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SUMMARY

Implicit gradient plasticity models incorporate higher-order spatial gradients via an additional Helmholtz
type equation for the plastic multiplier. So far, the enrichment has been limited to second-order spatial

gradients, resulting in a formulation that can be discretised using C0-continuous finite elements. Herein,
an implicit gradient plasticity model is formulated which includes a fourth-order gradient term as well.
A comparison between the localisation properties of both implicit gradient plasticity formulations and
the explicit second-order gradient plasticity model is made using a dispersion analysis. The higher-order
continuity requirement for the fourth-order implicit gradient plasticity model has been met by exploiting the
higher-order continuity property of isogeometric analysis, which uses NURBS as shape functions instead of
Lagrange polynomials. The discretised variables, displacements and plastic multiplier, may require different
orders of interpolation, an issue which is also addressed. Numerical results show that both formulations
can be used as localisation limiter, but that quantitative differences occur, and a different evolution of the
localisation band is obtained for two-dimensional problems. Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Implicit gradient plasticity; higher-order continuum; isogeometric analysis; NURBS;
dispersion analysis

1. INTRODUCTION

Softening caused by inherent microstructural defects can lead to the formation of localisation bands.

Constitutive modelling of this process in the framework of standard continuum plasticity leads to

ill-posed problems, which feature unphysical solutions with a vanishing energy dissipation upon

refinement of the discretisation. This can be considered as a consequence of the absence of an

internal length scale, which causes the localisation band to have a zero width.

This mesh sensitivity is removed when incorporating a length scale in the material description.

Often, standard continuum plasticity is enhanced by replacing quantities like the inelastic strain by

weighted averages (nonlocal theories) or by adding higher-order gradients of an internal variable

such as the accumulated plastic strain (gradient theories). Doing so, a continuum description can

ensue which allows for localised solutions, while preserving well-posedness of the boundary value

problem [1, 2, 3, 4, 5].
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In nonlocal models, volume integrals have to be computed at every material point. This can

make such models numerically inefficient, which provides a rationale for developing gradient

approximations [6, 7, 8, 9]. Indeed, gradient regularisation can also be considered as an

approximation of a fully nonlocal, integral-type model. When a truncated Taylor series of the

averaged quantity is substituted in a nonlocal model, a gradient formulation can be derived

[9, 10, 11]. It is important to note that the approximation of the nonlocal variable can be based

on either the higher-order derivatives of the local variable (explicit formulation), or on the nonlocal

variable (implicit formulation).

Early studies in plasticity focused on an explicit gradient enhancement, which usually requires

C1-continuity of the shape functions [3]. It has been attempted to satisfy this requirement using

Hermitian finite elements [12], using meshless methods [13], and recently, isogeometric analysis

[14]. The ability of this explicit gradient plasticity model, in which the yield stress is made a

function of the Laplacian of the accumulated plastic strain in addition to the plastic strain itself,

to fully regularise the boundary value problem has been demonstrated through one-dimensional

dispersion analysis [15], spectral analyses [16, 17, 18], and shear band simulations [12, 13].

On the other hand, implicit gradient plasticity models with second-order gradients do not

fully regularise the boundary-value problem, as has been demonstrated through spectral analysis

[16, 17, 19] and three-dimensional simulations [17]. Two approaches have been identified to

improve this situation, namely the use of a multiplicative yield function with a damage term,

and over-nonlocal implicit gradient plasticity [16, 19, 20]. The localisation properties of both

methods have been analysed using one-dimensional spectral analysis and the latter approach has

been scrutinised whether it can produce shear-band which are mesh-objective [17]. It is noted that

the multiplicative yield function proposed in [8] can be conceived as a special case of the over-

nonlocal formulation which is a linear combination of the local and non-local history variable.

In this context, the ratio of the local and non-local moduli determines whether regularisation is

achieved or not [20, 21].

The practical use of implicit gradient plasticity models derived from nonlocal averaging seems

to be limited to a Taylor series truncated after the second-order gradient [8, 21]. This can be partly

attributed to the fact that the ensuing formulation represents a special case of the nonlocal model

when an appropriate (Green’s) weighting function is adopted [8, 10]. Perhaps more importantly, the

formulation requires only C0-continuity of the shape functions, which is compatible with standard

finite elements. However, the inclusion of fourth-order gradients requires C1-continuity of shape

functions, which results in the same continuity requirements as an explicit second-order enrichment,

with the computational inconveniences that come with it. Herein, we consider inclusion of second-

order gradients as well as fourth-order gradients. Higher-order continuity is achieved using higher-

order NURBS shape functions within the context of isogeometric analysis [22].

This paper expounds the formulation and implementation of implicit gradient-enhanced plasticity

models, exploiting isogeometric analysis. The implicit gradient plasticity formulations are presented

first. Next, a one-dimensional dispersion analysis is carried out to study the localisation properties

of different formulations. The isogeometric finite element discretisation of the field equations is

outlined and the interpolation requirements for the discretised variables are highlighted. Bézier

extraction [23] is employed to arrive at a standard finite element data structure. One-dimensional

simulations and two-dimensional shear band simulations further illustrate the responses of both

formulations.

