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To date, realistic models of how the central nervous system governs behavior have

been restricted in scope to the brain, brainstem or spinal column, as if these existed

as disembodied organs. Further, the model is often exercised in relation to an in

vivo physiological experiment with input comprising an impulse, a periodic signal

or constant activation, and output as a pattern of neural activity in one or more

neural populations. Any link to behavior is inferred only indirectly via these activity

patterns. We argue that to discover the principles of operation of neural systems, it

is necessary to express their behavior in terms of physical movements of a realistic

motor system, and to supply inputs that mimic sensory experience. To do this with

confidence, we must connect our brain models to neuro-muscular models and provide

relevant visual and proprioceptive feedback signals, thereby closing the loop of the

simulation. This paper describes an effort to develop just such an integrated brain and

biomechanical system using a number of pre-existing models. It describes a model of the

saccadic oculomotor system incorporating a neuromuscular model of the eye and its six

extraocular muscles. The position of the eye determines how illumination of a retinotopic

input population projects information about the location of a saccade target into the

system. A pre-existing saccadic burst generator model was incorporated into the system,

which generated motoneuron activity patterns suitable for driving the biomechanical

eye. The model was demonstrated to make accurate saccades to a target luminance

under a set of environmental constraints. Challenges encountered in the development

of this model showed the importance of this integrated modeling approach. Thus, we

exposed shortcomings in individual model components which were only apparent when

these were supplied with the more plausible inputs available in a closed loop design.

Consequently we were able to suggest missing functionality which the system would

require to reproduce more realistic behavior. The construction of such closed-loop animal

models constitutes a new paradigm of computational neurobehavior and promises a

more thoroughgoing approach to our understanding of the brain’s function as a controller

for movement and behavior.
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1. INTRODUCTION

The field of computational neuroscience has provided many
systems models of the brain (Arai et al., 1994; Gancarz
and Grossberg, 1998; Hazy et al., 2007; Blenkinsop et al.,
2017). We refer to these as mechanistic computational models,
meaning models which consist of populations of neural
elements, interconnected in a biologically plausible manner,
which simulate the operation of the brain. Whilst they differ
in scale and complexity, these models all seek to describe the
fundamental mechanisms behind common animal behaviors
such as locomotion, threat evasion, reaching or feeding. However,
none of the models cited here actually reproduce these behaviors.
In each case, the activity in a certain population of neurons is
taken to be representative of a behavioral outcome. In some cases,
it is reasonable to take the activity of an internal population
within the brain model as being representative of the induced
behavior. For example, a choice made in a go/no-go task could be
determined from activity in a population within a basal ganglia
model (Nambu et al., 1990; Kühn et al., 2004). The decision
to go is selected by a reduction of activity in this population;
maintenance of activity implies no-go. To validate the model,
the error rates which it generates could be compared with
experimentally determined error rates in primate subjects. We
refer to this as an output assumption model because the output
is assumed to signify behavior. (An input assumption model
assumes that sensory input produces some particular form of
neural activity in an input population of the model).

However, we may be interested in reproducing accurate
simulated trajectories, in order to find out how degradation of
parts of the model affect movement. In Parkinson’s Disease,
degradation of the dopamine neurons originating in the
substantia nigra pars compacta (SNc) causes diskinesia (Galvan
and Wichmann, 2008), as well as abnormal network activity in
the basal ganglia (Brown et al., 2001; McCarthy et al., 2011).
Sufferers of the disease would be expected to produce abnormal
decision-making and movement trajectories in a reach-to-the-
correct-target task such as the one described in James et al.
(2017). A model which sought to explore in detail the effects of
the SNc degradation both on the decision making and on the
movement dynamics would need a physically accurate virtual
arm, as well as physically realistic sensory input for the brain.
This is no less than a complete model of those sections of the
brain and body which act to fulfill the task. Such a modeling
effort, if successful, would result in a virtual robot capable
of expressing behavior in response to sensory input from its
environment. This would represent a paradigm shift in the field
of computational neuroscience worthy of the new name of
computational neurobehavior.

In an attempt to build a model combining brain, realistic
biomechanics and sensory feedback, we sought to extend our
previous work modeling the oculomotor system by adding a
virtual, biomechanical eye model able to make physically realistic
movements. The rotational state of the eye would then determine
how visual features in the virtual world were projected back
into the brain model. The existing model (Cope et al., 2017)
is already able to capture sensory input and convert it into a

neural signal, assumed to specify the target of a saccadic eye
movement; a fast movement of the eyes which directs the fovea to
a region of interest in the field of view. The oculomotor system
is an excellent candidate for modeling because its movements
can be specified with only three degrees of freedom, making it
one of the simplest neuro-muscular systems in the body. It is
nevertheless behaviorally interesting, as saccadic eye movements
reveal information about decision making at a subconscious level
(Deubel and Schneider, 1996; Reppert et al., 2015; Marcos and
Genovesio, 2016). The modeling of the oculomotor system is
served by a large body of behavioral data describing saccades
(Walker et al., 1997; Tipper et al., 2001; Casteau and Vitu,
2012), many anatomical studies of the neural substrates involved
(Meredith and Ramoa, 1998; Isa, 2002; Isa and Hall, 2009)
and electrophysiological data linking these together (Hepp and
Henn, 1983; Dorris et al., 1997; McPeek et al., 2003; Vokoun
et al., 2011). Furthermore, in the context of building behaving
systems, a realistic mechanism for gathering visual information
is a necessary part of any model for which the behavior requires
visual attention and decision making. This is obvious from
extrinsic considerations—a subject must look at a scene to
make decisions or navigate within it. It also follows for intrinsic
reasons. For example, Howard and Tipper (1997) showed that
visual cues affect reach trajectories and the same group later
demonstrated that reaching affects the saccadic system (Tipper
et al., 2001) suggesting a close relationship between these neural
systems. Building a behaving oculomotor system will therefore
assist future computational neurobehavioral modeling efforts
that involve reaching.

Many neural populations are involved in the coding of
saccadic eye movements, only a very brief overview is given here;
for a review, see Munoz (2002). One pathway takes information
from the retina directly into the superficial layers of the superior
colliculus in the brainstem (Sterling, 1971; Linden and Perry,
1983; Wu et al., 1994). Activity within the superior colliculus
then excites neurons in the pons, medulla and rostral mid-brain
(Sparks, 2002) and finally the motor neurons, which innervate
the extraocular muscles (Fuchs and Luschei, 1970; Sparks, 2002).
This direct pathway is responsible for the low latency saccades
called express saccades (Schiller et al., 1987; Edelman and Keller,
1996). Information from the retina is also processed by visual
cortex which feeds through to the frontal eye fields in which
activity is related to reflexive and voluntary saccades (Schall and
Thompson, 1999). Activity build-up in the frontal eye fields is
transferred to the intermediate layers of the superior colliculus
(Stanton et al., 1988b) and is also processed by the basal ganglia,
which participates in the selection of the winning saccade end
point (Stanton et al., 1988a; Hikosaka et al., 2000). Although both
cortical and subcortical paths produce a saccade target signal in
the superior colliculus, it is also possible for animals to make
relatively normal saccades even after the colliculus has been
ablated (Wurtz and Goldberg, 1972; Aizawa and Wurtz, 1998),
though express saccades are lost with collicular lesions (Schiller
et al., 1987). This makes the superior colliculus a perplexing
structure, being both critically involved in saccade target
specification (Sparks and Nelson, 1987) and saccade dynamic
control (Waitzman et al., 1991; Goossens and van Opstal, 2012)
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and yet dispensible. The “backup pathway” likely incorporates
the oculomotor vermis and fastigial oculomotor region of the
cerebellum which are known to participate in the specification,
dynamics and adaptation of saccadic eye movements (Takagi
et al., 1998; Kleine, 2003).

There is a long history of modeling the oculomotor
system. For a comprehensive review, see Girard and Berthoz
(2005). Models of individual sub-systems have been proposed
for brainstem (Robinson, 1975; Scudder, 1988; Gancarz and
Grossberg, 1998), cerebellum (Dean et al., 1994; Dean, 1995;
Quaia et al., 1999) and superior colliculus (Arai et al., 1994;
Massone, 1994; Marino et al., 2012; Morén et al., 2013).
More recently, combined models have also been developed
incorporating sensory input (Cope et al., 2017) and driving a
second order differential equation representing the eye (Tabareau
et al., 2007; N’Guyen et al., 2014; Thurat et al., 2015). None of
these models has yet fully closed the loop to produce a behaving
system operating freely within its environment. We argue that
developing integrated, closed-loop models of behaving systems
offers insights into the operation of neural systems that are not
available from input- or output-assumption models.

2. MATERIALS AND METHODS

The integrated brain and biomechanical model described here
is a development of the model in Cope et al. (2017), referred to
here as the Cope-Chambers model. This was a rate-coded neural
network model incorporating retinal populations, frontal eye
fields (FEF), the basal ganglia (BG), and the superior colliculus
(SC). The Cope-Chambers model takes as input the positions
of luminances (of fixed shape and intensity) on a topographic
map. While certain assumptions were made about the input—
that a luminant input excites activity on a retinotopic layer,
with computer code carrying out the transformation achieved
in the brain by a neural connectivity map (Thivierge and
Marcus, 2007)—it is nonetheless not an input-assumption model
according to our definition because the activity generated in the
neural input layer is modeled as a response to the luminances,
rather than being crafted. In the Cope-Chambers model,
the centroid of the activity in the deep layers of superior
colliculus was assumed to accurately encode the location of
the eye at the end of the saccade (Robinson, 1972; Wurtz
and Goldberg, 1972; McIlwain, 1982; Van Gisbergen et al.,
1987). This location was used to recalculate the positions of the
luminances in the eye’s frame of reference at each time step.
Because a pattern of neural activity in the output population
was assumed to have a behavioral outcome, it was thus an
output-assumption model. The model included no brainstem
populations other than superior colliculus, nor a neuromuscular
model.

To the Cope-Chambers model, we added a brainstem model
and a biomechanical eye model. The rate-coded brainstem
model was taken from the literature (Gancarz and Grossberg,
1998) as the best-of-breed saccadic burst generator (Girard and
Berthoz, 2005). The biomechanical eye was implemented using
the biomechanical modeling framework OpenSim; the brain and
brainstem were modeled using the SpineML toolchain. These

will be described below, along with a review of the Cope-
Chambers model, but first we will give a description of the
co-ordinate systems that were used.

2.1. Co-ordinates in the World
Before describing the biomechanical eye and the brain model,
which consisted of retinotopically mapped neural sheets, we
describe the co-ordinate system used in the world. The eye
was located at the origin of a three-dimensional, right-handed
Cartesian co-ordinate system, with its fovea directed in the −z
direction. There was a notional spherical screen which was also
centered at the origin of the co-ordinate system and had a radius
of 50 (in arbitrary units). The fixation point was the point on the
screen at which the eye was initially directed. Onto the screen
were projected target luminances, each of which having a position
described by two co-ordinates; θ tx, a rotation of the horizon plane
about the x axis, and θ ty , a rotation of the meridian plane about
the y axis. The position is the intersection of these rotated planes
with the spherical screen (disregarding the intersection point of
these three surfaces behind the eye). Note that a luminance with
positive θ tx was above the horizon of this world; one whose θ ty was
positive lay to the left of the world’s meridian. For this reason,
many of the figures in this paper are plotted with −θy on the x-
axis and θx on the y-axis so that targets that lay up and to the right
in the world do so in the graphs, also.

Luminances were crosses of height and width subtending
±3◦ and whose “bars” were 2◦ thick. Luminances were oriented
like + symbols with their vertical bar aligned with the meridian
plane and their horizontal bar aligned with the horizon.

The eye’s frame of reference was initially aligned with the
world’s frame of reference. At each timestep, the eye’s rotational
state (described by the Euler rotations θx, θy, θz) was used to
translate the three dimensional Cartesian co-ordinates of the
luminances in the world frame into co-ordinates in the eye frame.
The luminance co-ordinates in the eye’s frame of reference were
used to determine the input to the brain model.

2.2. Existing Brain Model
The brain model, excluding the brainstem, is a re-
implementation of the Cope-Chambers model of reflexive
saccadic behavior (Cope et al., 2017). Reflexive saccades are
fast eye movements elicited by abrupt changes in the peripheral
visual scene (reflexive saccades can occur also as a result of
auditory and somatosensory stimuli, but these modalities are
ignored in this model). A reflexive saccade has a starting position
defined by the initial orientation of the eye and an end-point
position in which the eye is directed toward a new target.
Regardless of the number of targets within the visual scene, the
brain must choose one location as the end-point, because the
eyes can look only in one direction at a time. The functionality
reproduced by the Cope-Chambers model is “the selection of
the best target end-point for a reflexive saccade.” A competition
such as this between incompatible movements is often referred
to as an action selection problem (Norman and Shallice, 1986;
Maes, 1989; Redgrave et al., 1999). The Cope-Chambers model
is therefore a model of action-selection in the oculomotor
system for reflexive saccades. One hypothesis for the rôle played
by the basal ganglia (BG) is that the system performs action
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selection (Mink, 1996; Redgrave et al., 1999; Hikosaka et al.,
2000). The Cope-Chambers model places the BG at the center
of the oculomotor system; this follows the known anatomy of
the region (Hikosaka et al., 2000) and provides a mechanism
for action selection of the best saccade. The BG receives input
indirectly from the superior colliculus, which has a retinotopic
arrangement (Ottes et al., 1986).

