3 = —2.55-1078, g4, = 1.801, g5 = 20.28 this gives
a close fit to the electrical conductivity of the Jupiter model of
French et al. (2012). For our models g, and gs are changed to alter
r4, the conductivity drop-off. The others are kept constant. The five
different profiles with g, = 274, 240, 210, 195 and 180 are plot-
ted in Fig. 2, top panel. Additionally, g5 = 20.28 for all cases, with
the exception of the (g, = 180)-model, where g5 = 10.0 to keep
the diffusivity in the dynamo region comparable to the other pro-
files. The model with g, = 274 (green profile) closely resembles the
Jupiter-profile used in Jones (2014). Whereas for Saturn the phase
transition from molecular to metallic hydrogen is assumed at the
1 Mbar-level at 0.67rs (Nettelmann et al., 2013), so the orange pro-
file is the closest to Saturn. For numerical reasons, we set the gra-
dient of A to dA/dr = 106 if the formula value is larger, assuming
that this gives a diffusivity sufficiently large to yield a current-free
region for r> ry. Finally, all conductivity profiles are normalised to
their respective mid-depth values (Ap).

To roughly indicate the top of the dynamo region, located at
the conductivity drop-off r;, we quantify the induction of magnetic
field by estimating the magnetic Reynolds number, Rm. The diffu-
sivity is non-constant hence the magnetic diffusion consists of two
parts:

Vxk(r)VXB:)\(r)VxVxB+d£é}xVxB, (4)
A

where [d;]~! = 1/AdA/dr. In the transition region between the
magnetic interior and the hydrodynamic outer shell, the second
term dominates the magnetic diffusion and hence we use

-1
dxr

Rm* (r) = Ueq(r) d)\/)\, (1‘) = Ueq (1‘) |:dri| s

where Ueq(r) is the rms flow strength in the equatorial plane for

the models in group 2 in Table 1. Because the zonal flows are

strongly damped in the magnetic region, they do not significantly

affect Ueq there. Fig. 2, bottom panel (solid lines) shows Rm* as a
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Fig. 2. Top: Radial decay of normalised inverse magnetic diffusivity. All curves are
scaled version of the profile used in Jones (2014), where the drop-off radius ry is
varied. Bottom: Magnetic Reynolds number Rm* = UMd)»/dr]’1 (solid) compared to
the generic definition Rm = UyD/A (dashed) along radius. The vertical, dashed lines
denote the ry values defined by Rm* =1 and hence the upper border of the mag-
netically active region.

function of r. It can be seen that Rm* roughly resembles the con-
ductivity profile (top panel); values of Rm* < 10~2 are effectively
zero in our work. Following Heimpel and Gémez Pérez (2011), the
upper border of the dynamo region r; for each profile is defined
roughly where Rm* crosses unity (Fig. 2, bottom panel). Note that
above r; the magnetic field is approximately a potential field as
there are no significant electrical currents there. We also show
in Fig. 2 (bottom panel) the dashed curves derived from setting
Rm = Ueq(r)D/A.(r), which would be obtained if the second term in
(4) were ignored. The profile of Rm is significantly larger, showing
that the additional dissipation due to the variation of A is signifi-
cant.

3. Models and methods

We model the unstably stratified and partially electrically con-
ducting atmosphere of a gas giant as a rapidly rotating and vig-
orously convecting spherical shell. We take into account the radial
variation of adiabatic temperature, density, pressure and electrical
conductivity according to an interior state model originally devel-
oped for Jupiter (French et al., 2012). Note, interior state models
dedicated to Saturn are available, but they do not yet cover the
electrical transport properties (Nettelmann et al., 2013). It is un-
likely that there is great sensitivity to the profiles of temperature,
density and pressure, so using scaled Jupiter values should be ade-
quate. As discussed in the previous study by Jones (2014), the gov-
erning equations for the conservation of mass, momentum, ther-
mal energy and magnetic field are

0=V (pu). (5)

ou R 2Pm
I Vu_——V F

é, x u+ PmF,

RaPm?2 dT Pm
Tdrs E(V x B) x B, (6)
as Pm 1 1 Pr
+P—mH+ Pr Mr) V xB)?, 7

Pr RaPmT Ep

?:Vx(uxB)—Vx()\(r)VxB). (8)
t

Here u is the flow, B the magnetic field, S the specific entropy, F,
the viscous force, p = p/p the modified pressure, €, the axis of ro-
tation, &, the radial unit vector, H is an entropy source, Q, repre-
sents viscous heating, /6 and T are density and temperature of the
background. Further