2. IMPLICIT GRADIENT-ENHANCED PLASTICITY

2.1. Incremental boundary value problem

We consider the equilibrium equation:

LT
σ = 0 (1)

This article is protected by copyright. All rights reserved.
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where σ = [σxx, σyy, σzz , σxy, σyz, σzx]
T

is the stress vector, and L is the differential operator:

L =





∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y





T

. (2)

Under the assumption of small displacement gradients, the following kinematic relation holds:

εεε = Lu (3)

with the strain vector εεε = [εxx, εyy, εzz, τxy, τyz, τzx]
T

and the displacement vector u =

[ux, uy, uz]
T

. The incremental constitutive relation between the stress and strain increments is given

by:

dσσσ = De( dεεε− dεεεp) (4)

where De is the material elastic stiffness matrix and dεεεp is the plastic strain increment vector. An

associated plasticity flow rule is adopted:

dεεεp = dλm, m =
∂F

∂σσσ
(5)

in which dλ is a non-negative plastic multiplier and m is a vector that defines the direction of plastic

flow relative to the yield function F .

The following yield function is considered [8]:

F (σσσ, κ, κ̄) = σe(σσσ)− (1− ω(κ̄))σy(κ) (6)

where σe(σσσ) is the Von Mises equivalent stress, κ is the local effective plastic strain measure, κ̄
is the nonlocal effective plastic strain measure, ω ∈ [0, 1] can be interpreted as a nonlocal damage

variable, and σy is the yield or flow stress. The yield stress can be written as:

σy = σy,0 +Hκ (7)

where σy,0 is the initial yield strength, and H > 0 a hardening modulus. The yield stress is

progressively reduced by the factor (1− ω) as the damage variable increases from ω = 0 until

complete loss of strength, ω = 1. The damage evolution can be described by an exponential relation,

a power law, or a linear relation, e.g.,

ω(κ̄) =

{
κ̄−κ̄i

κ̄u−κ̄i
if κ̄ ≤ κ̄u

1 if κ̄ > κ̄u

(8)

in which κ̄i is the nonlocal effective plastic strain measure at which damage is initiated and κ̄u is

the ultimate nonlocal effective plastic strain measure at complete loss of integrity.

The hardening parameter κ is related to the plastic multiplier λ according to the strain-hardening

hypothesis:

dκ =

√

2

3
(dεεεp)TPdεεεp (9)

where, cf. [24],

P =










2
3 − 1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0
− 1

3 − 1
3

2
3 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2










. (10)
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Substitution of the flow rule, Equation (5) into the strain-hardening hypothesis, Equation (9), then

yields dκ = dλ. The yield function F and the plastic multiplier dλ obey the the Karush-Kuhn-

Tucker loading-unloading conditions, similar to standard plasticity:

dλ ≥ 0, F ≤ 0, Fdλ = 0 (11)

The nonlocal effective plastic strain measure, κ̄(x), can be defined as the volume average of the

local effective plastic strain measure, κ = κ(εεεp), as follows:

κ̄(x) =

∫

Ω
φ(x, y)κ(y)dΩ
∫

Ω
φ(x, y)dΩ

(12)

where y is the position vector of the infinitesimal volume dΩ and φ is a weight function. A Gaussian

weight function is often assumed:

φ(x, y) =
1

(2π)3/2ℓ3
exp

[

−
‖x − y‖2

2ℓ2

]

(13)

where ℓ is a length scale that sets the averaging volume. The nonlocal formulation in Equation (12)

requires the computation of a volume integral at each material point, which is cumbersome and leads

to inefficiency. This is usually obviated by using a gradient approximation of the nonlocal model,

e.g., [9, 10].

The nonlocal hardening parameter κ̄ can be approximated when κ(y) is expanded in a Taylor

series around x,

κ(y) = κ|y=x +
∂κ

∂yi

∣
∣
∣
∣
y=x

(yi − xi) +
1

2!

∂κ

∂yi

∣
∣
∣
∣
y=x

(yi − xi)(yj − xj) +O((xi − yi)
3) (14)

Substitution into Equation (12) and integration in R
3 leads to:

κ̄(x) = κ(x) + c1∇
2κ(x) + c2∇

4κ(x) + c3∇
6κ(x) + · · · (15)

in which ∇2n = (∇2)n and ∇2 =
∑

i
∂2

∂x2
i

. The coefficients ci(ℓ) depend on the nonlocal averaging

function φ, and odd derivatives vanish in the integration process due to the isotropic character of φ
[7, 9]. The nonlocal effective plastic strain measure, κ̄, can be approximated by truncating the series

in Equation (15) after the second-order term. This gradient approximation is known as the explicit

gradient formulation and it requires C1-continuous shape functions for the interpolation of κ.

We next take the second-order derivative of Equation (15), multiply by c1 and substitute the result

back into Equation (15). This gives [7]:

κ̄(x)− c1∇
2κ̄(x) = κ(x) + (c2 − c21)∇

4κ(x) + (c3 − c1c2)∇
6κ(x) + · · · (16)

A formulation requiring only C0-continuous shape functions is obtained when fourth-order and

higher-order terms are omitted in Equation (16) [6, 7]. This implies that coefficients of higher-

order terms are set equal to zero, starting with c2 − c21 = 0. It is noted that when Green’s weighting

function

φ(x, y) =
1

4π‖x − y‖ℓ2
exp

[

−
‖x − y‖

ℓ

]

(17)

‖x − y‖ being the distance between two points, is substituted for φ, no higher-order terms are

neglected [10, 8]. The coefficient c1 then reads:

c1(ℓ) = ℓ2. (18)

Accordingly, the second-order implicit gradient formulation is given by:

κ̄(x)− ℓ2∇2κ̄(x) = κ(x) (19)

This article is protected by copyright. All rights reserved.
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When we include the fourth-order derivatives of Equation (15), multiply by the terms ci and

substitute the result back into Equation (15), the following expression ensues:

κ̄(x)− c1∇
2κ̄(x)− (c2 − c21)∇

4κ̄(x) = κ(x) + (c3 − 2c1c2 − c31)∇
6κ(x) + · · · (20)

For the Gaussian weight function, c1 = 1
2ℓ

2, c2 = 1
8ℓ

4, etc. [25]. When these coefficients are

substituted into Equation (20) and sixth-order and higher-order terms are neglected, we obtain the

fourth-order implicit gradient formulation:

κ̄(x)−
1

2
ℓ2∇2κ̄(x) +

1

8
ℓ4∇4κ̄(x) = κ(x). (21)

For the implicit gradient formulations, the strain-hardening hypothesis is assumed to hold for κ̄.