The BG receives excitatory inputs directly from retinotopic
regions of the cortex including the frontal eye fields (FEF),
supplementary eye fields (SEF), lateral intraparietal cortex (LIP)
and dorsolateral prefrontal cortex. The dorsolateral prefrontal
cortex, which participates in voluntary saccades (Funahashi et al.,
1993; Munoz and Everling, 2004), is not modeled because the
model concerns reflexive rather than voluntary eye movements.
Several other regions of the brain that are associated with eye
movements are also omitted from the model. The early visual
processing stream in cortex, from V1, through to the LIP is
subsumed into a “sustained retinal” signal which arrives at FEF.
The justification here is that the model reacts to simple luminant
targets and does not need to carry out the feature extraction
performed by these visual areas. The supplementary eye fields
are involved in the programming of saccade sequences (Tehovnik
et al., 2000) and memory guided saccades (Chen and Wise,
1995; Schlag, 2002). Lesions of SEF do not affect visually guided
saccades (Gaymard et al., 1998) and so the SEF is also omitted
from the model.

Figure 1A shows the macroscopic architecture of the Cope-
Chambers model. The figure shows the relationships between the
retinal input populations, the FEF, the populations comprising
the BG sub-system (the red border indicates that the box
represents a number of populations as a sub-system), the
thalamus and the superior colliculus. Excitatory connections are
indicated with arrowheads; inhibitory connections with circles
in place of the arrowheads. The blue and green connection
lines indicate two thalamo-basal ganglia loops, one cortical loop
through FEF (green), the other a sub-cortical loop through SC. It
is important to note that although they are given different colors
in the diagram, these loops are in no way independent, with loop
activity combining both in thalamus and in the basal ganglia and
a direct excitatory, feed-forward connection from FEF to SC.

The basal ganglia sub-system is the most complex component
of the Cope-Chambers model. The BG model is based on
previous work (Gurney et al., 2001a,b) and is referred to as the
GPR model. The GPR model incorporates the following main
components of the primate BG (Mink, 1996; Wickens, 1997):
(i) The striatum (the main input station to the BG) which is
divided into two iterdigitated populations of projection neurons
expressing primarily D1 or D2-type dopaminergic receptors
(named Str_D1 and Str_D2); (ii) The subthalamic nucleus (STN);
(iii) the external segment of the globus pallidus (GPe); (iv)
the output nucleus relevant for saccadic control—the substantia
nigra pars reticulata (SNr) (Hikosaka et al., 2000).

The connectivity of the GPRmodel (Figure 1B) is constrained
by the known anatomy and physiology of the BG (Bolam
et al., 2000). Physiologically, the only source of glutamate
within the BG is the STN, whose projections are therefore
excitatory; all other nuclei have GABAergic projection neurons

and are therefore inhibitory. The cortex sends glutamatergic
projections to both the Str_D1 striatal population, which projects
preferentially to the SNr, and to Str_D2, which projects primarily
to GPe (Gerfen et al., 1990). The cortex also projects to the STN,
which sends diffuse projections to the SNr and GPe (Parent and
Hazrati, 1993). TheGPe projects to the SNr and also projects back
to the STN, completing a GPe–STN loop.

The GPR model is arranged into “action channels”; Figure 1B
shows an example network containing three channels. It is
between these channels that competition occurs, with the
winning channel succeeding in reducing activity in the output
nucleus, SNr, and thereby disinhibiting its target. The complete
connectivity pattern for this small network is shown in
Figure 1B; the left channel in cortex innervates the left channels
of Str_D1, STN and Str_D2. Connections are one-to-one, so it
follows that the middle channel of cortex innervates the middle
channels of STN and the striatal populations and the right
channel of cortex innervates right channels in striatum and STN.
Striatal population channels also inhibit SNr and GPe on a one-
to-one basis and GPe feeds inhibition to SNr and STN in a one-
to-one manner. The outputs from STN however are not one-to-
one. The output from all channels of STN is summed together
and then the sum is fed into each channel of SNr and GPe. This
models the diffuse excitation from STN which has been observed
in the BG (Parent and Hazrati, 1993).

Within the BG, there are several mechanisms supporting
competitive processing for selecting channels whose inhibitory
output should be reduced. The selection mechanism of the
GPR model is the “off-center, on-surround” scheme proposed
by Mink and Thach (1993). The “on-surround” is provided by
diffuse, excitatory projections from the STN to the SNr. Focussed
inhibition from the Str_D1 neurons in striatum contributes the
“off-center” part of the mechanism. This arrangement leads to
selection behavior via a release of target inhibition, since channels
that have strong salience (input) have weak output at the level of
SNr, and channels with weak salience have enhanced output.

The GPe is not included in the center-surround circuit
described above, but still plays a key rôle in selection. Operating
alone, the Str_D1/STN/SNr circuit can suffer from the following
problem: if the input for all channels is relatively high, then the
diffuse projection from STN, which effectively supplies a sum of
all of the STN inputs to each channel in SNr, will provide somuch
excitation that Str_D1 may become unable to inhibit one of the
channels in SNr and selection may become impossible. Gurney
et al. (2001a,b) showed that the inhibitory feedback from GPe to
STN acts as an “automatic gain control” to help prevent this from
occurring.

At the neuronal level, the STN, GPe and SNr have tonic
output activity (DeLong et al., 1985; Chevalier and Deniau, 1990;
Kita and Kitai, 1991). This is modeled using piecewise linear
output functions with zero offsets, c (see Equation 6) but with
noise added to the input. In striatum, Str_D1 and Str_D2 have
positive offset c, mimicking the so-called “down-state” ofmedium
spiny neurons which have a resting potential far below spiking
threshold and require co-ordinated input to generate action
potentials (Wilson and Kawaguchi, 1996). In addition, the Str_D1
and Str_D2 neurons are influenced by dopamine in different
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FIGURE 1 | (A) The macroscopic architecture of the Cope-Chambers model. The main nuclei modeled as brain systems are: basal ganglia (BG), frontal eye fields

(FEF), thalamus (THAL) and superior colliculus (SC). The retinal input is presented via non-biologically accurate retinal populations. The loops through basal ganglia,

which define the architecture, are shown with colored lines: the cortical loop (through FEF and THAL) in green and the sub-cortical loop (through SC and THAL) in blue.

Connections with arrowheads indicate excitatory connections, those with circles are inhibitory. A red border indicates that the box represents a sub-system of two or

more populations; a black box indicates (at least, within the context of the model) a single neural population. The BG box is expanded in: (B) The basal ganglia model

component. This shows a basal ganglia comprising striatum (Str_D1 & Str_D2), subthalamic nucleus (STN), globus pallidum externum (GPe) and substantia nigra

reticulata (SNr). The model has three action channels shown as black boxes within each blue population border. Three channels of cortical input to the BG are also

depicted. Red indicates the activation level of a given channel, helping to illustrate the selection mechanism. For example, the channel indicated by the leftmost bar

has a high salience (cortical input) and excites activity in Str_D1 which then inhibits the leftmost bar in SNr. The diffuse projection from STN is equivalent to summing its

projections channel-wise, and then projecting the sum to all channels of its target populations (the blue arrows indicate that all channels of GPe and SNr are targeted

by the connection). Dopaminergic modulation of the inputs to the striatum are indicated by the blue circles labeled “d” and the dotted lines. The SNr sends inhibitory

output projections to its targets. (C) 2D Gaussian weights. The “GaussianKernel” connectivity pattern is based on the in-plane component of the displacement

between the location of a neural element in one layer, and the location of a target neural element in the target layer for the connection. The potential weight of the

connection is given by a 2D Gaussian function, which is maximum for the target neuron which exactly corresponds to the source neuron, and drops down for target

neurons which are horizontally displaced from the source neuron. A threshold is applied to avoid a computationally expensive all-to-all connectivity (with most of these

connections having negligible weight values). If the weight is non-zero, then a connection is made from source to target, otherwise no connection is made. (D)

Gaussian connectivity. This image shows connectivity (green rays) from two source neurons (in Str_D2, brown spheres) to target neurons (in GPe, blue spheres). The

circular connectivity pattern is seen. This does not show the weight values, which reduce “toward the edge of the circle” and follow the relationship shown in (C).

ways; facilitating cortico-striatal transmission at medium spiny
neurons with D1 receptors (Gonon, 1997; Hernández-López
et al., 1997) and reducing transmission at those with D2 receptors
(Delgado et al., 1999). These effects are modeled using a
dopamine parameter, d, which modulates the input activations
aD1in and aD2in as:

aD1in = (0.2+ d)A (1)

aD2in = (1− d)A (2)

where A is the input activation (see also Equations 10, 11). For
the “normal, healthy” value for d of 0.7, Str_D1 activation is
relatively enhanced (0.9A); Str_D2 activation is one third of this
value (0.3A). The major effect of this difference in the relative
strength of the activity in Str_D1 vs. Str_D2 is simply that a
change in the level of activity in Str_D1 affects the off-center, on-
surround mechanism. The effect of varying the input into Str_D2
is much more subtle, with only a small change in the amount
of inhibition fed from GPe into STN (via a focussed, one-to-
one connection) being affected by the change, along with a small
change in the inhibition fed into SNr from GPe (also via a one-
to-one connection). It is not possible to ascribe the dynamic effect
of the dopamine parameter to any single population, because the

activity is recurrently connected through multiple loops. Thus,
a line of reasoning such as “reduced activity for a luminance in
Str_D2 will lead to less inhibition in that region in GPe, which
means that there will be higher activity there, and hence more
inhibition for that region passed to STN leading us to expect
less activity in STN” is verified by running a suitable simulation
with the model, but the effect is small. Note that the effect
of dopamine in the model is only to modulate the strength
of cortico-striatal synapses; no learning is modeled and so the
significance of dopamine as a prediction error signal is outside
the scope of the current work.

The GPR model in Figure 1B has only three channels, with
the focussed inhibition from striatum to SNr and GPe defined
by a simple one-to-one scheme. The action channels represent
discrete, incompatible motor action choices. In the oculomotor
model, an action channel represents the end-point of saccade,
and the competition carried out in the basal ganglia is between
potential saccade end-points. However, eye movements have a
continuous end-point space; the eye can rotate to any orientation
within its biomechanically permissible range. Some end-points
within this range are mutually exclusive—it’s not possible to look
to the left and to the right simultaneously—but nearby end-
points are not necessarily incompatible. A small enough error
in the end-point of a saccade will not prevent the eye from
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foveating on a target as the foveal region of high visual acuity
is not infinitesimally small. To cope with this requirement, the
populations within the oculomotor basal ganglia are conceived
of as two-dimensional topographic grids of leaky integrator
neural elements. Activity in each element corresponds to a spatial
location in the visual field. Neighboring elements correspond
to locations which are close to each other in the visual field.
Focussed one-to-one projections in the GPR model are replaced
by projective fields with many weighted connections. Specifically,
each unit in Str_D1 projects to a counterpart SNrj in SNr with
some weight wmax, but also connects to neighboring nodes in
SNr with a weight given by wmax.G(d), where G(d) is a circularly
symmetric, 2D-Gaussian which is a function of distance d
from SNrj (Figures 1C,D). A similar scheme applies for the
connectivity from Str_D2 to GPe and for a number of the
other connections in the Cope-Chambers model; in the SpineML
implementation of the model, this connectivity scheme is named
“GaussianKernel.” Figure 2 shows a schematic of the SpineML
implementation of the model, based on a diagram produced by
SpineCreator. Populations for Str_D1, Str_D2, STN, SNr and
GPe are shown within the “Basal Ganglia” box. Input comes into
the model via the “World” population and the output population
is SC_deep. Compare this diagram with Figures 1A,B. Figure 2
expands the “SC,” “BG,” and “slow retinal” boxes from Figure 1A.

The frontal eye fields (FEF) are a key cortical area for the
generation of saccadic eye movements (Robinson and Fuchs,
1969; Bruce and Goldberg, 1985; Hikosaka et al., 2000; Tehovnik
et al., 2000). Saccadic targets are retinotopically mapped on its
surface (Robinson and Fuchs, 1969; Bruce and Goldberg, 1985;
Sabes et al., 2002), and increased neural activity at a location on
the map precedes a saccade to that location. Importantly, the
FEF is also associated with visual decision making (Schall et al.,
1995; Thompson and Bichot, 2005; Monosov et al., 2008; Cohen
et al., 2009). Thus, in a saccade choice, increased FEF activity
is predictive of the eye movement whether correct or incorrect
(Thompson et al., 2005), rather than of the correct response.

FEF neurons can be divided into three functional groups,
related to whether their activity corresponds with visual stimuli,
motor action, or both (Segraves and Goldberg, 1987). The Cope-
Chambers model simplifies this categorization using a single
layer of 50 by 50 units representing the mean of all three
groups. This layer therefore responds to both visual stimuli and
the buildup of activity associated with motor (saccadic) action.
The retina provides a persistent luminance signal into the FEF
through the dorsal visual pathway (Ungerleider and Mishkin,
1982) which is abbreviated in this model to a direct connection
with delay and noise.

The FEF provides input into the BG (Saint-Cyr et al., 1990)
(to Str_D1, Str_D2 and STN) which, in turn, projects back to
thalamus in a retinotopically organized way (Lynch et al., 1994;
Middleton and Strick, 2000). In addition, the thalamic targets of
this path are regions with strong reciprocal connections to the
FEF (McFarland and Haber, 2002). In this way, the FEF forms
channel-based loops through basal ganglia of the kind described
above. Such circuits formed the basis of the model of Humphries
and Gurney (2002). The thalamo-cortical loop may be thought
of as an integrator of information, whose gain is modulated by

inhibition from basal ganglia (Chambers et al., 2011; Cope and
Gurney, 2011).

The superior colliculus (SC) is a sub-cortical nucleus which
also plays a critical rôle in the generation of saccades (Hikosaka
and Wurtz, 1983). Both FEF and SC have direct connections
to the saccadic burst generator (SBG, see section 2.3). If either
is lesioned, the other can direct gaze, following a period of
adjustment (Latto, 1977), albeit with some persistent deficits. The
SC is also a direct target of output from the SNr (Jayaraman
et al., 1977; Jiang et al., 2003) and can be influenced by the
action selection mechanisms of the BG. In particular, it forms
a loop with BG, but unlike its cortical counterpart in FEF, the
input to basal ganglia comes via the thalamus (Figure 1A, blue
arrows).