_1 J . 8Ll,‘ 8uj 20 _auj
Fu_,ﬁ|:8xj'0<axj+ax,- _§37X,-'037Xj’ 9)
ou;
Qv:(’ua (10)
_(ou; Ou; 2
a,-j:v,o<8)<;+8)(;—381]V-u> , (11)

where o is the stress tensor. Background temperature, den-
sity and magnetic diffusivity are normalised by their respective
mid-depth values (T, Pm, Am). The non-dimensional parameters
emerging by rescaling length by the shell thickness D =r, — 1,
time by the magnetic diffusion time scale t; = D?/Apm, and the
magnetic field by \/QpmuoAim, are the Ekman number E, the hy-
drodynamic Prandtl number Pr, the Rayleigh number Ra and the
magnetic Prandtl number Pm according to

TD3q, v

Ra=-""1° pm=_— 12
¢ PoTok2V’ m Am (12)

v v
E= oD Pr = p
where k is entropy diffusivity, v kinematic viscosity and 2 the
rotation rate. Here p, and T, are density and temperature at the
outer boundary (r =r,). Note that the entropy scale and hence
the Rayleigh number in the present study are based on the outer
boundary heat flux density q,, rather than an imposed entropy
contrast AS as used in Jones (2014). Then qo, which is constant
over the planet’s surface, is determined by the contributions of in-
ternal (H) and bottom heat source density (q;)

3 _ 3

T
o= "5—tH+1iq; . (13)
which can be expressed using the aspect ratio 8 = r;/r, to give
Ll S (14)
3(1 B)

For giant planets with relatively small cores, the heat flux emerg-
ing from the core is likely to be small compared to the heat flux in
the H/He region, so for the bulk of the models we ignore any heat
flux at the inner boundary (g; = 0), and the convection is powered
exclusively by an internal entropy source H due to cooling of the
planet. However, for comparison we also performed a few models
with bottom driving (H =0, q; = qo/%). Further, the aspect ratio
is increased to a Saturn-like value, 8 = 0.2. The containing walls
are impenetrable and no-slip at the inner boundary and free-slip
at the outer boundary (see also Fig. 1).

We numerically integrate the system of equations (Eqs. 5-8)
by using the Leeds Anelastic Spherical Dynamo Code (ALSD), an
MPI-parallelised pseudo-spectral code benchmarked against several
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Table 1

Table of runs. The Ekman number is fixed to E=5-10", the magnetic Prandtl
number to Pm=3 apart from the cases where Pm=5 is used (°, group 7).
D, Q and NA are the time averaged relative magnetic energy at the surface in
equatorial-antisymmetric/axisymmetric, equatorial-symmetric/axisymmetric and non-
axisymmetric magnetic energy at the surface, respectively. T indicates bottom heated
models. * denotes the Jupiter-model by Jones (2014), which was performed with a
lower Ekman number E =2.5-10"°, 8 =0.0963 and internal heating. The column
‘type’ assigns each dynamo solution to the seven types given in Fig. 6. The bold-faced

ones are those shown in the figure.

o. Ra Pr Tq D Q NA Type Symbol
11 6-108 0.15 067 0914 0.002 0.085 I *
1.2 6-108 0.15 072 0934 0.014 0.005 I ]
13 6-108 0.15 082  0.004 0.813 0.183 \% *
14 6-10° 0.15 094 0.0008 0.653 0339 V [ ]
21 1-107 025 062 0943 0.001 0.056 I v
22 1-107 025 067 0912 0.0009 0.087 1 L 2
2.3 1-107 025 072 0.0021 0.843 0.155 \Y [ |
24 1-107 025 082 0.0055 0.746 0249 V (]
2.5 1-107 025 094 0461 0.188 0.351 I\Y% (]
2.6 1-107 025 oo 0.093 0.065 0842 IV X
31 1.5-107 025 062 0.02 0.421 0559 IV v
32 1.5.107 025 067 0.033 0.435 0533 V <
33 1.5.107 025 072 0.011 0.679 0.31 \Y 1]
34 1.5.107 025 082 0.039 0.726 0235 V 10
3.5 1.5-107 025 094 0558 0322 0.121 v (0]
41 9.10% 0.15 062 0.014 0.625 0.361 \%