A state variable λ̄ is defined as

λ̄(t) = max{κ̄(τ)|0 ≤ τ ≤ t} (22)

such that:

dλ̄ ≥ 0, κ̄− λ̄ ≤ 0, dλ̄
[
κ̄− λ̄

]
= 0 (23)

Standard static and kinematic boundary conditions are specified on complementary parts of the body

surface S:

ΥΥΥns = t, u = us (24)

where ΥΥΥ denotes the stress tensor in matrix form, ns is the outward normal to the surface S, and t

is the boundary traction vector. Natural boundary conditions apply on the odd derivatives of κ̄ [7]:

(nT
s ∇)∇nκ̄ = 0, n = 0, 2 (25)

2.2. Weak formulation

The weak form of the governing equations is obtained by setting:
∫

V

δuT(LT
σj+1)dV = 0 (26)

and ∫

V

δλ̄

(

κ̄j+1 − ca∇
2κ̄j+1 + cb∇

4κ̄j+1 − κj+1

)

dV = 0 (27)

where δ denotes the variation of a quantity. We obtain the second-order implicit gradient formulation

when ca = ℓ2 and cb = 0, while the fourth-order formulation is obtained when ca = 1
2ℓ

2 and

cb =
1
8 ℓ

4. Integrating by parts and applying the divergence theorem yields:

∫

V

δεεεTσσσj+1dV −

∫

S

δuTtj+1dS = 0 (28)

and ∫

V

(

δλ̄κ̄j+1 − ca(∇δλ̄)T(∇κ̄j+1) + cb∇
2δλ̄∇2κ̄j+1 − δλ̄κj+1

)

dV = 0 (29)

where the boundary condition (25) has been substituted in Equation (29), and the boundary

condition for t, Equation (24)1, is applied along the entire external boundary S of the body V .

The following linearisations are carried out at iteration j + 1 for use in a Newton-Raphson

iterative solution procedure:

σσσj+1 = σσσj + dσσσ, κj+1 = κj + dκ, κ̄j+1 = κ̄j + dκ̄ (30)

where d represents an iterative contribution. Substituting Equation (30)1 into Equations (28) and

using (4) gives the weak form:
∫

V

δεεεTDe( dεεε− dλm)dV =

∫

S

δuTtj+1dS −

∫

V

δεεεTσσσjdV (31)

This article is protected by copyright. All rights reserved.
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Similarly, Equations (30)2,3 are substituted into Equation (29) to give

∫

V

(

δλ̄dκ̄− ca(∇δλ̄)T(∇dκ̄) + cb∇
2δλ̄∇2dκ̄− δλ̄dκ

)

dV =

−

∫

V

(

δλ̄κ̄j − ca(∇δλ̄)T(∇κ̄j) + cb∇
2δλ̄∇2κ̄j − δλ̄κj

)

dV

(32)

2.3. Stress update

Similar to standard elastoplasticity, the stress update is computed as an integral along a given path

from the initial state (σσσ0, εεε0) to the final state (σσσj+1, εεεj+1):

σσσ = σσσ0 +

∫ εεεj+1

εεε0

Dedεεε (33)

The algorithmic stress update in iteration j + 1 follows the format [12]:

σσσj+1 = σσσ0 + S(εεε0,∆∆∆εεεj+1) (34)

where S is a non-linear mapping operator and ∆∆∆ is the sum of increments in all iterations for the

current load step:

∆∆∆εεεj+1 =

j+1
∑

i=1

dεεεi (35)

The yield function is evaluated at every iteration j + 1 as [8]:

Ft = F (σσσt, κ0, κ̄j+1) = σe,t − σy,0

(
1− ωj+1

)
(36)

where (•)•,t indicates use of the trial stress which is given by:

σσσt = σσσ0 +De∆εεεj+1. (37)

and (•)0 denotes value at previous converged load step. If Ft ≤ 0, we have an elastic state and the

stress is updated as σσσj+1 = σσσt. When Ft > 0, we have a plastic state which is updated by [17, 3]:

σσσj+1 = σσσt −∆γj+1D
emt (38)

where mt is given by Equation (5)2, and ∆γj+1 is the amount of plastic strain for the current

iteration, expressed as [8],

∆γj+1 =
Ft

H
[
1− ωj+1

][
∂κ
∂λ

]
+ 3E

2(1+ν)

(39)

in which E is the Young’s modulus and ν is the Poisson ratio. This ensures that the consistency

condition is satisfied. A concise algorithm is given in the Appendix.

3. DISPERSION ANALYSES

We consider the one-dimensional equation of motion for a bar under uniform tensile loading in rate

form:
∂σ̇

∂x
= ρ

∂2u̇

∂t2
(40)

where σ is the stress, ρ is the mass density, u is the displacement, and (•̇) denotes the time derivative.