While the SC has seven alternating cell- and fiber-rich layers
(Wurtz and Albano, 1980), in most cases these are categorized
as the “superficial” and “deep” layers, which have significantly
different response properties. Cells in the superficial layers, which
receive input from the retina, are mainly visually responsive,
with a preferred response to phasic events (luminance onsets and
offsets) and movement on the visual field (Goldberg and Wurtz,
1972). In contrast, cells in the deep layers receive multi-modal
input, including inhibitory input from the output structures of
the BG (Jayaraman et al., 1977), and are directly involved in the
generation of saccadic eye movements. Saccade related activity in
the deep layers appears to generate saccades through “population
coding,” with a weighted sum of activity across the retinotopy
of SC determining the saccade target (Mays and Sparks, 1980;
Lee et al., 1988; van Opstal and van Gisbergen, 1990). The deep
layers of SC receive input from the FEF in a topographic manner
(Stanton et al., 1988a; Sommer and Wurtz, 2000).

The SC in the Cope-Chambers model is based on the the
model described in Arai and Keller (2005), with the difference
that the SNr input to the SC is generated by the BG model,
rather than being hand-crafted. The SC model has a superficial
and a deep layer, each of which is a 2-D array of 50 by 50 leaky
integrator units arranged in the same retinotopic manner as the
FEF (Wurtz and Albano, 1980).

The Cope-Chambers model incorporates a special
connectivity pattern for visual input to the BG via cortical
(FEF) and sub-cortical (thalamus) pathways. Due to the
retinotopic mapping (section 2.2.2), foveal luminances deliver
a strong signal to the BG; roughly one third of the map is
activated for the foveal targets used in this work (Figure 3,
red cross). This makes it virtually impossible for a peripheral
target (Figure 3, yellow cross) to win selection in the BG. Even
if the peripheral target competed successfully to generate a
saccade, this process would cause a significant delay, leading to
latencies much larger than those observed experimentally. To
overcome this problem, the Cope-Chambers model incorporates
a mechanism in which the synaptic strength of connections
between FEF, thalamus and striatum are reduced close to the
fovea according to a shifted hyperbolic tangent. This connection
is named “DecayingAtFovea” in the SpineML implementation
and follows a modified sigmoidal curve rather than tanh. In
either case, the relation is “S-shaped” and normalized to the
range [0 1]. Far from the fovea (where the S-shaped curve has
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FIGURE 2 | The brain model. This is the SpineCreator “network layer” view of the model. Each box represents a neural population with 2,500 elements, arranged in a

50 × 50 grid. The SpineML component name is printed on the bottom right corner of each population box and the population name is at the top. The overall

connectivity between populations is represented by the projection arrows with the color indicating the connectivity scheme (one-to-one connections are red, Gaussian

kernel connections are dark blue and so on). Excitatory connections have arrowheads and inhibitory connections have circles, although for full details of the behavior

of the connections, the weight-update and post-synapse component associated with each connection must be referred to. Briefly, the model comprises a World

population, into which a retinotopically organized view of the world is introduced. This information is passed into cortical populations (FEF) and subcortical populations

(SC) via a simple model of the retina. These feed a cortico-thalamo-basal ganglia loop, which selects which region of the deep layer of superior colliculus should be

disinhibited, allowing activity to build up therein. The five populations comprising the basal ganglia are enclosed in a gray outline. Note that substantia nigra pars

compacta is not modeled here, instead the level of dopamine in the striatum is set via a parameter in the Str_D1 and Str_D2 populations. (A) Fixation cross input in

Cartesian eye frame. (B) Fixation cross input in retinotopic co-ordinates. (C) Fixation cross with noise added. (D) After blurring, input is passed to BG populations.

the value ≈1), the connectivity pattern looks almost identical to
a one-to-one connection.

Input to the Cope-Chambers model is provided through a
simple retina model which directly samples from a larger “world
array” of pixel values. In the current model, the input for
the retina is named “World” and is the retinotopic projection
(Figure 2B) of the eye’s field of view of the world (Figure 2A)
and the luminant targets therein. The raw input in “World” is
fed into a population which adds noise, and then via a delayed
connection to FEF (the sustained retinal input path), to simulate
processing through the dorsal visual stream. It is also fed, without
substantial delay, into two leaky integrator layers (Retina_1 and
Retina_2) with different time constants, with the more slowly
reacting layer (Retina_2) inhibiting its faster counterpart. The
faster layer responds quickly to the appearance of a prolonged
stimulus before it is inhibited by the slow layer, forming a phasic
response to stimulus onset. The mechanism ensures that phasic

rather than tonic responses arrive at the superficial SC from the
retina.

The output of the Cope-Chambers model is determined by
the activity in the SC_deep population. The activity in SC_deep
is first transformed from retinotopic co-ordinates into Cartesian
co-ordinates. The centroid of the activity is then computed. The
position of this centroid in the Cartesian frame determines the
saccadic end-point. The current model differs in that it does not
compute a centroid, instead feeding the SC_deep activity into the
saccadic burst generator.

The Cope-Chambers model was parameterized by tuning the
model to perform a prosaccade task in which a central luminance
point was fixated by themodel. After a fixed duration, the fixation
point was extinguished and a target point of fixed luminance was
presented. The model was tuned so that the latency between the
presentation of the target and the initiation of an eye movement
matched experimental data (Reulen, 1984), while also matching

Frontiers in Neuroscience | www.frontiersin.org 7 February 2018 | Volume 12 | Article 39

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


James et al. Integrated Brain and Biomechanics

the electrophysiological evidence of activity in a variety of brain
regions. The tuning of the BG model attempted to preserve as
closely as possible the weights used in the original paper (Gurney
et al., 2001b). Further details on the parameterization of the
Cope-Chambers model are given in Cope et al. (2017).

2.2.1. Components
With the exceptions of the World and FEF_add_noise
populations, each neural element represents an activation;
the activation is governed by a first order differential equation
specified in a SpineML component. SpineML, which will be
outlined in section 2.5, provides a means to mathematically
define the five distinct components in use in the brain model.

The LINlinear component, which is used in FEF, Thalamus,
SC, SNr and GPe populations, governs the activation awith a first
order leaky integrator differential equation:

ȧ =
1

τ
(ain − a) (3)

where τ is the time constant for the neural activation and ain is
the input to the neural element. ain is defined by an activation
input and a shunting inhibition input according to:

ain = A(1− sa)+ αRN (4)

Here, A is the activation input and sa is the shunting inhibition
state variable whose value is related to the shunting input, S by

sa =

{

S S ≤ 1

1 S > 1
(5)

RN is a random number drawn from a standard normal
distribution (σ = 1, µ = 0) and introduces noise to the
activation of the neural element, with the parameter α controlling
the noise amplitude.

The output, y, of LINlinear is related to the activation a by the
piecewise linear transfer function

y(a) =











0 a < c

a− c c ≤ a ≤ 1+ c

1 a > 1+ c

(6)

where c is a parameter defining the offset of the transfer function.
If c < 0, then for zero activation (a = 0), the output will be
positive. This simulates the effect of a neural population having
tonic firing. If c > 0 then the output will be zero until the
activation exceeds c, simulating neurons which only fire when
driven by excitatory input.

The LINret component used for the retinal populations is
similar to the LINlinear component, but with no intrinsic noise
and no shunting inhibitory input. It has a neural input which is
identical to the activation input A:

ain = A (7)

The LINexp component is a leaky integrator with an exponential
transfer function. It shares the same differential equation with

LINlinear, but has a different input equation and a different
output transfer function. It has the following equation for the
neural element input ain:

ain = [A+ N(a− V−
r )](1− S)+ 0.01RN (8)

where A is the activation input and N is an input which
is modulated by V−

r , a reversal potential, and a, the current
activation of the element. These inputs are summed and then
reduced by a factor which is dependent on S, the shunting input.
As in LINlinear, RN introduces normally distributed noise to the
element.

The output, y, of the LINexp component is given by

y(a) =

{

ea − 0.9 ea ≤ 1+ 0.9

1 ea > 1+ 0.9
(9)

This component is used in the subthalamic nucleus (STN)
population, as it gives a more physiologically accurate f-I
behavior (Bevan andWilson, 1999; Hallworth et al., 2003;Wilson,
2004) which has been shown to allow the mapping of the basal
ganglia network architecture onto an optimal decision making
model (Bogacz and Gurney, 2007).

The D1MSN and D2MSN components are both leaky
integrators, similar to LINlinear. They differ in that they have
no shunting inhibition. They are used to model medium spiny
neuron (MSN) populations in the striatum. As they model
the fact that most MSN neurons fall into two groups; those
expressing D1 dopamine receptors and those expressing D2
receptors, they have a dopamine parameter that modulates the
input activation, so that their equations for ain are thus:

aD1in = (0.2+ d)A+ 0.01RN (10)

aD2in = (1− d)A+ 0.01RN (11)

where d is the dopamine parameter. Varying dopamine from
0 to 1 enhances the activation in the D1 model, whereas it
decreases the activation of the D2 model elements, in line with
experimental observations (Gonon, 1997; Harsing and Zigmond,
1997). Note that the equation for aD1in differs from that used in the
Cope-Chambers model, for which the cortico-striatal weights are
multiplied by (1+ d) rather than (0.2+ d). A typical value of d is
0.7.

In the typical components given above, the value of the
activation A (and where relevant, the shunting input, S) is
determined by summing the weighted inputs to the population:

A =
∑

i

wact
i xacti (12)

S =
∑

i

wsh
i x

sh
i (13)

wact
i and wsh

i are, respectively, the weights of the ith activation or

shunting connections received by the component; xacti and xshi are
the signals input to the activation and shunting connections.
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2.2.2. Population Activity and Retinotopic Mapping
Each population of 2,500 neural elements was arranged in a 50
by 50 grid, with positions on the grid representing a retinotopic
mapping similar to that found empirically both in the superior
colliculus (Ottes et al., 1986) and in visual cortex (Schwartz, 1980)
and assumed in this work to persist throughout the oculomotor
system.

In a retinotopic mapping, the Cartesian co-ordinates of the
light-sensitive cells in the retina, whose density varies with
distance from the fovea, are transformed into the Cartesian co-
ordinates of the correspondingly active cells on the colliculus.
The mapping ensures that an even density of cells can be
maintained in the colliculus, but ensures that a group of
adjoining, active, retinal neurons will always activate an adjoining
group of neurons on the collicular surface.

The mapping turns out to resemble polar co-ordinates. That
is, one axis of the collicular surface specifies the eccentricity of a
retinal location (how far it is from the fovea) and the second axis
specifies the rotational angle of the retinal location; we therefore
use the convention of referring to the eccentricity axis on the
colliculus as r and the rotation axis as φ.

The cortical magnification factor, M(r), gives the relationship
between the radial eccentricity r and the retinal neural density.
As in Cope et al. (2017), we use a first-order approximation of
the form forM(r) given in Rovamo and Virsu (1979):

M(r) =
Mf

1+ r
E2

(14)

The foveal magnification, Mf , is the magnification of the most
central region of the retina and has a value in the human of about
7.8 mm/◦ (Rovamo and Virsu, 1979).

In our model, Mf is related to Wnfs, the width of the
retinotopic neural field, Wfov, the width of the eye’s field of view
and E2, the eccentricity at which the retinal density has halved by:

Mf =
Wnfs

E2 ln
(

Wfov

2E2
+ 1

) (15)

Here,Wnfs is 50 (the side length of the 50 × 50 grid) andWfov is
set to 61◦, a reduction from the biologically accurate 150◦ due to
the small number of neurons in the retinotopic neural field. E2 is
2.5 (Slotnick et al., 2001; Cope et al., 2017).

The mapping from the retinotopic co-ordinates in the brain
to rotational co-ordinates of the stimulus/response was written
down by Schwartz (1977, 1980) for measurements of striate
cortex (visual stimulus to electrophysiological response—Talbot
and Marshall, 1941; Daniel and Whitteridge, 1961) and by Ottes
et al. (1986) for superior colliculus data (electrophysiological SC
stimulus to eye movement response—Robinson, 1972). We used
the following statement of this mapping to introduce stimuli into
the “World” input population of the brain model:

φ =
Wnfs

2π
arctan

(

θ ty

θ tx

)

(16)

r = Mf E2 ln

(

1

E2

√

θ tx
2
+ θ ty

2
+ 1

)

(17)

Note that we use r and φ as the co-ordinates on the “collicular
surface.” Schwartz uses r and φ as the polar co-ordinates of the
retinal stimulus; Ottes et al. use r and φ as polar co-ordinates for
the eye movement response; both use u and v as the Cartesian
co-ordinates of the neural map. We use θ tx and θ ty to give Euler
rotations for the retinal target stimulus. Note also that the form
of Equations (16) and (17) is slightly different from that given
in Ottes et al. (1986) because our θ tx and θ ty are not the polar
co-ordinates used in that work.

The mapping encompases the entire visual field; the value of
φ is allowed to vary from 0◦ to 360◦ along its axis. Effectively, the
two contralateral colliculi found in the biology are incorporated
into a single, square map, avoiding the need to carry out the kind
of “colliculus gluing” described in Tabareau et al. (2007).

It is straightforward to show that the reverse mapping is given
by:

θx = E2

(

e
r

Mf E2 − 1

)

. cos

(

2πφ

Wnfs

)

(18)

θy = E2

(

e
r

Mf E2 − 1

)

. sin

(

2πφ

Wnfs

)

(19)

where we have dropped the t superscript on θx & θy, as these
equations transform a collicular location into rotations of the eye.