4.2 9.106 0.2 0.62  0.956 0.0012 0.042 11 v
43 9.10° 025 062 0962 0.0005 0.037 I v
5.1 1.2-107 025 072 0.027 0.716 0.257  V|VI O
5.2 2.107 025 072 0.024 0.437 0539 V [ |
53 25.107 025 072 0.018 0.472 0.510 \Y .
6.1 9.10° 025 082 0621 0.002 0377 1 0]
6.2 1.2-107 025 082 0.004 0.672 0324 V 0]
6.3 2.107 025 082 0.014 0.563 0423 V L ]
6.4 3.107 025 082 0.042 0.267 0.691 \Y (]
71° 1-107 025 062 0.685 0.006 0309 I \*4
7.2° 1-107 025 072 0.001 0.667 0332 V
7.3° 1-107 025 094 0177 0.207 0.614 I\ (5]
81f 5.10° 0.15 062 0287 0.299 0414 VI v
821 9.10° 025 062 0.761 0.005 0234 1l v
831 9.10° 025 094 0122 0.072 0.806 IV e
84t 1.107 025 094 0118 0.091 0.791 I\ @
9 7-108 0.15 062 0.024 0.558 0439 IV

10 7-108 0.2 0.67 0.945 0.001 0.054 I L 2
1 1-107 0.2 067 0473 0.225 0302 /v L 2
12 8.10° 0.15 0.72  0.898 0.008 0.095 1

13¢ 1.1-107 0.1 094 0.874 0.004 0.128 I e

other comparable numerical implementations (Jones et al., 2011).
The radial resolution is N = 160 and spectral resolution is trun-
cated at maximum degree and order N, = N, = 128 yielding az-
imuthal and latitudinal resolution of Ny = 384 and Ny =192, re-
spectively. Table 1 contains a selection of our dynamo simula-
tions where the individual models are organised in groups, each
group aiming to identify one parameter dependence. For group 1,
a smaller Pr=0.15 is combined with a smaller Rayleigh number
and ry is varied. Groups 2 and 3 repeat the numerical experiment
with slightly higher Pr and different Ra-values. Group 4 tests the
Pr-dependence, whereas groups 5 and 6 investigate the effect of
increasing Ra for fixed ry. Group 7 checks models with higher mag-

netic Reynolds number by inreasing Pm, whereas group 8 shows
the influence of bottom driven convection. The cases 9-12 test
the robustness of the regimes with various combinations of Pr, Ra
and ry. Case 13 in Table 1 represents the Jupiter-like model from
Jones (2014). At the chosen parameter regime the numerical simu-
lations are extremely resource demanding. A single model requires
one or two weeks of run-time, when parallelised over 512 cores,
to integrate past the initial transients and time-average over a sig-
nificant fraction of the magnetic diffusion time. The total computa-
tional demand for the 34 runs in the table sums up to 3-10% CPU
hrs and is provided by supercomputing facilities. Simulations were
initialised from previously obtained solutions, e.g. from the strong
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dipolar Jupiter-like model of Jones (2014). However, we also per-
formed a few test runs initialised from a random seed field, where
the Lorentz force is initially marginal.

It is interesting to note that we have not encountered any bista-
bility in our runs. Bistability is the coexistence of two (or more)
distinct stable solutions, where the emerging solution in any par-
ticular run being determined by the initial conditions. Bistability
was reported for similar models by Duarte et al. (2013), but typ-
ically only for Jupiter-like models with rather high ry. In the sce-
nario of Duarte et al. (2013), either a strong, dipolar field along-
side weak zonal flows, or a multipolar field shredded by the strong
zonal flows, are the two distinct characteristic solution types. For
our models, especially those with small ry, zonal flows are always
strongly generated in the hydrodynamic shell, where they cannot
be attenuated by the magnetic field. Furthermore our models op-
erate at a slightly different parameter regime. Bistability cannot be
ruled out for our models, but it seems uncommon in the range of
models we examined.