The rate of deformation is expressed as

ε̇ =
∂u̇

∂x
. (41)

This article is protected by copyright. All rights reserved.
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An additive decomposition of the strain holds, so that Hooke’s law is given by:

σ̇ = E(ε̇− κ̇) (42)

The current yield stress has a multiplicative format:

σy = (1− ω(κ̄)) (σy,0 +Hκ) (43)

while the stress rate σ̇ has to satisfy the consistency condition: Ḟ ≡ σ̇ − σ̇y = 0. Differentiating

Equation (43) with respect to time yields [20]:

σ̇y = (1− ω)H
︸ ︷︷ ︸

HL

κ̇+ ω′(−σy,0 −Hκ)
︸ ︷︷ ︸

HN

˙̄κ (44)

in which ω′ = dω/dκ̄, and HL and HN can be considered as the current local and nonlocal plastic

moduli, respectively. The time derivative of Equation (21) reads:

˙̄κ− ca∇
2 ˙̄κ+ cb∇

4 ˙̄κ = κ̇. (45)

For a dispersion analysis, we consider the following harmonic functions

u̇ = ûeik(x−ct), κ̇ = κ̂eik(x−ct), ˙̄κ = ˆ̄κeik(x−ct) (46)

with k the wave number, c the phase velocity, and the amplitudes û, κ̂ and ˆ̄κ. The amplitudes κ̂ and
ˆ̄κ can be related by substituting the respective harmonic fields into Equation (45). Using the result

together with Equations (41) and (42), the amplitude of the plastic strain, κ̂, can be related to û,

the amplitude of the displacement. Subsequently, satisfaction of the consistency condition can be

exploited to equal the right-hand sides of Equations (42) and (44). The resulting expression reads:

Ek2
[

HL(1 + cak
2 + cbk

4) +HN

(HL + E)(1 + cak2 + cbk4) +HN

]

= ρk2c2 (47)

Using the bar velocity, ce =
√

E/ρ, the phase velocity c can be expressed as:

c2

c2e
=

[
HL(1 + cak

2 + cbk
4) +HN

(HL + E)(1 + cak2 + cbk4) +HN

]

. (48)

The normalised wave velocity c/ce is plotted as a function of the normalised wave number kℓ

in Figure 1 for HL = 1819 N/mm
2
, HN = −2148 N/mm

2
, E = 20000 N/mm

2
and ℓ = 1.0 mm,

being representative values for a low-strength concrete. For comparison, the dispersion relation for

the explicit gradient plasticity model [15],

c2

c2e
=

[
HE + gk2

E +HE + gk2

]

(49)

has been plotted in the same figure for a softening modulus HE = −329 N/mm
2

and g = −ℓ2HE .

The frequency ω = kc is a function of wave number, ω = ω(k). Since ω′′(k) 6= 0, wave propagation

is dispersive [15, 26].

The critical wave number kcrit is the minimum wave number below which only imaginary values

of phase velocity exist. It is obtained by setting the phase velocity c = 0. The critical wave length

µcrit = 2π/kcrit is the wave length above which no waves will propagate:

second-order implicit formulation µcrit = 2πℓ

√

−
(HN +HL)

HL

fourth-order implicit formulation µcrit = 2πℓ

√

−2 + 2

√

−(HL + 2HN)

HL

second-order explicit formulation µcrit = 2πℓ (50)

This article is protected by copyright. All rights reserved.
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Figure 1. Normalised phase velocity c/ce as a function of normalised wave number kℓ.

We now proceed by using the linear damage relation of Equation (8) and use this to derive

the expressions for the local and nonlocal hardening moduli for the implicit gradient plasticity

formulation:

HL =







H

(

1− κ̄−κ̄i

κ̄u−κ̄i

)

if κ̄ ≤ κ̄u

0 if κ̄ > κ̄u

(51)

and

HN =







−(σy,0 +Hκ)

(

1
κ̄u−κ̄i

)

if κ̄ ≤ κ̄u

0 if κ̄ > κ̄u

(52)

The normalised critical wave length µcrit/ℓ is plotted vs the strain level κ = κ̄ in Figure 2 for

κ̄i = 0, κ̄u = 0.001, H = 2000 N/mm2
and σy,0 = 2 N/mm2

. For the explicit gradient plasticity

formulation, the critical wavelength is non-zero and independent of the accumulated damage, so that

there is localisation into a non-zero band width. For the implicit gradient plasticity formulations, a

non-zero band width results, except when the damage attains a maximum, when the localisation

width becomes zero. It has been argued that this can be conceived as an an advantage of implicit

gradient plasticity formulations, since they ultimately result in a sharp crack [8]. Conversely, it can

be considered as a disadvantage, as in the limiting case of a sharp crack, the topology changes

and boundary conditions have to be supplied locally in order to keep the boundary value problem

well-posed.

Indeed, the critical wave length represents the width of the localisation band. It is clear from

Figure 2 that, at the initial stages of the deformation, the second-order implicit formulation has a

localisation band that is wider than that which results from the fourth-order implicit formulation.

However, at some point, before complete failure, the localisation band width of the fourth-order

formulation becomes higher, and remains so.

When using an exponential damage law [8], for instance

ω = 1− e−βκ̄ (53)

the results become different, see Figure 3 for β = 1000. Now, neither the explicit formulation, nor

either of the implicit gradient plasticity formulutions result in a zero critical wave length at complete

damage, and thus, convergence to a line crack does not take place in either of the cases which

have been considered. As a minor detail we note that the band width of the second-order gradient

plasticity model remains wider than that of the fourth-order model for all strain levels.
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Figure 2. Normalised critical wavelength µcrit/ℓ vs the strain level κ = κ̄ for a piece-wise linear damage
law.
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Figure 3. Normalised critical wavelength µcrit/ℓ vs the strain level κ = κ̄ for an exponential damage law.