Figure 3 shows the result of the mapping for a view of two
cross-shaped luminances. One cross illuminates the fovea, which
results in a large comb-shape of activity. The more peripheral
cross produces (in FEF) an indistinct object centered at a larger
value of r.

2.2.3. Network
Briefly, the model consists of input from the World population
(see Figure 2, green population box) producing activity in
an “express” pathway to superior colliculus (purple) and
simultaneously in cortex, represented here by the FEF population
(gray boxes in Figure 2). The express pathway causes short
latency activity in the superficial superior colliculus, which
directly innervates the deeper layers of the superior colliculus
(SC_deep). Activity in FEF generates firing in a thalamo-cortico-
basal ganglia loop. The output of the basal ganglia is the
substantia nigra pars reticulata (SNr) which tonically inhibits
SC_deep. If a location of activity in FEF is able to dominate
selection in the basal ganglia circuit, the corresponding location
in SNr will dis-inhibit and activity will build up in SC_deep
encoding the saccade end point.

Connections shown in red are one-to-one connections; dark
blue projections indicate a connectivity pattern which “fans out”
with a 2-D Gaussian kernel (Figure 1C); lighter blue connections
from the STN to SNr and GPe are diffuse, all-to-all connections
and projections colored green are one-to-one connections that
decay toward the fovea so that foveal activity in FEF does
not swamp the basal ganglia which would prevent peripheral
luminances from ever being selected. Note that SC_deep contains
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FIGURE 3 | Representative mapping from eye’s frame of reference in Cartesian co-ordinates to retinotopic co-ordinates. (A) The mapping of luminances in the eye’s

frame of reference. The world input is pre-defined by a JSON configuration file. Luminance position, size and shape can be defined in this file, along with the times at

which luminances appear and disappear. The worldDataMaker.cpp code computes the locations of the luminances in the eye’s frame of reference, given its rotational

state. It also computes a 2D Gaussian convolution of the luminances. Here, there are two cross shaped luminances spanning 10◦, one of value 0.8 at the fixation

point (0,0) and one of value 0.5 at a peripheral position (0, −12◦). Note that these crosses have the same “bar width” of 2◦ as the crosses used in the simulations, but

their span of 10◦ is greater than the 6◦ used in the simulations, to make these images clearer. (B) The locations of the luminances in the eye’s frame of reference are

then converted into retinotopic co-ordinates, with centrally located luminances being represented at low values of r and more peripheral luminances having higher

values of r. φ encodes rotational angle: 1 and 50 encode upward movement; 13.5 is left; 26 is down; 38.5 is right. The output of the World component is fed into

FEF_add_noise and into the retinal neuron populations. The color map makes it possible to distinguish between the two crosses. (C) The FEF_add_noise populations

adds a level of noise to the signal representing processing of the signal in visual cortex. (D) A Gaussian projection from FEF_add_noise to FEF further blurs the activity

in FEF. FEF is the input to the basal ganglia and one input to superior colliculus.

two recurrent connections; one is excitatory, with a Gaussian
kernel mapping and the other implements tecto-tectal inhibition,
which increases the inhibition between activity in opposite
hemispheres of the field of view (Gian and Jorge, 1981; Olivier
et al., 2000) helping to resolve competition between saccades to
the left and right. The tecto-tectal inhibitory connection is not
present in the Cope-Chambers model. In all other respects the
model is as described in Cope et al. (2017). We have not listed
the parameters of the network in tabular form here, instead, the
reader is referred to the SpineML declarative specification of the
model from the link given in Supplemental Data. The easiest way
to access this information is by using SpineCreator.

2.3. Brainstem Model
We implemented a saccadic burst generator (SBG) based on the
connectivity outlined in Gancarz and Grossberg (1998). The SBG
network for two of the model’s six channels is shown in Figure 4.
In the brainstem model, we use the word “channel” to mean a
set of populations of neurons which are involved in actuating a
single extraocular muscle. SBG channels are arranged in pairs,
actuating opposing muscles. There is one pair of channels which
actuates the superior and inferior rectus muscles, causing vertical
rotations of the eye in a roughly parasaggital plane (the eye

moves up or down). Another pair actuates the lateral and medial
rectus muscles, causing horizontal rotations of the eye. The third
pair actuates the superior and inferior oblique muscles which
contribute to vertical as well as oblique rotations. Activity from
the output layer of superior colliculus (SC_avg) is fed into each
channel, which sums the activity it receives and processes it in
populations each of a single neural element representing all the
neurons in that population. Each channel of the SBG functions
to create the motor neuron activations that are required to
accelerate the eye in a particular direction, then hold the eye in its
new position against the returning force generated by the elastic
properties of the muscles. The required motor neuron activations
are therefore a combination of features: a brief burst of increased
activity that accelerates the eye; followed by a period of activity
that is less than the burst firing rate but higher than the tonic rate
that exists when the eye is at the center. This holds the eye in its
new position.

The SBG connectivity produces each of the these features
separately, then sums them to create the desired “bump and
tonic” activation time series. The input to the first population
in the SBG, the long-lead burst neurons (LLBNs), is conceived
as originating from one of the deep layers of the superior
colliculus. The activity of the LLBNs are passed to excitatory
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FIGURE 4 | One pair of channels of the saccadic burst generator (SBG) for left (cyan) or right (green) movements. Collicular activity in SC_avg excites the channels via

SBG weight maps, which are encoded as explicit lists of connection weights in the blue connection arrows from SC_avg to the LLBN populations. Each box

represents a neural population and shows the population name, the number of neural elements (here 2,500 or 1) and the SpineML component name; LIN for Leaky

integrator or integrator. Key: LLBN, Long lead burst neurons; IBN, Inhibitory burst neurons; OPN, Omnipause neurons; EBN, Excitatory burst neurons; TN, Tonic

neurons; MN, Motoneurons.

burst neurons (EBNs) which, in turn, inhibit the LLBNs via the
activity of the inhibitory burst neurons (IBNs). This feedback
loop has a transmission delay, which allows activity to build
up in the EBNs before the inhibition is activated and the
activity is then reduced again. This mechanism generates the
“bump.”

The generation of the “tonic” phase of the required time
series is achieved simply by integrating the bump over time and
multiplying by a some small gain factor. This is the function of
the tonic neurons (TNs). The firing rate of the motor neuron
defines the amount of force applied to the eye by that muscle.
Thus, the integral of the “bump” defines how far the eye moves
in that channel’s direction. The gain and delay parameters in the
LLBN-EBN-IBN-LLBN feedback loop therefore have to be tuned
such that the endpoint of the saccade is reasonably accurate.
Furthermore, the restoring force generated by the elasticity of
the muscles is dependent on the radial distance. The value of the

new tonic firing rate, after the “bump” is dependent on the end
location of the eye. If the ratio between the EBN firing rate and
the TN firing rate is not exactly correct, the eye will drift away
from the saccade endpoint after the saccade has been completed.
The EBN-TN connection strength is therefore tuned such that
the TN firing rate yields a stable eye position across a range of eye
eccentricities.

The omnipause neurons (OPNs) are tonically active and
inhibit the EBNs. The activity of the OPNs is itself inhibited by
activity in the LLBNs. The purpose of this arrangement is to
ensure the eye does not move in response to neural noise.

Each mean activity of all the neurons in each SBG population
(except the TNs) is defined by a single leaky integrator, first order
differential equation.

da

dt
=

1

τ
(y− a) (20)
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where a is the activation of the nucleus, and τ is the time constant
of the nucleus. y is a piecewise linear function of the weighted
sum of inputs to the nucleus and is given by

y(IN) =











0 IN ≤ b

IN − b b ≤ IN ≤ 1+ b

1 IN ≥ 1+ b

(21)

where b is the IN axis offset. IN is the weighted sum of inputs to
the nucleus and is given by,

IN =

M
∑

m

wmnam (22)

where am is the activation of themth afferent nucleus. wmn is the
connection strength between the mth afferent nucleus and the
current nucleus. The activity of the TNs are defined as

da

dt
=

1

τ
y (23)

with the same piecewise linear transfer function as in the other
SBG populations.

2.4. Biomechanical Eye
The output signals of the brainstem’s motoneuron (MN)
populations are used to drive the biomechanical model. The MN
output signal in each brainstem channel is normalized in the
range [0 1] and represents the mean firing rate of the neurons
that innervate the extraocular muscle for that channel. The
biomechanics are used not only to get tangible feedback on the
simulated saccades including motion trajectories, but to add one
more modeling dimension related to the inertial properties of the
eye plant including muscle properties.

The biomechanical eye model, implemented using the
OpenSim framework (Seth et al., 2011), is anatomically
represented by a sphere of uniform mass distribution. The
diameter of the eye is 24 mm for adults, with small variations
between individuals; the mass of the eye is 7.5 g. The eyeball
is actuated by six extraocular muscles (EOMs). The EOMs are
arranged in three pairs forming a cone inside the orbit with the
apex being located inside the cranium in a tendonous ring called
the annulus of Zinn. An important feature of the oculomotor
system which greatly affects its overall behavior is the existence of
dynamic EOMpulleys. Their role is to guide the pivot point of the
EOMs. In our model, a pulley for each EOM has been modeled
by a point on the orbit whose location depends on the current eye
orientation.

An illustration of the biomechanical eye model is given in
Figure 5A, while Figure 5B depicts the head model used in the
proposed framework. Figure 5C shows a cross-sectional view of
the eye and the spherical screen on which targets were projected.

Two types of muscle models of different complexity are
supported. The first models muscles using linear path actuators.
This simplistic model of ideal muscles can be easily integrated
with high level brain models. As described above the muscles are
wrapped around the eye. The more complex model supported is

FIGURE 5 | The biomechanical eye. (A) an OpenSim rendering of a pair of

biomechanical eyes showing the positions of the extraocular muscles. Note

that (i) volume visualization of muscles should not be confused with FEM

muscle models; it is provided for user feedback purposes, i.e., shape and

color change depending on the muscle activation, (ii) superior and inferior

oblique are visualized up to their respective muscle pulleys. (B) OpenSim

rendering of biomechanical eye within a head model. (C) Top-down schematic

cross-sectional view of the biomechanical eye situated within a spherical

screen, with a horizontal rotation toward a luminance at an angle of −θy about

the y axis. The y axis points up, out of the page.

based on the Thelen model (Thelen, 2003) that is also supported
by OpenSim and implements Hill-type muscles. It includes
realistic muscle wrapping geometric entities of the muscle fibers,
while it accommodates for both activation and contraction
dynamics. The dynamics of muscular forces can be split into: (1)
The elasticity of the muscles. (2) A delay between the onset of
the afferent excitatory signal and the actual muscle contraction,
caused by the transmission time of the action potentials and by
the necessary calcium release at the muscle fibers.

The force applied by EOMs is controlled by an excitatory
signal supplied by motoneurons in the brainstem. The neural
drive to produce a saccadic eye movement can be characterized
by a pulse component to overcome the viscoelasticity of the
orbital plant, a step component to stabilize the eye in the
new position, and a slide component that models the gradual
transition between the pulse and step.

Passive forces due to the fatty tissues inside the eye orbit
also affect eye dynamics. Their role is critical in eliminating
the influence of head and body movements. We incorporated
a custom torque, t, which acts like a rotational spring-damper
apparatus, resisting eyeball movements. It has elastic and viscous
properties governed by t = −KR − CU where R is the eye’s
orientation and U is its angular velocity. K and C are constants.
A fuller description of the biomechanical model can be found in
Papapavlou and Moustakas (2014).

Finally, numerical integration of the biomechanical eye model
is based on the Kutta-Merson integration method.

2.5. Model Development Framework
The Cope-Chambers model was originally developed to run
on the BRAHMS model execution framework (Mitchinson
et al., 2010; Mitchinson and James, 2015). To run a BRAHMS
model, the researcher must develop BRAHMS components for

Frontiers in Neuroscience | www.frontiersin.org 12 February 2018 | Volume 12 | Article 39

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


James et al. Integrated Brain and Biomechanics

the various neural elements. A BRAHMS component is a
programmatically coded implementation of the behavior of the
component. It may have an arbitrary number of inputs and
outputs andmay be written in C, C++, Python orMATLAB. The
Cope-Chambers model components were hand written in C++

and MATLAB. A BRAHMS SystemML file describes how the
different components connect together and how data is passed
between them (Mitchinson et al., 2010). The main BRAHMS
program first reads the SystemML file, then dynamically loads all
the required components before executing the system.

In the current work, the Cope-Chambers model was
reproduced using the declarative SpineML markup language
(Cope and Richmond, 2014; Richmond et al., 2014), with the
help of the graphical SpineML model editing software called
SpineCreator (Cope et al., 2015, 2016a). SpineML, which is a
development of the NineML specification (INCF Task Force
on Multi-Scale Modeling, 2011), describes neural populations
and their projections in a highly structured format in which
neuron bodies, pre- and post-synapses are described in terms
of SpineML components. These are similar to the components
provided by BRAHMS, but in this case, the components are
an XML description of the functionality of the component,
rather than a programmatic implementation, with one XML file
per component. A SpineML network layer file then describes
which components are used in the model, and how they are
connected together. Finally, a number of SpineML experiment
layer files specify how the model described in the network layer
can be executed. In the experiment layer, the execution duration
and timestep can be specified, along with input conditions,
connection lesions and component parameter updates. A
description of SpineML is given in Richmond et al. (2014); the
definitive definition is found in the schemas (Cope et al., 2014).
SpineCreator, in its rôle as a graphical editor for the SpineML
format, was used to generate the SpineML files describing the
model. It was also used to generate the diagrams of the model.