4. Results

For an overview, we consider models where only the radial po-
sition of the conductivity drop-off r; is changed, but all other pa-
rameters are kept identical. To compare the emerging solutions to
end-member scenarios, a pure hydrodynamic simulation with no
magnetic fields and a fully conducting model where the electri-
cal conductivity is constant along radius are added. The details of
these runs can be found in group 2 of Table 1. After time inte-
grating through a transient we average the solutions over a frac-
tion of the magnetic diffusion time, and some results are shown
in Fig. 3. Zonal flows are consistently found to be prograde at
the equator regardless of the magnetic effects (first column in
Fig. 3 and the surface snapshots), but obey rather different ampli-
tudes and patterns, discussed below in section 3.1. In the second
column of Fig. 3 we see that the meridional circulation is small
in these rapidly rotating low Rossby number models, but there is
some meridional flow coupling the magnetic conducting interior
to the non-magnetic exterior. The third column gives the helicity,
discussed further in section 4.2, an important quantity for mag-
netic field generation. The magnetic fields are shown in the fourth
and fifth columns of Fig. 3), along with a snapshot of the surface
radial field. It is immediately apparent that the morphology of the
magnetic field is remarkably different for the different values of ry,
even though all other parameters are identical. In particular, be-
tween the Jupiter-like case (b) and the Saturn-like case (d) there
is a region of ry; where the field is quadrupolar rather than dipo-
lar, i.e. the radial magnetic field is symmetric rather than antisym-
metric about the equator. We discuss these differences in sections
4.3-4.5 below.

4.1. Zonal flows and the conservation of angular momentum

The resulting surface zonal flows for the set of models where
only the conductivity drop-off r; is changed (group 2 in Table 1)
are plotted in Fig. 4. The plot shows the time-averaged, axisym-
metric azimuthal flow (i) at the surface as a function of latitude
in terms of the Rossby number Ros =14E(1 — 8)/Pm. The hori-
zontal dashed lines denote the virtual magnetic tangent cylinder
and are coloured according to the r;-value used. It can be seen
that the model with smallest ry has a prograde equatorial peak jet
amplitude of more than double the Jupiter-like models (Fig. 4 or-
ange vs green profile). The broader and more energetic jet is in
line with the observed profiles for Jupiter and Saturn (Porco et al.,
2003; Sanchez-Lavega et al., 2000; Aurnou et al.,, 2007) with peak
equatorial amplitudes of 150 and 450 m/s, respectively. For com-
pleteness the fully conducting model (r; = o0) and a hydrodynamic

model without magnetic field are also included (purple and grey
profile). In the fully conducting model, the equatorial peak jet is as
small as Ro, = 0.011 hence only a quarter of the Jupiter-like model
with r; = 0.94. This indicates that even a rather thin non-magnetic
shell creates a firm equatorial jet. Further as the difference be-
tween a deep drop-off model (r; =0.62) and the hydrodynamic
run (Roe = 0.08 vs. 0.11) is much weaker, it is clear that the zonal
flow system originates mainly from the outer regions.

The main force balances are fundamentally different between
the hydrodynamic outer and magnetic inner shell. In the former,
zonal flows are exclusively maintained by Reynolds stress created
by a consistent strong tilt in the convective columns and ultimately
saturated by the fluid viscosity. This leads to strong geostrophic
zonal flows. However, in the metallic region the Lorentz force
counteracts the rotational forces, and the convective columns are
stopped from further tilting by magnetic tension. Hence the dif-
ferential rotation emerging inside the magnetic tangent cylinder
is considerably weaker. This explains why the models with only a
thin non-magnetic shell (or no non-magnetic shell) have a weaker
zonal flow, and why the models with a smaller r; have a broader
prograde jet. However, the central prograde jet on Saturn (Jupiter)
extends to +35° (420°), whereas in our results the equatorial
jets are broader. Also, despite the reasonably low Ekman number
(E =5 x 1075) there is not much evidence for any significant west-
ward jets, which are known to exist in higher latitude regions on
Jupiter and Saturn. It is possible that at much smaller E westward
jets will develop, but it does appear that while westward jets can
be readily obtained in purely hydrodynamic models (e.g. Jones and
Kuzanyan, 2009), it is much harder to get westward jets in models
with a magnetic field.

Fig. 4 clearly indicates the importance of applying a radially
varying electrical conductivity in attempts to model gas giant at-
mospheric circulations. As already suggested in Jones (2014), our
results indicate that there are deep jets outside the magnetic tan-
gent cylinder, giving rise to the large surface flows near the equa-
torial region, but that the jets at higher latitudes, which lie inside
the magnetic tangent cylinder, are due to localised surface effects
in the uppermost parts of giant planet atmospheres.