The relations for the critical wave length, Equations (50), indicate that the sum of the local and

nonlocal hardening moduli, HL and HN determine whether or not regularisation is achieved for

the implicit gradient formulations. For the second-order implicit gradient plasticity formulation,

HL +HN has to be negative. According to the adopted yield function, Equation (43), HL is always

positive and HN is always negative because H > 0. The sum of the two moduli is initially positive

but at a certain loading stage, it becomes negative. The same holds for the fourth-order implicit

gradient plasticity formulation, except that now the sum under consideration is HL + 2HN . For the

second-order explicit formulation, HE < 0, and regularisation is always achieved.

The behaviour of localised zones in softening systems depends on the dispersive properties of the

material [27, 28]. At wave lengths below µcrit, waves with real phase velocities exhibit dispersion.

Hence, the localisation zone can extend, and the strain profile in the localisation zone can be

transformed due to different modes travelling at different speeds. In the static case, phase velocity
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c = 0, the localisation zone acts as a stationary wave and the width of the localisation zone is equal

to the lowest-order wave that the system can transmit [15, 27].

4. ISOGEOMETRIC FINITE ELEMENT DISCRETISATION

4.1. NURBS-based Bézier element

We use NURBS functions to describe the geometry as well as for analysis. A univariate NURBS is

expressed as:

Ra,p(ξ) =
waBa,p(ξ)

W(ξ)
(54)

where Ba,p(ξ) is a B-spline function, wa is the NURBS weight and

W(ξ) =

n∑

b=1

wbBb,p(ξ) (55)

represents the weight function. For a polynomial of degree p = 0, the B-spline function is defined

as:

Ba,0(ξ) =

{

1, ξa ≤ ξ ≤ ξa+1

0, otherwise
(56)

for a parametric coordinate, or knot, ξ [22]. For p > 0, B-spline functions are defined by the Cox-de

Boor recursion formula [29, 30],

Ba,p(ξ) =
ξ − ξa

ξa+p − ξa
Ba,p−1(ξ) +

ξa+p+1 − ξ

ξa+p+1 − ξa+1
Ba+1,p−1(ξ) (57)

Multivariate NURBS shape functions are obtained as tensor products of the univariate shape

functions.

Different from Lagrange shape functions, NURBS shape functions are not local to an element. In

order to make NURBS shape functions suitable for analysis in the standard finite element format,

we employ Bézier extraction [23]. The Bézier representation for a one-dimensional element e is

expressed as:

Re(ξ) = WeCe G
e(ξ)

W e(ξ)
(58)

with

W e(ξ) = (we)TCeGe(ξ) (59)

where R contains the NURBS basis functions, C is the Bézier extraction operator, w is a vector of

the NURBS weights, and G contains the Bézier basis functions (Bernstein polynomials).

4.2. Orders of interpolation

The displacement field, u, and the nonlocal effective plastic strain measure (nonlocal plastic

multiplier), λ̄, are discretised as follows:

u = Na (60)

and

λ̄ = hTΛ̄̄Λ̄Λ (61)

where a is a vector of discrete displacements at the control points, Λ̄ΛΛ is a vector of the nonlocal

plastic multiplier degrees of freedom at the control point, N is a matrix, and h, a vector, both

containing NURBS shape functions. Based on the linear kinematic relation (3), the strain vector can
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be expressed as:

εεε = Ba (62)

where B = LN. In a similar way, the gradient of the nonlocal plastic multiplier∇λ̄ and its Laplacian

can be discretised as:

∇λ̄ = QTΛ̄ΛΛ (63)

∇2λ̄ = pTΛ̄ΛΛ (64)

where

Q = [∇h1,∇h2, . . . ,∇hns]
T (65)

p = [∇2h1,∇
2h2, . . . ,∇

2hns]
T (66)

and ns the number of shape functions at each control point. The interpolation functions contained

in h must be C0-continuous and C1-continuous for the second-order and fourth-order formulations,

respectively. Quadratic NURBS are used for h, and since the strain vector (which is of the same

order as the nonlocal plastic multiplier) is one order lower than the displacement, cubic NURBS are

used for N. This is investigated further in Section 5.

To construct conforming meshes of different orders and matching element boundaries, we use

Bézier projection [31]:

Pe,p′

= (Re,p′

)T(Ep,p′

)T(Ce,p)T(Pe,p) (67)

where Pe,p contains the control points of the initial curve of order p, Pe,p′

contains the control

points of the target curve of order p′, Ce,p contains the initial Bézier extraction operator, Re,p′

is

the inverse of the target Bézier extraction operator, i.e. Re,p′

= (Ce,p′

)−1, and Ep,p′

is the elevation

matrix from degree p to p′. It is noted that the Bézier extraction/projection procedure preserves the

original continuity.

4.3. Spatial discretisation

The interpolation functions of Equations (60)–(61) are used to discretise the weak forms, Equations

(31) and (32). Requiring that the result must hold for all admissible δa and δΛΛΛ leads to the following

set of non-linear algebraic equations [8]:

[
Kaa Kaλ

Kλa Kλλ

] [
da
dΛ̄̄Λ̄Λ

]

=

[
fe − fa
−fλ

]

(68)

with the elastic stiffness matrix

Kaa =

∫

V

BTAaaBdV, (69)

the off-diagonal matrices

Kaλ = −

∫

V

BTAaλh dV, Kλa = −

∫

V

hTAλaB dV, (70)

the gradient-dependent matrix

Kλλ =

∫

V

hT
(
1−Aλλ

)
h+ caQ

TQ+ cbp
Tp dV, (71)

the external force vector

fe =

∫

S

NTtj+1dS, (72)

the vector of control point forces (equivalent to internal stresses)

fa = −

∫

V

BTσσσjdV, (73)
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and the vector associated with the nonlocal averaging

fλ = Kλλ̄j −

∫

V

hTλj dV (74)

where

Kλ =

∫

V

hTh+ caQ
TQ+ cbp

Tp dV. (75)