As a declarative format for model specification, SpineML
is agnostic about how the model is executed. A number
of simulation engines can be utilized, including DAMSON
(Richmond, 2015), GeNN (Nowotny, 2011; Nowotny et al.,
2014) and BRAHMS (used here). The simulation engine
incorporating BRAHMS is called SpineML_2_BRAHMS (Cope
and James, 2015). SpineML_2_BRAHMS is a collection
of XSLT stylesheets which first generate and compile
C++ BRAHMS components (which implement a simple,
Forward-Euler solver) from the SpineML component layer
description files. SpineML_2_BRAHMS then uses the
SpineML network and experiment layer files to generate
a BRAHMS SystemML description of the model. Finally,
SpineML_2_BRAHMS executes the model now described
entirely as a BRAHMS system, via a call to the BRAHMS binary.
A number of additional, hand-written components are present
in SpineML_2_BRAHMS providing the inputs (constant inputs,
time-varying inputs, etc) which the modeler specifies in the
experiment layer.

In addition to the brain model components, all of which
are code-generated using SpineML_2_BRAHMS as described
above, two hand-written components are integrated into the

model: The biomechanical eye model and a sensory input
component. The sensory input component takes the eye’s
rotational state and the state of the experimental luminances
and projects a retinotopic activity map into the brain model.
Both of these BRAHMS components were hand-written in C++.
To incorporate these components into the SpineML model, a
SpineML_2_BRAHMS external.xsl file was used. The external.xsl
file scheme for incorporating external BRAHMS components
into a SpineML model was a new SpineML_2_BRAHMS feature
motivated by the current work. Figure 6 shows the workflow, in
which the model specification files (blue box—a combination of
SpineML files and C++ code), are processed (green box) into a
BRAHMS system (red box).

2.6. Integrating the Models and Closing the
Loop
The Cope-Chambers model closes its loop by passing the
centroid of activity in SC_deep (once it has surpassed a threshold)
back to the code that controls the world, which then uses this
location to instantaneously change the model’s view of the world.
In our extended model, it was necessary to connect the output of
the brain model back to its input via the saccadic burst generator
model and the biomechanical eye. The resulting state of the eye,
rather than the centroid of the superior colliculus, was used to
compute the input to the brain, given the luminances visible in
the world.

Thus, the information flow in the model is as follows:
Luminances in the world have their locations computed in the
eye’s frame of reference, based on the rotational state of the eye.
The locations of the luminances on the retina are transformed
into a retinotopic co-ordinate system which determines the
activity in the “World” population (named to mean the “world
as the brain sees it,” rather than the world frame of reference)
which is the input for the brain model. The target luminance for
a saccade is selected, as described earlier, via cortical and sub-
cortical loops through the basal ganglia model and activity for
the winning end-point builds up in the deep layer of superior
colliculus. This activity excites the 6 channels of the saccadic
burst generator in the correct proportions for the saccade. The
motoneurons, which are the output of the SBG, send a rate-
code signal (normalized between 0 and 1) into the biomechanical
eye model. The rotational state of the eye model is fed back
to participate in the computation of the retinotopic luminance
activity in “World,” completing the loop.

A number of studies have considered the form of the
connection between the deeper layers of the superior colliculus
and the saccadic burst generator (Van Gisbergen et al., 1985;
Ottes et al., 1986; Waitzman et al., 1991; Arai et al., 1994; Groh,
2001; Goossens, 2006; Tabareau et al., 2007; van Opstal and
Goossens, 2008; Goossens and van Opstal, 2012), which has
become known as the spatial temporal transform (STT). The
spatial aspect of the transform is thought to be implemented
by a weight-mapping (Arai et al., 1994; Tabareau et al., 2007).
Although there is no definitive experimental proof for such
a mapping, there exists evidence for spatially variable synapse
density (Herrero et al., 1998; Moschovakis et al., 1998) and
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FIGURE 6 | The model framework. (A) The model is specified using a combination of declarative XML files and hand-coded C++. These original model specifications

are shown within the blue box. (B) The green box shows the processes which are applied to the model specification to produce the BRAHMS system. Most of the

process is defined within the scripts which make up SpineML_2_BRAHMS, but the hand-written components must be manually compiled and installed within the

BRAHMS Namespace, allowing the BRAHMS executable to locate them at runtime. (C) The red box shows the resulting BRAHMS system ready to be executed by

the BRAHMS executable. In practice, this call is made by SpineML_2_BRAHMS.

connection density (Grantyn et al., 2002) and we therefore adopt
the idea. Arai and co-workers trained a 20 by 20 neural network
model of the superior colliculus to discover the weight map
under the assumption of 2D Gaussian activation profiles (Arai
et al., 1994)—that is, they assumed that the activity in superior
colliculus for any saccade was a size-invariant 2D Gaussian hill
of activity. The training approach of Arai et al. (1994) was not
feasible in this study due to the length of time required to run
our model and its stochasticity, which meant multiple runs of
the model were necessary in order to generate output statistics.
Tabareau et al. (2007) wrote down a theoretical form of the weight

map, obtained by inverting the mapping of Ottes et al. (1986) and
the assumption of invariant 2D Gaussian activity profiles in SC,
which is equivalent to:

w(r,φ) = i e jr sin
(

lφ + k
)

(24)

where r and φ are co-ordinates on the collicular map and i, j, k
and l are parameters of the function (compare with Equation 3
of Tabareau et al., 2007). As they found it closely resembles the
results of Arai et al. (1994), and it is a simple formulation, we
considered it as the means to generate the six weight maps in
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our own model. One barrier to the use of this weight map was
the Cope-Chambers model’s violation of the invariant integral
hypothesis. This states that the number of spikes emitted by a
neural element during a saccade (or in our model, the integral
of the neuron’s output during the saccade) should be a function
only of its position within the hill of collicular activity. That is,
for any time-dependent hill of activity A(z, t) at z = (r,φ) on
the collicular surface, the integrated activity Ax in an element at a
vector x away from z is

Ax =

∫

t
A(z− x, t) dt (25)

which is invariant for all z. This requirement is fulfilled by
spatially invariant 2D Gaussian profiles, whose time-course (how
quickly they grow and then diminish) is always the same.

However, the very mapping on which the Tabareau et al.
(2007) result is based leads to a very variant activity profile in
the SC_deep layer of the Cope-Chambers model. A luminance of
a given size which excites activity near to the fovea causes activity
in a large number of neurons in each retinotopic layer, whereas
activity far from the fovea excites a much smaller region. This
effect is clearly demonstrated in Figure 3 for equal sized targets
both on and distal from the fovea.

To understand the need for this invariance, consider the effect
of a 2D Gaussian hill in SC_deep which elicits a successful
horizontal saccade of 10◦ using the weight maps shown in
Figures 7A–C. Activity from the 2D Gaussian (schematically
represented as the large purple dashed circle in Figure 7C),
passing through the weight maps will excite the superior and
inferior rectus channels by an equal, balanced amount, so
these cancel out, allowing the eye movement to be horizontal.
The amount of activation passed to the lateral rectus muscle
results from a convolution of the Gaussian and the exponential
component of the weight map relationship in Equation (24). If
the Gaussian hill now appears further along the collicular surface,
coding for a 20◦ saccade, and also becomes smaller (small purple
dashed circle), we can still argue that the vertical component
signals to superior/inferior rectus muscles will cancel out, and we
could imagine that the exponential component of Equation (24)
is correctly parameterized to compensate for the smaller hill.
Now consider a 2-D Gaussian hill which codes for a 10◦ saccade
which is “down, and to the right” in equal proportions (large red
circle). That means that the hill will sit on the boundary between
the weight maps for the “down,” and the “left” muscles. Now, if
the hill moves to the r = 20◦ location on the colliculus (small red
circle), and also reduces in size, it will excite only the periphery
of the sine; the exponential increase of the map along r is not
guaranteed to compensate for the reduction in the convolution
of Gaussian hill and the sinusoidally varying component of the
weight map along the φ axis in Figure 7A.

This led us to hypothesize that the retinotopic mapping
to the SBG be preceded by an associated widening projection
field such that the hill of activity in a “final” deep layer
of superior colliculus is invariant with position on the map.
There are a number of locations in the system in which this
widening projection field could exist. It could be implemented
in the projections between the retinal populations and the

superficial layer of SC along with the projection between the
World and the FEF population. However, this would affect
activity within the basal ganglia of the model, contradicting a
result in Cope et al. (2017) which explains the “hockey stick”
profile for saccade latency as a function of saccade eccentricity.
Instead, we suggest that a widening projection field is encoded
within the superior colliculus itself, a complex, multi-layered
structure which could quite plausibly support such a function.
Indeed, such widening activity can be seen in the stimulation
experiments in Vokoun et al. (2010) and Vokoun et al. (2014).
In Ghitani et al. (2014), from the same research group, evidence
is presented for an excitatory and widely projecting pathway from
the stratum griseum intermediale (equivalent to our SC_deep) to
the more superficial layers stratum opticum and stratum griseum
superficiale. Although this pathway is a “wide” projecting field,
the experiments do not indicate whether the projection widens
along the rostral-caudal axis of the SC. Bayguinov et al. (2015)
present evidence for another projecting field within SC whose
connectivity pattern does change along the rostral-caudal axis.
This projection is inhibitory in nature. Although neither of these
results precisely match the widening, excitatory projection field
hypothesized here, they do indicate that such connection patterns
are plausible. Although in this work we do not model the SC in
detail, we extended themodel with a third functional layer named
SC_deep2, shown in Figure 7D (Cope-Chambers has only the
two layers SC_sup and SC_deep). We introduced a widening
projection based on a Gaussian projection field whose width, σ (r)
varies in inverse proportion to the magnification factor, M(r),
given in Equation (14) according to:

σ (r) =
mσ

M(r)
−

mσ

M0
+ σ0 r > r0 (26)

mσ is a scalar parameter which determines the “magnitude of the
widening.” M0 is the “starting” magnification factor. Within the
foveal region (0 ≤ r ≤ r0), the projection field is not allowed to
widen and so

σ (r) = σ0 r ≤ r0 (27)

which makes σ0 the width of the Gaussian projection field within
the foveal region. (Note that the value chosen for the width of the
foveal region, r0 is not identical to the foveal shift parameter used
in theDecayingAtFovea projections into striatum.) TheWidening
Gaussian projection weight, w(r, d) is then computed as:

w(r, d) = e
− d2

2σ(r)2 (28)

where d is the distance between the source and destination
elements in the collicular plane.mσ was set to 50, σ0 was 0.3,M0

was 12.43 and r0 was 20.
A further issue regarding the use of the theoretical weight

map in Tabareau et al. (2007) was that it does not consider the
existence of the oblique extraocular muscles. There is evidence
that only two dimensional information is encoded in superior
colliculus (Wurtz and Goldberg, 1972; Van Opstal et al., 1991;
Hepp et al., 1993), but the eye is actuated by six extraocular
muscles. In order to find out a possible form for the input to
the oblique muscles we carried out a training process which
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FIGURE 7 | (A,B) Tabareau-style weight maps for “left” and “down” components of a saccade. (C) The two weight maps in (A,B) shown on the same graph, viewed

from above. Circles show the locations of potential hills of activity. Purple dashed circles encode saccades left; red circles encode saccades with both a left and a

down component. (D) Showing the additional deep layer of superior colliculus (SC_deep2) and the output layer (SC_avg, named for the fact that in an earlier version

of the model, it received the output of the centroid of SC_deep). The widening Gaussian projection is shown as the arrow between SC_deep and SC_deep2.

depended on a centroid computation in SC_deep and was
designed to maintain a null torsional eye rotation for all saccade
end-points. For the four rectus muscles, the resulting weight
map solutions resembled those found by Arai et al. (1994). The
trained maps for the oblique muscles had a form very close to
those for the inferior and superior rectus channels, but with
a smaller magnitude. The inferior oblique map resembled the
superior rectus map and the superior oblique map resembled
the inferior rectus. When parameterizing the theoretical weight
maps, we set the inferior/superior oblique maps to be 1/10th
of the superior/inferior rectus maps, respectively. Interestingly,
this suggests that there is a built-in synergy between the vertical
and oblique channels in the eye, although the results will show
there is some systematic change in the oblique error with saccade
end-point location.

Tabareau et al. (2007) give a formulation for the weight
maps in which it is possible to project both a positive and a
negative weight. In our model, all projections from SC_deep are
excitatory. This means that each channel has a weight which
follows the form:

w(r,φ) = i e jr sin

(

2πφ

Wnfs
+ k

)

(29)

where i, j and k are per-channel parameters for the weight maps.
k is determined by the mapping. Only the positive part of the sine
is utilized. i and j are parameters to be found.

The saccadic burst generator model was originally conceived
with the assumption of a step input, which returns to zero
activity at a suitable time to curtail the saccade and avoid
staircase saccades (Gancarz and Grossberg, 1998). In our model
there is no such mechanism to reduce activity in SC_deep,
and elsewhere. Although a successful, accurate saccade toward
a target luminance will remove the excitation which caused the
activity in SC_deep by bringing the target luminance within the
masked, foveal region, the activity in SC decays too slowly to
avoid additional saccadic movements. We found it necessary to
hypothesize an inhibitory feedback mechanism from the SBG
to the brain model. This is shown in Figure 4, which indicates
how the output from the inhibitory burst neurons (IBN) of the
SBG model are used to feed back an inhibitory signal to the
SC_deep, thalamus and FEF populations in the brain model,
resetting them ready for the next saccade. There is evidence
for inhibitory projections to SC from the propositus hypoglossi
nucleus (Corvisier and Hardy, 1991), which lies within the
brainstem, upstream from motoneurons, and has been shown to
encode eye velocity (Dale and Cullen, 2013).