To more clearly identify the main force balance maintaining the
differential rotation system two equations are helpful. The first is
the thermal wind equation, which is the ¢-component of the vor-
ticity equation, so we take the time-averaged ¢-component of the
curl of equation (6),
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where s = rsin6/r, is the distance from the rotation axis and @ =
V x u is vorticity. In low Rossby number giant planets, the non-
linear inertia terms on the left-hand-side are much smaller than
the first term on the right, since planetary vorticity dominates lo-
cal vorticity, and the final viscous term is also small. The thermal
wind equation is most useful outside the magnetic region, r>ry,
where the magnetic terms can be neglected. We are then left with
the usual thermal wind balance between latitudinal entropy gra-
dients and the gradient of uy parallel to the rotation axis (z-axis).
However, entropy gradients are small in the convective regions of
giant planets because efficient convection ensures that the whole
atmosphere is close to adiabatic. In consequence of dug/0z =0, uy
has to be nearly independent of z, i.e. geostrophic. Note that this
argument breaks down in the Sun, because the Rossby number in
the convection zone is not very small, so the terms on the left are
non-negligible, but the convection in giant planets is driven only
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Fig. 3. From left to right we show five time-averaged meridional sections. These are: the azimuthal flow (i), the meridional stream function Wy, the kinetic helicity h, the

radial and azimuthal fields B, and §¢. Also shown are typical snapshots of the spherical projection of the radial field and azimuthal flow at the surface. From top to bottom

the five cases are: (a), the fully conducting model, run 2.6 in Table 1; (b) the Jupiter-like model, run 2.5, with r; = 0.94; (c) an intermediate ry = 0.72 model, run 2.3; (d) the
deep drop-off case ry = 0.62, run 2.1; (e) the hydrodynamic model. In (b-d), the dashed curve gives the approximate radial level where the electrical conductivity drops off.
The maximal contour levels are listed. For the helicity in figures (c) and (d), the helicity in the interior is amplified for clarity, and the maximal contour levels in the interior
region are given in brackets. Flows are in terms of magnetic Reynolds numbers Rm, the field in measures of the Elsasser number A. Parameters: Ra =1-107, E=5.10"%,

Pr=0.25, Pm=3.
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Fig. 4. Axisymmetric surface zonal flow along latitude for models with variable
conductivity drop-off ry, a fully conductive model (magenta) and pure hydrody-
namic simulation (dark-grey). The horizontal dashed lines denote the latitude. of
the virtual magnetic tangent cylinder attached at r,.(For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

by very slow cooling, and so is much weaker. It is also possible that
close to the surface the density is low enough for significant en-
tropy (hence temperature) fluctuations to occur, so the flow there
could be ageostrophic, but our model has to be cut off before such
very low densities are reached. It is now clear why there is so lit-
tle zonal flow inside the tangent cylinder even in the non-metallic
regions: the Maxwell stresses wipe out any large zonal flows in
the metallic region, and this sets a uy = 0 bottom boundary con-
dition for the thermal wind equation (15). Since there are no sig-
nificant terms forcing a thermal wind gradient, it remains close to
zero everywhere inside the magnetic tangent cylinder. Outside the
magnetic tangent cylinder, there is no equivalent bottom boundary
condition, and large geostrophic zonal flows can build up as fore-
seen by Busse (1983).

The second useful equation is that governing zonal angular mo-
mentum per unit mass L

L=T1ys+ PTmsz. (16)

The first term gives the differential rotation and the second con-
cerns the planetary solid body rotation. The conservation equa-
tion can be found by multiplying the azimuthal component of
the Navier-Stokes equation (6) by s and averaging over azimuth
and time (e.g, Browning, 2008; Schneider and Liu, 2009; Liu and
Schneider, 2010; Gastine et al., 2013):
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where the remaining forces due to viscosity, Reynolds stress and
Maxwell stress appear in that order on the right hand side of the
equation.

This diagnostic equation links the axisymmetric flows (merid-
ional circulation uy, and zonal flows u4) with the non-
axisymmetric convection #’ and the magnetic field contributions
E in terms of forces due to viscous, Reynolds and Maxwell
stresses, respectively. The left hand side of Eq. 17 contains only
mean flows and hence is easily calculated, whereas on the right
hand side, the terms due to Reynolds and Maxwell stress require

correlating a set of snapshots over time and azimuth. We verified
that for each case the left and right hand sides are equal.

Fig. 5 plots the five terms for the same set of models as in
Fig. 3 (group 2 in Table 1). In the hydrodynamic case (Fig. 5(e)), the
viscosity balances the Reynolds stresses to a large extent, hence
the advection of zonal angular momentum L by meridional circu-
lation is marginal. This is in line with the classic picture of the
zonal flow created by a consistent tilt in the convecti