The arrays Aaa, Aaλ and Aλa, and the scalar Aλλ are defined as [8, 17]:

Aaa = A−
AmmTA

H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(76)

Aaλ =
σy

(
∂ω
∂κ̄

)(
∂κ̄
∂λ̄

)
Am

H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(77)

Aλa =
mTA

H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(78)

Aλλ =
σy

(
∂ω
∂κ̄

)(
∂κ̄
∂λ̄

)

H
(
1− ω

)(
∂κ
∂λ

)
+ 3E

2(1+ν)

(79)

respectively, where A is the algorithmic stiffness operator

A =

[

(De)−1 +∆γ
∂m

∂σσσ

]
−1

(80)

5. INTERPOLATION REQUIREMENTS

Taking the order of interpolation for the nonlocal effective plastic strain measure to be an order

lower than the displacement gives a balanced interpolation. It is useful to investigate the effect

of the same orders of interpolation, because when using adaptive or hierarchical refinement, the

same order of interpolation may be simpler to implement. Indeed, it has been argued that nonlocal

gradient models are coupled problems and the interpolation orders of variables do not have to be

balanced [32]. Finally, there are indications from calculations with the second-order explicit gradient

plasticity model that stress oscillations can occur in spite of the use of different interpolation orders

for the displacements and the plastic multiplier [13].

We consider a one-dimensional bar, which is fixed at one end and subjected to tension at the other

end, see Figure 4. The bar has a length L = 100 mm, a Young’s modulus E = 20000 N/mm2, area

= 100 mm2 and an initial tensile strength σy,0 = 2 N/mm2. The tensile strength in the central part

of the bar (21.875mm) is reduced by 5% to trigger localisation. A length scale ℓ = 5 mm is used

and the bar is discretised with 64 and 128 elements, respectively. Only the second-order implicit

gradient plasticity formulation is considered in this section.

Figure 4. Tensile bar with imperfection

First, the effect of material parameters is studied for the tensile bar without imperfection. The

load displacement curves are given in Figure 5 considering a linear damage evolution, Equation
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(8), with H = 6000 N/mm2 and κ̄i = 0, and for an exponential damage evolution, Equation (53),

with H = 6000 N/mm2. The critical nonlocal effective plastic strain at full damage κ̄u shows a

significant influence on the linear relation, while β is the dominating parameter when using the

exponential relation, cf. [8].
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Figure 5. Influence of material parameters for bar without imperfection discretised with 64 elements using
linear (a) and exponential (b) damage evolution law. Results are shown for an interpolation order p = 2 of

the nonlocal plastic multiplier and p = 3 of the displacement.

All subsequent simulations are for the tensile bar with an imperfection. The load-displacement

curves are shown in Figure 6 for a quadratic interpolation of the nonlocal plastic multiplier and a

cubic interpolation of the displacement. The parameters H = 2000 N/mm2, κ̄i = 0 and κ̄u = 0.001
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are used for linear damage evolution, while H = 9000 N/mm2 and β = 4300 are adopted for

exponential damage evolution. It is clear that mesh-objective results are obtained, since the curves

are identical for both discretisations (64 and 128 elements). The evolution of nonlocal effective

plastic strain has been plotted in Figure 7. The load-displacement curves as well as the nonlocal

effective plastic strain profiles converge throughout the loading history. No visible mesh dependency

exists.

end displacement [mm]
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Figure 6. Load-displacement curves using an interpolation order p = 2 for the nonlocal plastic multiplier
and p = 3 for the displacements. Results are shown for linear and exponential damage evolution relations,

with 64 and 128 elements.

Next, we consider the same interpolation order for the displacements and for the nonlocal

effective plastic strain, using an exponential damage evolution. The load-displacement curves as

well as the nonlocal strain profiles converge upon refinement of the discretisation. For 128 elements,

the results are compared in Figure 8 for quadratic/quadratic, cubic/cubic and cubic/quadratic

interpolations. There seems to be no visible differences among the results. The axial stress and

the yield stresses are shown in Figures 9 and again, there seems to be no significant differences,

which supports the assertion that gradient formulations are coupled problems and the interpolation

functions of different variables that have to be discretised are not necessarily related [32].

Oscillations in the axial stress persist for all interpolations, which is ascribed to the weak satisfaction

of the yield condition, similar to results obtained for the second-order explicit gradient plasticity

model [13].

This article is protected by copyright. All rights reserved.



A
c
c
e
p

te
d

A
r
ti

c
le

15

x-coordinate [mm]

0 10 20 30 40 50 60 70 80 90 100

n
o

n
lo

c
a

l 
e

ff
e

c
ti
v
e

 p
la

s
ti
c
 s

tr
a

in

×10-4

0

1

2

3

4

5

6

64 el

128 el

(a)

x-coordinate [mm]

0 10 20 30 40 50 60 70 80 90 100

n
o

n
lo

c
a

l 
e

ff
e

c
ti
v
e

 p
la

s
ti
c
 s

tr
a

in

×10-3

0

0.2

0.4

0.6

0.8

1

1.2

64 el

128 el

(b)