The output signals from the six channels of the SBG were
connected to the six motoneuron inputs of the biomechanical
eye. The signal was normalized; a value of 1 meaning that all
the motoneurons in the output population were firing at their
maximum rate and the force exerted by the relevant extraocular
muscle wasmaximal. Channels innervated extraocularmuscles as
follows: Up: superior rectus; Down: inferior rectus; Right: medial
rectus; Left: lateral rectus; Z+: superior oblique; Z-: inferior
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oblique. Because the medial rectus induces a rightward rotation
of the eye, our single virtual eye is a left eye. The OpenSim
implementation of the biomechanical eye was “wrapped” (in
the software sense) in a BRAHMS component. This made it
possible to integrate the OpenSim model into the BRAHMS
framework. The wrapper ensured that the input and output
signals were correctly transferred and, importantly, handled the
disparity in the solver timesteps used in the OpenSim model
(25 ms) and the neural model (1 ms). This was achieved by
having the BRAHMS wrapper create a separate thread to run the
OpenSim model. The BRAHMS wrapper component was called
on each 1 ms timestep, receiving the instantaneous activations
from the motoneurons in the SBG. These activations, and the
current simulation time, were written into a sharedmemory area,
accessible by the OpenSim thread. Running independently, the
OpenSim thread would update its inputs (using the most recent
values in the shared memory area) whenever the simulation
time had increased by 25 ms. It would then recompute its
outputs (the rotational state of the eye) and write these into
the same shared memory. The BRAHMS wrapper would update
its outputs whenever they were changed in the shared memory
by the OpenSim thread. A direct connection of the six outputs
of the BRAHMS eye model component to the six inputs of
the worldDataMaker BRAHMS component was specified in the
SpineML_2_BRAHMS external.xsl file.

The eye model outputs its rotational state at each timestep.
The rotational state is used to compute the view of the world
in the eye’s frame of reference. To simplify the calculation,
the luminances exist on a spherical surface at the center of
which is the eye. A hand-coded BRAHMS component called
worldDataMaker computes the projection of the luminances into
the eye’s frame of reference and then converts this representation
into a retinotopic map to pass into the brain model. The input
to the brain model is thus able to change continuously, on every
timestep, rather than in a step-wise fashion when a saccade
occurs, as in the Cope-Chambers model.

In the worldDataMaker BRAHMS component, the rotational
state of the eye was used to construct Euler rotation matrices
which transformed between the world’s frame of reference and
the eye’s frame of reference. The worldDataMaker component
received a specification of the world luminances in a JSON file
called luminances.json at the start of each simulation. This file
specified the position, shape, size, luminance, appearance time
and disappearance time of an arbitrary number of luminances.
With this information, the instantaneous rotational state of the
eye and the parameters of the retinotopic transform, it was able
to compute the instantaneous input to the brain model.

The final models, on which the results of this paper are based
are named “TModel3,” “TModel4” and “TModel5.” Descriptions
of these, and earlier versions of the model can be found in the
code repository given in Supplemental Data.

3. RESULTS

3.1. Weight Maps
We found the best parameters for the exponential in
Equation (29) (i and j) by amanual tuning process. After selecting
values for i and j in either the horizontal or vertical/oblique

channels, we ran the model 6 times at each of 8 target
eccentricities (7◦–14◦) which were purely in the direction of
the newly parameterized channel. The training saccades were
produced as described below in section 3.3, with the same
fixation and target luminances (crosses of magnitude 0.2 and 0.3)
but with the fixation offset and target onset occurring at 0.2 s. We
measured the end-point of the saccade by detecting the location
at which the saccade velocity had dropped below 0.005 of its
peak. We iterated until the mean saccade endpoint plotted vs.
target was close to the ideal straight line—see Figures 8A,B. We
applied the same parameters to both directions of each channel;
iup = idown = 0.00195, jup = jdown = 0.075, ileft = iright = 0.0016
and jleft = jright = 0.067.

The resulting weight maps (where the oblique maps are 1/10th
of the vertical maps, as described earlier) are shown in Figure 9.
First, recall that the r axis of the neural surface corresponds
to the amplitude of a saccade and the φ axis indicates the
polar direction of the saccade, as described in section 2.2.2
and Figure 3. Figure 9A shows the weight map for the muscle
which rotates the eye to the left. As we modeled a left eye,
this actuates the lateral rectus muscle. The exponential rise of
Equation (29) (for experimental evidence, see Figures 7, 8 of
Herrero et al., 1998) is seen in the r direction; as r increases, so
the connection strength to the SBG channel rises exponentially.
The connection strength is greatest along the center line, for a
value of φ which corresponds to a purely leftward movement.
Note that φ is presented in neural co-ordinates, and not in
degrees or radians; 1 ≤ φ ≤ 50 corresponds to a range of 0 to
360◦; φ = 38.5 corresponds to movements left. The connection
strength drops away sinusoidally as φ moves away from the
center line at φ = 38.5. In regions of the map for which there
is no leftward movement, that is, in the half of the map which
corresponds to any movement with a rightward component, the
“left” weight map is 0. Figure 9D shows the weight map for
rightward movements, actuating the medial rectus muscle of the
eye. The line of maximum connection strength is along φ =

13.5. The map is a mirror of Figure 9A, reflected about the line
φ = 26. The “left” and “right” weight maps are orthogonal; the
non-zero region of the “left” map is zero in the “right” map and
vice versa. Figures 9B,D show the weight maps for downward
and upward eye movements; the “down” map activates the SBG
channel for the inferior rectus muscle, the “up” map activates
the superior rectus. Note that “down” is not orthogonal either
to “left” or “right” because a saccade down and left is achieved
by simultaneously activating both the lateral and inferior rectus
muscles. However, the “up”map is orthogonal to the “down”map
and spans the edges of the surface where φ rolls over from 1 to 50.
The line of maximum connection strength for the “up” map is
along φ = 1; for “down” φ = 26. Based on the training described
in section 2.6, the maps driving the superior oblique (“Z+”) and
inferior oblique (“Z−”) muscles were set to 1/10th of the “down”
and “up” maps.

3.2. Saccade Accuracy
In Figure 8, we showed the result of running the model to targets
located on the principle axes, on which the model was trained.
We then simulated single saccades to targets in one hemifield of
the eye’s field of view, with eccentricities between 6 and 14.5◦.
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FIGURE 8 | Accuracy of single saccades at different target eccentricities for fixation luminance 0.2 and target luminance 0.3. (A) Horizontal rotations about the y axis.

(B) Vertical rotations of the eye about the x-axis.

FIGURE 9 | Weight maps for the connections between the output layer of superior colliculus and the six long lead burst neurons of the saccadic burst generator

model. Each map increases exponentially with increasing r, multiplied by cosine(φ) about its “active” axis. (A) Weight map for leftward movements which innervates

the lateral rectus in this single left-eye model. (B) Map for downward movements; innervates the inferior rectus. (C) Superior oblique muscle weight map. (D) Weight

map for rightward movements/medial rectus muscle. (E) Weight map for the superior rectus muscle which generates upward movements. (F) Inferior oblique map.

As in the training, we ran the simulation 6 times for each target,
θ t = (θ tx, θ

t
y , 0) to obtain mean saccade end-points. Figure 10

shows saccade accuracy results for an entire hemifield in the
naïve model which passed the output of SC_deep directly to SBG

via the weight maps. The ratio of the magnitude of the error
vector to the magnitude of the target vector is plotted using a
color map. This ratio is shown for the full, three dimensional
error vector in Figure 10A and for the x, y and z components
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FIGURE 10 | The end-point error surface for the original, naïve model (TModel3). (A) The ratio of the magnitudes of the total error vector and the target vector,

expressed as a percentage. (B) The ratio of the magnitude of the x component of the error vector to the magnitude of the target vector, expressed as a percentage.

(C) As (B) but for the y component. (D) As (B), for z component. All color maps are shown with the same scale. The target rotations, θ tx and θ ty are denoted “Target X”

and “Target Y” in the figure.

in Figures 10B,C. Inspection of Figure 10A shows that the end-
point error is minimal along the principle axes (θ tx = 0 or θ ty =

0) and maximal near the 45◦ oblique targets (blue lines) with
the end point error as high as 80% of the programmed saccade
magnitude. The x component error map in Figure 10B shows the
same trend, mirrored about the “Target X” axis, whereas the y and
z component errors are, relatively, much smaller. Because the x
component of the error is clearly contributing to end point errors
which would not be considered “on target,” especially for oblique
saccades, we considered the effect of the non-uniform size of the
hill of activity in SC_deep.

In our model, the location, size and shape of activity in FEF,
the basal ganglia, thalamus and superior colliculus is eccentricity
dependent, in line with the retinotopic mapping stated by Ottes
et al. (1986). More eccentric targets generate reduced activity,
because fewer retinal neurons are excited far from the fovea.
Cope et al. (2017) showed that this relationship can explain
increased saccadic latencies for distal targets, resulting from
reduced activity in the decision making circuitry of the basal
ganglia. However, the notion that activity in superior colliculus is
eccentricity-dependent conflicts with the result of Tabareau et al.
(2007), who showed that an invariant hill of activity was required
if this complex logarithmic weight mapping was to be used
to drive a two-degree-of-freedom saccadic burst generator, and

also with experimental findings, which do not show significant
eccentricity dependence, at least in the burst layer (Anderson
et al., 1998).

To bring our model in line with these results, whilst
maintaining the eccentricity dependent activity in basal ganglia,
we hypothesized that a “widening projection” exists between two
maps in superior colliculus. As described in section 2.6, there
is now experimental evidence for similar projections (Ghitani
et al., 2014; Bayguinov et al., 2015) making this a plausible
suggestion. Activities in one SC_deep layer remains eccentricity-
dependent, with loops back to thalamus and cortex and through
basal ganglia. This activity is then fed through a projection, which
applies a Gaussian projection field, whose width increases with
increasing stimulus eccentricity according to Equation (28). The
activity in this second SC_deep layer is then fed to the weight
maps of the SBG. This model was called “TModel4.” TModel4
was parameterized such that its horizontal and vertical error was
similar—so that its equivalent of Figure 8 showed a similar sum
of squares error.

Figures 11A–D show the percentage errors for TModel4. First
of all, note that the error magnitudes are much smaller. Themean
errors are smaller for every axis. The largest errors produced
by the model are approximately 15%, which are within the
boundaries of what some authors regard as an accurate saccade
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FIGURE 11 | The end-point error surface for the model in which a widening projection field was added to the model of the superior colliculus. (A) The ratio of the

magnitudes of the total error vector and the target vector, expressed as a percentage. (B) The ratio of the magnitude of the x component of the error vector to the

magnitude of the target vector, expressed as a percentage. (C) As (B) but for the y component. (D) As (B), for z component. All color maps are shown with the same

scale. The target rotations, θ tx and θ ty are denoted “Target X” and “Target Y” in the figure. Note that the range of the color scale is 0 to 20%, a much smaller range than

the range in Figure 10.

(McPeek and Keller, 2002; McPeek, 2006). The magnitude of the
largest error vector is∼ 1.5◦.

This result indicates that the exponential part of the Ottes et
al. weight map from SC to the SBG cannot on its own compensate
for the eccentricity-dependent size of the hill of activity.
The introduction of a widening projection field substantially
improves the mean accuracy of saccades across the field of
view. We therefore suggest that the transformation between
retinotopically mapped activity, and eccentricity-independent
activity width occurs within the superior colliculus and works
alongside a simple, monotonically increasing weight map
between SC and the SBG channels.

3.3. Single Saccades
Having finalized the model by setting the weight maps, we
then proceeded to exercise the model (TModel4), starting with
saccades to a single target; prosaccades. Figure 12A shows 9
representative saccades to a single target luminance. Initially, the
eye had rotational state θx = θy = θz = 0 with its fovea
directed at a fixation luminance cross (span 6◦, bar width 2◦)
of magnitude 0.2 (in arbitrary units). At a simulation time of
0.4 s, the fixation luminance was set to 0 and a target luminance
cross of the same dimensions as the fixation but with magnitude

0.3 was illuminated at one of the 9 different locations, marked
by crosses in Figure 12A. The resulting trajectories are plotted,
with color indicating the relationship between trajectories and
target crosses. The approximate end-point error is visible in this
figure, although the last point in each trajectory is the saccade
position at 0.8 s and not the velocity-based end-point described
above. Figures 12B,C show the rotational components of the
blue and red trajectories in Figure 12A along with the target and
fixation luminance values. Rotations are the eye’s Euler rotational
components in the world frame of reference.

3.4. Saccade Latencies
To verify that our implementation of the brain model has the
same functionality as that reported in Cope et al. (2017), we
investigated the effect on saccadic response times of: target
eccentricity; and any gap or overlap between fixation off-time and
target on-time. We showed that the full model reproduces the
“hockey stick” shape shown in Figure 7 of Cope et al. (2017) and
discovered in experimental data (Reulen, 1984) for horizontal
(Figure 13A), vertical (Figure 13B) and oblique saccades (not
shown). The latency increases with eccentricity far from the fovea
because the retinotopic mapping reduces the activity in the basal
ganglia for more eccentric targets (see Figure 3). Closer to the
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FIGURE 12 | Representative single saccades. (A) Trajectories from 9 saccades to a single target at 9 different locations. In each case, a fixation cross luminance of

magnitude 0.2 was displayed at (0,0), the start position of the eye, until time 0.4 s. The target luminance, magnitude 0.3, was illuminated at time 0.4 s. Trajectory

shape is dependent on the target position, and there is a variable amount of error in the end-points achieved by the model. Color is used in this diagram as an aid to

distinguishing different saccades and their targets; for a given saccade, the target location is given by the cross of the same color closest to the end of the trajectory.

(B) The three rotational components of the “dark blue” saccade, to target location (−7, −7). (C) The three rotational components of the “red” saccade, to target

location (0, −10).

fovea, the effect of the foveal mask on the activity in FEF again
leads to reduced input into the basal ganglia and an increased
time to achieve disinhibition in SNr.

Figure 13C shows latencies achieved when varying the time
between fixation offset and target onset. This is termed the gap
condition; and is represented by a scalar value which, if positive,
refers to a gap between fixation offset and target onset, and
when negative, signifies an overlap, with the fixation luminance
persisting past the time at which the target is illuminated. A
negative gap is also termed an overlap. Again, we verify the
behavior presented in Cope et al. (2017), explained as resulting
from the inhibition of the cortico-thalamic loop by SNr. In the
gap condition, when the fixation luminance is removed, activity

in STN immediately begins to decay, allowing SNr activity to
reduce and thereby reducing inhibition on thalamus, allowing
the target luminance to build up quickly in FEF, thalamus and
through the basal ganglia’s striatum and SNr. The shape of the
curves in Figure 13C matches the results in Cope et al. (2017)
for target luminances of 1 and 0.6; for overlaps longer than
100 ms (gap < −100 ms), the latency becomes constant; the
saccade is programmed whilst the fixation is present, with the
target luminance inducing sufficient activity in striatum to “break
through” the SNr inhibition caused by the fixation. If the target
luminance is reduced to 0.3, the balance is altered in favor of the
fixation and the latency vs. gap becomes approximately linear and
equal to the overlap time plus around 100 ms.
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FIGURE 13 | Exploring saccade latencies. (A) Latency to first movement as a function of target eccentricity for horizontal targets. (B) Latency vs. eccentricity for

vertical targets. (C) Latency vs. gap at three different luminance values. The data are shown alongside the Cope-Chambers model results from Figure 5 of Cope et al.

(2017) in blue, and the experimental results used in that model in red. The fixation luminance for the Cope-Chambers curve was 0.5, the target luminance 0.6 and the

target eccentricity was 8◦. The difference between the Cope-Chambers model data and the data from the current model results from the different mechanism by

which activity in SC_deep causes a movement, the differing target angle and the reduced fixation luminance used here. (D) The effect of the dopamine parameter on

saccade latencies in gap, step and overlap conditions, for two different target luminances. (E) Saccade vs. luminance showing gradual transition between reflexive

and express behavior.

Figure 13D shows the effect of the dopamine parameter on
saccade latencies in gap, step and overlap conditions. In general,
the effect of decreasing the dopamine parameter was a smooth,
monotonic and undramatic increase in saccade latency. However,

the data for the overlap condition with a target luminance
which was 3 times as bright as the fixation luminance was more
interesting. Here we see a transition around a dopamine value
if 0.7. Below this value, the basal ganglia is not able to select
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the target luminance until the fixation is removed, reducing
the excitatory drive from STN to SNr, and consequently the
inhibition from SNr to the thalamo-cortical loop. For the target
luminance 0.6, 0.7 dopamine allows the basal ganglia to select
sufficiently well so that the target can build up in the thalamo-
cortical loop, in spite of the fixation overlap.

The relationship between latency and the target luminance is
given in Figure 13E. This shows latency for a 100 ms gap, step
and 100 ms overlap conditions for a given fixation luminance
of 0.2, and a horizontally located target at θ ty = −10◦. For
the gap condition, we see very short latencies for luminances of
about 0.75 and above. Finally, the activity driving these express
saccades is initiated by high firing rates in the superficial layer
of SC (SCs), which then drives activity in thalamus and through
the basal ganglia. A gradual transition from express saccades
to reflexive saccades is observed as the contribution of the SCs
becomes weaker and the drive from FEF into the thalamo-cortical
loop becomes necessary to elicit a saccade. A similar gradual
transition, albeit for higher latencies is seen for the step condition.
At higher target luminances, the SCs has a greater effect on the
activity in the thalamo-cortical loop. However, the activity in
STN caused by the fixation luminance increases the latency at all
luminance values compared with the gap condition. The overlap
condition leads to increased latencies for luminances below 2.5,
but meets the step condition above this value, at which the 0.2
fixation luminance appears to have a negligible effect on the
system.

3.5. Saccade Sequences
We now present results derived from the fully parameterized and
integrated model; where we took advantage of the fact that it is a
closed loop system. This allowed us to present sequences of target
luminances and allow the model to direct its fovea at the most
salient target.

3.5.1. Out and Return
We investigated the behavior of the model for saccade sequences.
In one experiment, we illuminated a fixation cross from 0 s
until 0.4 s, followed by a target at (0, −10◦) from 0.4 s until
0.8 s. Finally, the fixation was again shown from 0.8 s until
the end of the simulation at 2 s. This induced a saccade to a
10◦ eccentricity, followed by a return saccade back to the null
point. We noticed some irregularities in the return saccades,
which were accurate, but had a significant overshoot. More
perplexingly, if the target was switched repeatedly between 0◦ and
10◦, second and subsequent outward saccades also showed this
overshoot. We found that the cause of these irregularties was
the lack (in “TModel4”) of any mechanism to reset the tonic
neurons in the SBG after the first saccade. This resulted in
TN activity in the left channel and also in the right channel.
Interestingly, this ensured that, at least for a few, consecutive
out-and-return saccades, the saccade accuracy was accidently
relatively good, with trajectories resembling experimental data
(Bahill and Stark, 1979, p. 6). Had the return saccades not
been so accurate, we may have noticed the lack of a tonic
neuron reset mechanism and corrected this oversight earlier.
Such a mechanism is indeed proposed and included in the

connectivity of the (Gancarz and Grossberg, 1998) model. We
implemented this feature by adding an additional inhibitory
input to the “integrator” SBG component of TModel4, driven
by the contralateral EBN population, naming the new model
“TModel5.” Now, when the eye is directed toward an eccentric
target which is then exchanged with a target at the null point, the
EBN activity toward the null point will tend to extinguish the TN
activity which was holding the eye at the eccentric position. We
verified that none of the single saccade results were affected by
this modification.

Figure 14 shows the outward and return trajectories produced
by the experiment with the TN reset mechanism. Panel (a)
shows the x and y rotation trajectory; panel (b) shows individual
rotational components of the eye. Figure 14C shows out and
return trajectories for three other saccade targets; horizontal,
vertical and oblique. The trajectories have characteristic shapes
and also show some stochastic variation caused by the noise in
the model (see dashed trajectories in Figure 14A).

The return trajectories (magenta lines) showed a distinctly
different form from the outward trajectories. They overshot their
destination (the null point) significantly. This resulted from the
removal of the TN activity which was holding the eye at the
eccentric target location. Removal of this activity, and thus the
static force exerted by the corresponding extraocular muscle,
meant that the eye was subject both to a new muscular force
toward the null point alongside the restorative spring force of the
lengthened rectus muscle. This stands as a shortcoming of the
model.

3.5.2. Double Steps
In another experiment, we probed the response of the model
to double step stimuli of the type described in Becker and
Jürgens (1979). In that work, the response of human subjects
was investigated when shown stimuli at 15◦ and 30◦ eccentricity
with variable delay between the stimuli. If the smaller eccentricity
stimulus was shown first, followed by the more distal on the same
side of the field of view, this was called a “staircase” presentation.
We carried out a “staircase” presentation, shown in Figure 15,
where our small eccentricity luminance was at 8◦ and our more
distal luminance was at 12◦ (both to the right of center). The
stimuli could not be presented at 15◦ and 30◦ to match the
experiment, because 30◦ saccades were outside the range of the
model.

We found that there was a critical time delay between the
luminances of about 30 ms. If they were presented with a delay
smaller than this value, then a single, slightly hypermetric saccade
was made. This response type is called a final angle response.
A delay greater than 30 ms between the stimuli would lead to
double step saccades (a so-called initial angle response), with
the first saccade arriving at 8◦ (though with greater variability
than normal), and a second saccade being made to a location
hypometric of 12◦ after a pause of about 240 ms. Figure 15A
shows the mean trajectories from 5 simulations of the staircase
doublestep presentation alongside the result for a single saccade
to the final angle of 12◦. Dash-dot lines show ±1 standard
deviation about the mean. The corresponding trajectories are
shown in Figure 15B.

Frontiers in Neuroscience | www.frontiersin.org 23 February 2018 | Volume 12 | Article 39

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


James et al. Integrated Brain and Biomechanics

FIGURE 14 | There and back—a saccade to a target, followed by return to the original fixation. (A) Out and return saccade to a target at (0,−10◦). The outward

trajectory is shown in blue, the return in pink. (B) Rotational components of the saccade shown in (A). (C) Outward and return trajectories for the saccade shown in

(A) alongside saccades to three other targets.

Inspection of the activity maps in FEF and SC_deep (not
shown) indicates that when the 8◦ target is illuminated for 30 ms
or more, the activity associated with this target angle is able
to dominate the activity, hence the execution of a reasonably
accurate saccade. The inhibitory feedback from the SBG then
extinguishes activity in FEF, thalamus and SC, which means that
a full 200 ms or more is required to allow activity in these
populations to build up again in order to make the smaller
saccade from 8 to 12◦. This is in contrast to experimental findings
in which the corrective second saccade is often executed more
quickly than if it were programmed on its own (Becker and
Jürgens, 1979).

4. DISCUSSION

The aim of this study was to demonstrate the importance of
modeling neurological systems in concert with the biomechanical

systems with which they have evolved. We hypothesized that by
combining existing neurophysiological models with an accurate
model of a musculo-skeletal system, and then closing the “agent-
environment-agent” loop by allowing the movements of the
virtual muscles to modulate sensory feedback to the brain model,
shortcomings in the constituent models would be revealed,
leading to new knowledge.

To demonstrate the validity of this closed-loop approach, we
built an integrated model and then identified the modifications
which were necessary to give it the ability to make accurate
movements under one type of stimulus. We then examined its
behavior with other stimuli. We chose the oculomotor model
as a basis for this study because it has only three degrees
of freedom, making it one of the simplest musculo-skeletal
systems. Furthermore, eye movements fall into several well-
defined categories, each being controlled by separate brain
circuits, we were therefore justified in modeling a system which
produced only saccadic eye movements. Nevertheless, we are
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FIGURE 15 | Double steps. The effect of illuminating a first target at 8 or 12◦, followed by a second target at 12 or 8◦. (A) Horizontal rotation of the eye plotted vs. time

for a saccade to the 12◦ target only (red), and to an 8◦ target at 0.4 s followed by a 12◦ target after 30 ms (blue) or 40 ms (black). The timings are indicated by vertical

lines. When the second target is presented up to 30 ms after the initial target, the initial target has not had time to dominate the output saccade and a saccade to a

location close to the second target is made. If the delay is 40 ms or more, the activity from the initial target has time to cause a built up of activity in SC_deep and an

initial saccade close to the first target is made, followed, after a longer than usual latency period, with a second saccade closer to the second target. In this graph, the

mean of five separate simulations is plotted along with ±1 standard deviation around the mean. (B) The θx/θy trajectories corresponding to the data presented in (A).

aware that we did not create a complete model of the system;
no treatment of the cerebellum was attempted, justified because
cerebellum appears to have only a minor effect on saccade
accuracy (Dean and Porrill, 2008), probably correcting for slow to
medium timescale changes in the physical dynamics of the eyeball
(Dean et al., 1994).

To summarize our model integration: We combined the
Cope-Chambers model (Cope et al., 2017) with a saccadic burst
generator model based on the work of Gancarz and Grossberg
(1998), using this to drive the input of a new biomechanical
eye model. To achieve the spatial transformation from the
retinotopic maps of the Cope-Chambers model to the six
“muscle channel” inputs for the saccadic burst generator, we used
the mapping of Ottes et al. (1986) to produce parameterized
weight maps along with an empirically discovered synergy
for the torsional weight maps. We introduced an additional
transformation to the brain model to achieve invariant sized
hills of activity in superior colliculus to fulfill the invariant
integral hypothesis of Tabareau et al. (2007). We closed the
loop using a software component which transformed a view
of a world containing luminous cross shapes into the eye’s
frame of reference, given its instantaneous rotational state. This
component also computed the inverse of the mapping from
Ottes et al. (1986) to project the view retinotopically into the
brain model. This paper serves to describe how we achieved the
integration in order to test our hypothesis, and we intend that
the material and methods section, along with the model code
itself, will help others to carry out similar studies. We will discuss
what can be learned from an integrated model of a combined
brain and biomechanical system, using our oculomotor system
as an example and then consider how this study compares
with other modeling and robotic studies of closed-loop
systems.

Our integration approach revealed three ways in which this
model fails to provide a full understanding of the saccadic
system. In each case, the issue is made clear as a result of the
integration. This is not to say that other approaches may not also
reveal shortcomings; we will see that one of our cases has been
independently identified (Groh, 2011).

4.1. The Need for a Widening Projection
Field
The original combination of the Cope-Chambers model with the
theoretical weight maps of Ottes et al. (1986) and Tabareau et al.
(2007) resulted in a model which was able to produce accurate
saccades only along the principle rotational axes (Figure 10).
Thus, the integration of the models suggested that an additional
layer was required to achieve accurate saccades for oblique,
as well as for horizontal and vertical saccades. Although the
need for an invariant integral is discussed in Tabareau et al.
(2007) as resulting from their theoretical study, the mechanism
by which such an invariant Gaussian hill is generated is not.
By combining the models, we were forced to consider this
mechanism, and hypothesized that a widening projection field
would be a candidate mechanism. The results of Figure 11

indicate that a substantial improvement in accuracy is indeed
achieved by this new mechanism.