Figure 7. Evolution of the nonlocal effective plastic strain for linear (a) and exponential (b) damage evolution
law with 64 and 128 elements. Results are shown for an interpolation order p = 2 of the nonlocal plastic

multiplier and p = 3 of the displacement.
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Figure 8. Load-displacement curves (a) and nonlocal effective plastic strain profiles (b) for different and
same interpolation orders for the displacement/nonlocal effective plastic strain. Discretisation with 128

elements and an exponential damage evolution is adopted.
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Figure 9. Yield stress (a) and axial stress (b) for different and same interpolation orders for the
displacement/nonlocal effective plastic strain. Discretisation is with 128 elements and a exponential damage

evolution is adopted.
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Figure 10. Tensile bar: Load-displacement curves (a) and nonlocal effective plastic strain profiles (b) for the
second-order and fourth-order formulations discretised with different number of elements.
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Figure 11. Tensile bar: Load-displacement curves (a) and nonlocal effective plastic strain profiles (b) for
second-order and fourth-order gradient formulations discretised with different number of elements. An

exponential damage evolution relation is adopted.
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6. COMPARISON OF SECOND-ORDER AND FOURTH-ORDER GRADIENT

FORMULATIONS

6.1. One-dimensional bar in tension

We revisit the problem of an imperfect bar subjected to tension discussed in the previous section

(Figure 4). We now consider the second-order and the fourth-order implicit gradient plasticity

formulations using a cubic interpolation for the displacements and a quadratic interpolation for the

nonlocal effective plastic strain. We recall that for the second-order gradient formulation, ca = ℓ2,

cb = 0, and that for the fourth-order formulation ca = ℓ2/2, cb = ℓ4/8. The load-displacement

curves and nonlocal effective plastic strain profiles are shown in Figure 10 for a linear damage

evolution.

Convergence is achieved in all cases, but significant differences occur between both formulations.

The second-order implicit gradient formulation shows a more ductile response and a broader

localisation band than the fourth-order formulation. This supports the results of the dispersion

analysis, Figure 2, which point at a broader localisation band for the second-order formulation.

The additional term due to the non-zero coefficient cb in the fourth-order formulation leads to a

higher peak of the nonlocal effective plastic strain in the fourth-order formulation, see Figure 10(b).

The same trend is observed for the exponential damage evolution law, see Figure 11.

6.2. Square plate under uniaxial tension

Next, the two-dimensional panel is considered shown in Figure 12. The left side is fixed in the x
direction and the midpoint of this side is fixed in the y direction as well. A displacement ū is imposed

on the right side. Regarding the panel dimensions L = 10 mm, and the material properties are

E = 20000 N/mm2, H = 2000 N/mm2, and σy,0 = 2 N/mm2. An exponential damage evolution

is assumed with β = 3500 and a length scale ℓ = 0.7 mm. The yield strength is reduced by 5% at the

bottom left corner of the panel to trigger localisation. Three uniformly refined meshes are considered

with 256, 1,024 and 4,096 elements, respectively, see Figure 13, with a cubic interpolation for the

displacements and a quadratic interpolation for the pressure.

Figure 12. Geometry and boundary conditions of two-dimensional panel subjected to uniaxial tension

The load-displacement curves are shown in Figure 14 for different meshes. The results show

no mesh dependency indicating that regularisation is achieved. The contours of the nonlocal

effective plastic strain are given in Figure 15, while Figure 16 shows its distribution along the

diagonal AB (Figure 12). The second-order formulation shows a wider localisation band. This is

similar to the findings for implicit second-order and fourth-order gradient damage formulations [7].
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(a) (b)

(c)

Figure 13. Meshes of square panel indicating weakened elements: (a) 256 elements; (b) 1,024 elements; (c)
4,096 elements
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Figure 14. Load-displacement curves for square panel.

Moreoever, this corroborates the results of the dispersion analysis which indicate that the second-

order formulation has a bigger band width. Conversely, for explicit gradient plasticity formulations,

shear localisation analyses [33, 34] show a broader localisation band for an explicit second-order

gradient model compared to an explicit gradient model with fourth-order gradients.

Figure 17 presents the evolution of the local and the nonlocal effective plastic strains. The second-

order formulation with a mesh of 256 elements is employed. After localisation at ū = 0.00096 mm,
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Figure 15. Square panel: Distribution of nonlocal effective plastic strain for the second-order (left) and
fourth-order (right) formulations

.

further localisation within the band is observed in Figures 17(e) and 17(f). This is in agreement with

results from standard finite element simulations [8].

Figures 15 and 17 indicate that the localisation zone first propagates along the vertical boundary

before evolving into a shear band. This is consistent with earlier calculations for explicit and
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Figure 16. Distribution of nonlocal effective plastic strain along the diagonal AB, cf. Figure 12

implicit gradient plasticity models using standard finite elements [8], meshless methods [13] and

isogeometric analysis [14]. The angle of the shear band is lower than 45o which is the theoretical

solution for a shear band when using a Tresca plasticity model. Unlike for the Tresca yield function,

the intermediate principal stress enters the Von Mises yield condition, and this results in a different

condition for the onset of localisation, including the angle of shear bands, cf. [35]. It is finally noted

that the curving upward of the shear band near the free boundary is related to the emergence of

stationary Rayleigh waves [36], and has been observed in other simulations as well [37].

6.3. Biaxially compressed specimen

To further assess the capability of the model, a biaxially compressed plane-strain specimen is

considered, Figure 18, cf. [12, 8]. The width L = 10 mm. All material parameters are as in the

previous section except that now β = 2500 and ν = 0.3. The elements with reduced yield strength

(by 5%) are shown in Figure 19.

The load-displacement curves are shown in Figure 20. It is noted that for the second-order

formulation, the load-displacement curve (after the cusp) has not fully converged with 200 elements.