4.2. Saccades from Non-null Starting
Positions
The implementation of a biologically accurate model of the
eye, and the closed-loop nature of the model makes it very
natural to consider how the model will behave when making
saccades from arbitrary starting positions, or how it would
respond to a sequence of stimuli. This was the motivation
for the out-and-return experiment (Figure 14) as well as for
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the double step experiment (Figure 15). We found that return
saccades were substantially affected by the biomechanics of the
eye, as the brain and brainstem model had no mechanism to
account for the position-dependent restoring forces applied by
the eye. This question has been addressed by other authors; Groh
(2011) investigates the effect of initial eye position on stimulated
saccades and finds a need for the signal in superior colliculus
to be modulated by an eye position signal. Ling et al. (2007)
shows the existence of a position dependent firing rate offset in
abducens neurons. Though we will not speculate here on the
mechanism by which return saccades may be made accurate
whilst also resetting the activity of tonic neurons in the SBG,
it is interesting that in the model in which we omitted to reset
TN activity (TModel4), we obtained relatively accurate out-and-
return saccades which closely resembled experimental data. We
suggest that residual activity in TN populations may offer an
explanation for how the restorative force exerted by the elastic
oculomotor muscles is compensated for. A comparison of this
idea with that of Groh (2011) (that there is a modulation, from
a brainstem signal, of the SC readout) would make a subject for
a future study. Although these existing studies have highlighted
this issue, the inaccurate return saccades which the model makes
from eccentric starting positions provide a clear example of
the way in which integrating known models into a closed-loop
system can highlight deficiencies in the model.

4.3. Inhibitory Feedback from Saccadic
Burst Generator to Brain
The third issue raised by the integration of the component
models of the saccadic system has, like the return saccades, to
do with resetting activity. In this case, rather than the reset
of activity in the TN population in the brainstem, it is the
question of how the activity in the brain model should be
reset after each saccade. When a target luminance is projected
onto the World population in the model, this induces activity
which “reverberates” in loops through FEF, basal ganglia, SC
and thalamus. The brainstem contains a mechanism to limit the
timescale of a saccade (inhibitory feedback from EBN, via IBN to
LLBN; see Figure 4). However, if the activity in SC is not reset,
then following the completion of the first saccade, a series of
subsequent “staircase” saccades will be executed. There needs to
be a mechanism to extinguish activity in SC, but also in FEF and
thalamus, as activity in either of these populations can build up
and eventually cause repeat activity in SC and another saccade.
We added hypothetical inhibitory feedback connections to our
model, such that the IBN populations in the SBG would inhibit
activity in FEF, thalamus and SC_deep (Figure 4), preventing the
occurrence of staircase saccades.

An examination of the behavior of the model when presented
with “double-step stimuli” reveals a problem with our inhibitory
feedback connections. We found that when double-step stimuli
were presented (where an initial target at 8◦ was replaced with
a 12◦ target after 30 or 40 ms) and a double saccade was made
(Figure 15A, black lines) the second saccade latency was longer
even than the initial saccade. This contrasts with Becker and
Jürgens (1979) who find that second, corrective saccades occur

with shorter latencies. This suggests that the inhibitory reset
signal implemented in this model is too strong or has the wrong
timescales. This issue highlights the fact that connections between
component models are quite as important as the connections
within each model.

There is some evidence for an inhibitory projection to SC
from the brainstem. Corvisier and Hardy (1991) offer evidence
for a projection from the propositus hypoglossi nucleus. This
lies upstream from motoneurons and (in primates) encodes eye
velocity (Dale and Cullen, 2013), rather than head movement
velocity. Although the propositus hypoglossi does not lie in
exactly the same functional location as our IBN population
(instead it sits between TN andMN), it offers a possible inhibitory
feedback signal proportional to eye velocity and may help to
reduce activity in SC post-saccade. Alternatively, it is possible
that activity in FEF and thalamus are reset via a “timed signal.”
Feasibly, after activity in FEF exceeds a threshold, an internal,
inhibitory feedback signal could be activated. This inhibition
should have a timescale of sufficient duration to reduce activity in
FEF, thalamus and, via an increase in inhibitory output from SNr,
also in SC. Indeed, the cortical microcircuit contains a variety
of morphologically distinct GABAergic neurons (Douglas and
Martin, 2004) which could fulfill this functionality. A similar
mechanism would then be required in SC, to reset activity
generated by direct excitation via the retinal-collicular pathway
which generates express saccades. Again, SC is a multi-layered
structure, containing GABAergic interneurons (Meredith and
Ramoa, 1998; Munoz and Istvan, 1998; Helms et al., 2004;
Sooksawate et al., 2011) and there is mounting evidence that
saccade dynamics are generated within SC (Kaneda et al., 2008;
Goossens and van Opstal, 2012; Bayguinov et al., 2015). Thus, a
more complex treatment of the SC and FEF regions in the model
may well obviate the need for inhibitory feedback from brainstem
to SC, FEF and thalamus.

Considering whether a feedback connection, or internal,
recurrent inhibition is responsible for activity-reset in the brain
model raises a more general question about modeling the central
nervous system.We should consider whether inaccuracies within
one part of the model may propagate errors through the closed-
loop system that cannot be counteracted by another part of
the simulation. There is no way to know, from integrating
sub-systems, which properties hold true, and which are false.
However, by integrating models and examining the behavior of
the combinedmodel, we are presented with the right questions to
ask of themodel and the experimental data. In the case of activity-
reset, this is to re-assess whether there exists inhibitory feedback
from brainstem to the SC and FEF regions, and to find out how
an integrated model with self-regulatory mechanisms in SC and
FEF may perform.

The omission of the cerebellum will not have escaped
the reader’s notice. Whilst many of the nuclei known to be
involved in the production of saccadic eye movements are
incorporated within the model, the cerebellum is not. The
cerebellum is known to play an important rôle in saccade
programming (Dean et al., 1994; Schweighofer et al., 1996;
Quaia et al., 2000; Kleine, 2003). It may be able to completely
replace the functionality of the colliculus when lesioned
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(Aizawa and Wurtz, 1998; Lefèvre et al., 1998). However, this
rôle is typically considered to be one of accuracy tuning (Dean
et al., 1994; Barash et al., 1999); operating as an additive model.
Furthermore, saccades made by individuals with cerebellar
ataxias perform with only moderate loss of saccade accuracy
(Barash et al., 1999; Federighi et al., 2011). Because we did not
address learning in our model, and because our aim was to
demonstrate the utility of integrating brain with biomechanics
in order to highlight deficiencies, we considered the omission of
the cerebellar nuclei acceptable in the present work.

We have not addressed the question of saccade duration
in this paper. Saccade duration is of interest in models which
produce two (or three) dimensional saccades, because the
dynamics of a saccade follow well known relationships with
the saccade eccentricity, regardless of the saccade angle. This
causes a problem for models (such as the present one) for which
some of the dynamic behavior is generated within orthogonal
components. For example, saccade duration increases with target
eccentricity. A 10◦ eccentricity oblique (45◦ up and right) saccade
is composed (approximately) of a 7◦ upwards component and
a 7◦ rightwards component. If the component based model
is responsible for the dynamics, then the 10◦ oblique saccade
would be expected to have the dynamics of a 7◦ up or 7◦ right
saccade. This is not found in practice, and the components
are said to have been stretched, hence the name for this effect
“component stretching.” The Gancarz and Grossberg (1998)
model is reported to take account of the component stretching
effect via the OPN neuron population. We did not find this
effect in our implementation of the model; the duration of
oblique saccades at a given eccentricity was always substantially
different from the duration of the corresponding purely vertical
or horizontal saccade. Because there is a somewhat complicated
interplay between the dynamics of the superior colliculus
driving the dynamic system of the SBG, we feel this is outside
the scope of the current work and a subject for a future
paper.

4.4. Comparison with Other Studies
We have called this closed-loop, biomimetic modeling approach
computational neurobehavior, in which a complete, behaving
model is constructed, with attention paid to the biological
accuracy of each brain and biomechanical sub-system. We are
by no means the first researchers to consider this interaction
between brain and biomechanics. Integrative approaches to
motor control have been referred to as neuromechanics by some
authors (Nishikawa et al., 2007). This field appears to have
developed from detailed and low level studies of the mechanics
of muscle control systems, focussing on the neural systems
“closest” to the muscle (Chiel et al., 2009). It is evident that a
recognition of the importance of sensory input to these systems
has evolved within this field. Indeed, Edwards (2010) specifically
reviews closed-loop, neuromechanical simulations of behavior in
three organisms; fly, locust and cat. The term neuromechanical
simulation (Pearson et al., 2006; Edwards, 2010) is analogous
to our computational neurobehavior, although it does not
emphasize the important behavioral aspect of the works.

There also exist many closed-loop robotic systems which
receive sensory input from the world, process that input and
generate behavior by activating motor systems (Fend et al., 2004;
Yu et al., 2004; Pearson et al., 2007). We now consider whether
robotic systems which model biological components in hardware
could fall within our new category. Using a number of examples,
we will attempt to illustrate what we mean by computational
neurobehavior. We’ll consider which examples fall into the new
category and which are covered by other fields of robotics or
computational neuroscience.

Pearson et al. (2007) describe a wheeled robot which has a
biomimetic whisker sensory system, along with a biomimetic
neural system imitating the operation of the rat’s sensory
processing and controlling the movement of the robot. Fend et al.
(2004) is a similar, wheeled, whiskered robot, with a repertoire
of three behaviors organized in a subsumption architecture. In
both robots, actions that are selected within the brainmodel drive
a non-biologically accurate motor control algorithm to achieve
rotational and translational movements. Although both have
sensory and processing systems which are guided by biology, the
non-biological motor control stage prevents us from considering
these as being studies of computational neurobehavior. Instead,
we would refer to these as embodied models, as described in
Bolado-Gomez and Gurney (2013), a study in which the learning
behavior of a biomimetic “core” model is embedded within an
engineered “architecture” (a wheeled robot) which closes the
agent-environment loop. Yu et al. (2004) report on a biomimetic
fish robot, whose motor system closely resembles that of the
real fish. The robot is able to operate in a closed-loop mode,
where sensory input is provided to the non-biomimetic control
algorithms from overhead cameras, but its control system is
also able to operate in open-loop mode. Neither the control
system, nor the sensory system are biologically accurate and we
would not describe this study as computational neurobehavior.
Nevertheless, the biomechanically accurate motor system they
describe has the potential to form part of a computational
neurobehavioral study of swimming behavior in the fish, if
it were combined in a loop with suitable sensory input and
sensory processing models. Knips et al. (2017) is a report of a
reach-and-grasp robot arm controlled via a dynamic neural field
brain model. The sensory input for this system—its “eyes”—is
a Microsoft Kinect sensor; it also has somatosensory feedback
from the fingers of the robot’s hand. The neural field “brain”
controls the seven degrees of freedom of the arm to carry out
the reach-and-grasp action. While this robot has closed-loop
control and is clearly inspired by biology, it remains a study of
robotics and of the improvement of the control of the robot’s
reach-and-grasp function, rather than a study which aims to learn
more about the biology of a primate arm. For this reason, we
would describe the study of Knips et al. (2017) as an embodied
model.

To summarize, in most closed-loop robotic studies which
incorporate neuromimetic models, the hardware forms an
“engineered surround architecture” allowing for the examination
of the behavior of the embodied model. However, suitably
biomimetic hardware such as the fish in Yu et al. (2004)
would not be excluded from computational neurobehavioral
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studies, especially if movement is by biomimetic muscle actuators
(OHalloran et al., 2008; Wilson et al., 2016).

Modern programming platforms, often originating from the
computer game industry, make it relatively easy to model a
virtual environment. Consequently, an increasing number of
studies into robotic or neuromimetic control are carried out
with virtual robots operating within a virtual environment. This
approach is taken in the studies described in Edwards (2010).
Dickson et al. (2006) describes an integratedmodel of Drosophila
flight in which visual input is processed by an algorithmic
(that is, non-neural) “brain” to control a biomechanically
accurate representation of the fly. As the virtual fly traverses
its environment, its visual input updates, closing the loop of
the simulation. Cope et al. (2016b) is a recent study which
omits the biomechanically accurate component of the model
but could provide the biologically plausible brain to make a
computational neurobehavioral fly model. Cofer et al. (2010a)
use an environment called AnimatLab (Cofer et al., 2010b)
to simulate the locust’s jumping mechanism in an open-loop,
software-only investigation. As this appears to be a feed-forward
model without sensory feedback, we would describe it as an
input-assumption model. N’Guyen et al. (2014) and Thurat
et al. (2015) are two studies of the oculomotor system which
model sensory input, neural control and motor output in
software. These studies fall outside the remit of computational
neurobehavior only because they omit to close the sensory loop.
DeWolf et al. (2016) describes a reach model comprising a
simplified virtual arm (with fewer degrees of freedom than a
primate arm), and a biologically inspired brain model. This
model also omits to close the sensory feedback loop and we
consider it a computational neuroscience study of a (virtually)
embodied model.

There are also experimental closed-loop approaches to
understanding sensorimotor control. Ejaz et al. (2013) places a
fly in a fixed position, and couples it with a free-to-move robot.
The sensory input collected by the robot is projected onto the
eyes of the fly, and activity from a selected neuron in the fly’s
brain is used to drive a control system for the robot’s movements.
This allows the experimenters to study the behavior of the fly’s
brain operating in a closed-loop condition that is more natural
than the open-loop condition that many other experimental
techniques mandate. The results from closed-loop experiments
will undoubtedly inform future neurobehavioral models.

Thus, while there are many models that close the agent-
environment loop and display partial biological plausibility, the
biomimetic features are usually confined to a sub-system of
the entire model. This leads us to formalize a definition of
computational neurobehavior as: The study of biological sensory-
motor system behavior using biologically accurate models of
sensory input, brain and motor sub-systems operating in a closed-
loop. We believe our oculomotor model is one of the first
such models using this approach and shares many features with
that of Arena et al. (2017) which describes a robotic insect
system based on the fly species Drosophila Melanogaster. It has
biomimetic insect legs implemented in a virtual robot and a
neuromimetic brain. Closing the loop is a visual sensory input
system which is able to determine the distance to an on-coming
obstacle and the obstacle’s height. The authors demonstrate
that the virtual robot is able to learn to climb in a realistic
manner and suggest it may be compared with experimental
data from future Drosophila experiments addressing obstacle
climbing and learning. The visual system is not described
in detail, but if it is modeled in a biologically plausible
manner, then this work may reasonably be described as a
computational neurobehavior study, contemporaneous with our
own.
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