This is because the smallest element size (1 mm) is larger than the length scale considered

[14]. However, the fourth-order formulation shows convergence, which may suggest a stronger

regularisation property for the fourth-order formulation. The nonlocal effective plastic strains are

plotted in Figure 21. No mesh dependency is observed.
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Figure 17. Evolution of the local (left) and the nonlocal (right) effective plastic strain at maximum
displacement: ū = 0.00093 mm – (a), (b); ū = 0.00096 mm – (c), (d); ū = 0.001 mm – (e), (f)

.
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Figure 18. Biaxially compressed specimen: (a) geometry and boundary.

(a) (b) (c)

Figure 19. Mesh sizes and weakened elements for biaxially compressed specimen: (a) 200 elements; (b) 800
elements; (c) 3200 elements
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Figure 20. Load-displacement curves for biaxial compression test.
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Figure 21. Biaxial compression: Distribution of nonlocal effective plastic strain for the second-order (left)
and fourth-order (right) formulations.

.
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7. CONCLUDING REMARKS

The introduction of strain softening in plasticity models leads to a loss of well-posedness of the

boundary value problem. Various approachs to regularise the problem exist, such as the use of

nonlocal models, either in an integral sense by spatial averaging, or in a differential sense, by

including higher-order spatial gradients of a history variable. It is now well established that both

approaches are closely related [10].

Computationally, the addition of gradients is preferred, since in this approach a sparse, banded

stiffness matrix is preserved, and it is possible to retain symmetry of the tangential stiffness matrix,

which is different from nonlocal integral approaches [38]. Explicit second-order gradient plasticity

models properly regularise the boundary value problem, as has been shown by dispersion analyses,

and one-dimensional and two-dimensional finite element analyses of localisation. However, in

explicit gradient plasticity the interpolation of the plastic multiplier must satisfy C1-continuity, since

this is a necessary condition at the moving, internal elasto-plastic boundary [3]. This degree of

continuity is difficult to satisfy using finite element approaches, and alternative formulations have

been put forward [12, 13, 14].

The use of a second-order implicit gradient plasticity model, in which the nonlocal plastic strain

is interpolated [8], is an alternative way to solve this issue since a C0-continuous interpolation

for the nonlocal plastic equivalent strain suffices. However, it does not rigorously regularise

the boundary value problem [17]. In this paper we have explored the use of a fourth-order

implicit gradient plasticity model. A dispersion analysis and one-dimensional and two-dimensional

numerical analyses show that a regularisation, with mesh-independent results, can be obtained.

Unfortunately, as with the explicit second-order gradient plasticity model, this requires a C1-

continuous interpolation, now for the nonlocal plastic strain. Herein, it has been proposed to exploit

isogeometric finite element analysis to meet this requirement.

It depends on the chosen damage relation whether the width of the localisation band tends to zero,

thus resulting in a sharp crack, but also in a local loss of ellipticity. This is not different from the

situation for second-order implicit gradient plasticity, but marks a clear difference with that for the

second-order explicit gradient-plasticity model.

Finally, it is noted that for the present class of problems, an equal-order interpolation for both

types of variables, displacements and (nonlocal) equivalent plastic strains, is sufficient, with the

advantages that come when considering adaptive or hierarchical meshing.
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APPENDIX A

Box 1. Algorithm for implicit gradient plasticity formulations (iteration j + 1)

1. Compute the matrices Kaa, Kaλ, Kλa and Kλλ, and forces fe, fa and fλ, according to

Equations (69) – (74)

2. Solve for da and dΛ̄ using Equation (68)

3. Update the total increments ∆aj+1 = ∆aj + da, and ∆Λj+1 = ∆Λj + dΛ.

4. Compute the following at each integration point:

∆εεεj+1 = B∆aj+1,

∆λ̄j+1 = hT∆Λ̄j+1,

∇(∆λj+1) = QT∆Λj+1,

∇2(∆λj+1) = pT∆Λj+1,

κ̄j+1 = κ̄0 +∆λj+1,

∇κ̄j+1 = ∇κ̄0 +∇(∆λ̄j+1),
∇2κ̄j+1 = ∇2κ̄0 +∇2(∆λ̄j+1),
compute ωj+1 according to adopted damage evolution law

trial stress σσσt = σσσ0 +De∆εεεj+1.

If F (σσσt, κ0, κ̄j+1) > 1× 10−6,

then plastic state:

compute mt

compute ∆γj+1

κj+1 = κ0 +∆γj+1,

compute the algorithmic stiffness operator A

update the trial stress update according to Equation (38)

else

elastic state:

mt = 0

σσσj+1 = σσσt

A = De

5. Check the global convergence criterion. If not converged, go to 1.

(•)0 denotes value at previous converged load step and (•)j indicates value at previous iteration.

REFERENCES
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structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering,
87:15–47, 2011.

24. R. de Borst, M. A. Crisfield, J. J. C. Remmers, and C. V. Verhoosel. Non-linear Finite Element Analysis of Solids
and Structures. John Wiley & Sons, Chichester, second edition, 2012.

25. R H J Peerlings, R de Borst, W A M Brekelmans, J H P de Vree, and I Spee. Some observations on localisation in
non-local and gradient damage models. European Journal of Mechanics A: Solids, 15:937–953, 1996.

26. Gerald Beresford Whitham. Linear and Nonlinear Waves. John Wiley & Sons, New York, 1974.
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37. R. de Borst, J. Réthoré, and M. A. Abellan. A numerical approach for arbitrary cracks in a fluid-saturated medium.
Archive of Applied Mechanics, 75:595–606, 2006.

38. G. Pijaudier-Cabot and A. Huerta. Finite element analysis of bifurcation in nonlocal strain softening solids.
Computer Methods in Applied Mechanics and Engineering, 90:905–919, 1991.

This article is protected by copyright. All rights reserved.


