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ABSTRACT. Algebraic quantum field theory is considered from the perspective of
a Hochschild cohomology bicomplex. This is a framework for studying defor-
mations and symmetries. Deformation is a possible approach to the fundamental
challenge of constructing interacting QFT models. Symmetry is the primary tool
for understanding the structure and properties of a QFT model.

This perspective leads to a generalization of the algebraic quantum field the-
ory framework, as well as a more general definition of symmetry. This means
that some models may have symmetries that were not previously recognized or
exploited.

To first order, a deformation of a QFT model is described by a Hochschild co-
homology class. A deformation could, for example, correspond to adding an in-
teraction term to a Lagrangian. The cohomology class for such an interaction is
computed here. However, the result is more general and does not require the un-
deformed model to be constructed from a Lagrangian. This computation leads to a
more concrete version of the construction of perturbative algebraic quantum field
theory.
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1. INTRODUCTION

At present, the best known description of fundamental physics is given by the
Standard Model, which is an interacting quantum field theory (QFT) in 4 dimen-
sions. Unfortunately, a mathematically consistent description of the Standard Model
is not yet known. It is a fundamental problem of mathematical physics to construct
mathematical models of interacting quantum field theories such as the Standard
Model or whatever may supplant it.

Algebraic Quantum Field Theory (AQFT) [19] does provide a framework for
describing QFT, but thus far, interacting models have only been constructed in
dimensions less than 4. More tools are needed for constructing and understanding
quantum field theories.

A possible approach to constructing interacting QFTs is by deformation — either
deforming a free QFT into an interacting one or deforming an interacting classical
field theory into a quantum one. This is analogous to deforming a commutative
algebra into a noncommutative one, as is done in formal [2, 23] or strict [29] defor-
mation quantization.

Formal deformation quantization is part of the theory of algebraic deformations
[15], which is based upon Hochschild cohomology and the algebraic structure of
the Hochschild complex. The purpose of this paper is to consider AQFT from the
perspective of the relevant generalization of Hochschild cohomology. This is a
necessary step toward a theory of deformation quantization of field theories and
thus an approach to building interacting QFT models.

This perspective provides a unified framework for three seemingly disparate
concepts: the symmetries of a QFT, the transition from classical to quantum field
theory, and the transition from free to interacting QFT. It also leads to a more gen-
eral definition of symmetry and a generalization of AQFT.

1.1. Algebraic quantum field theory. The fundamental difference between quan-
tum field theory and other models of quantum physics is locality. Consistency with
relativity means that only some observables can be measured in a given region, O,
of spacetime. Observables regarding processes spacelike separated from O cannot
be measured in O. This is a manifestation of the principle that no signal can travel
faster than light.

Any sum or product of observables that can be measured in O can also be mea-
sured in O, therefore the set of observables measurable in O is an algebra, A(O). If
O1 ⊂ O2, then any observable that can be measured in O1 can a fortiori be measured
in O2, so A(O1) ⊆ A(O2).

This correspondence between regions and algebras completely encodes the struc-
ture of a quantum field theory. This is the fundamental idea of Algebraic Quantum
Field Theory [19].
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This can be used to describe a QFT on Minkowski spacetime or on a curved
spacetime. Locally Covariant Quantum Field Theory extends this to describe a
QFT on all possible spacetimes. The key insight is that a region of a spacetime
is itself a spacetime — thus regions and spacetimes can be treated on the same
footing.

Definition 1.1. [5] Loc is the category in which:

• the objects are all oriented, time oriented, globally hyperbolic, Lorentzian
manifolds (of some fixed dimension, n);

• the morphisms are the smooth maps that are isometric, injective, oriented,
and preserve the causal relation.

Definition 1.2. [5] A Locally covariant quantum field theory (LCQFT) is a covariant
functor A : Loc→ Alg (or to some other category of algebras).

This is usually required to satisfy further axioms.

Axiom 1 (Einstein Causality). If ι1 : O1 →M and ι2 : O2 →M and the images of ι1
and ι2 are spacelike separated, then the images of A[ι1] and A[ι2] commute.

Axiom 2 (Time Slice). If φ :M→ N and Imφ contains a Cauchy surface ofN, then
A[φ] : A(M)→ A(N) is an isomorphism.

Axiom 3 (Isotony). For any φ, A[φ] is injective.

In fact, only Einstein causality will be needed in this paper.
The category Loc is monoidal under the operation of disjoint union of space-

times. Einstein causality is almost equivalent to requiring A to be a monoidal
functor (see [4]).

If X ⊂ Loc is a small category whose inclusion is an equivalence of categories,
then an LCQFT can equivalently be described as a functor A : X → Alg. For
example, X could be the subcategory of spacetimes whose underlying manifolds
are submanifolds of R2n+1. The results of [28] imply that Loc is equivalent to the
small subcategory of globally hyperbolic submanifolds of Minkowski spacetime
(of sufficiently large dimension).

A QFT on a fixed manifold, M ∈ Obj(Loc), can also be encoded as a functor. If
X ⊂ Loc is the subcategory of spacetimes that happen to be open subsets of M,
then a QFT on M can be encoded as a functor A : X → Alg. Einstein causality
and the time slice axiom are perfectly meaningful conditions on such a functor.
Note that this encodes the action of any oriented, time oriented isometries of M.
In particular, if M is Minkowski spacetime, then this functor encodes the action of
the Poincaré group.

A similar approach can be taken to conformal field theory. A conformal net is a
functor from a category of open intervals in S1 to von Neumann algebras (satisfy-
ing further axioms). See, e.g., [18].

A cruder description of quantum physics on a fixed spacetime, ignoring locality,
can also be described in this way. GivenM ∈ Obj(Loc), the full subcategory of Loc
with the single objectM is the group of oriented, time oriented isometries ofM. A
functor from this group (as a category) to Alg encodes the algebra of observables
onM and the action of this group on that algebra.
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For most of this paper, I will talk about an arbitrary small category, X. I have
in mind any of the examples above. In the later sections, this will be limited to a
subcategory X ⊂ Loc for which Einstein causality is a meaningful condition.

1.2. Hochschild cohomology. The continuous functions on a topological space
and the smooth functions on a manifold form commutative algebras. Many ge-
ometrical constructions can be expressed algebraically in terms of these commu-
tative algebras and extend easily to noncommutative algebras. It is often useful
to view a noncommutative algebra as if it comes from a topological space and to
apply geometrical ideas and intuition. This is the fundamental idea of Noncom-
mutative Geometry.

For example, let M be a compact, smooth manifold, and X•(M) the space of
smooth, antisymmetric multivector fields. This is a Gerstenhaber algebra with both
a graded commutative, associative product (the exterior product) and a graded Lie
bracket (the Schouten-Nijenhuis bracket). The Hochschild cohomology H•(A,A)
of the commutative algebra A = C∞(M) is naturally identified with X•(M) as a
graded vector space.

Moreover, Gerstenhaber constructed a graded Lie bracket and an associative
product on the Hochschild complex C•(A,A) of any algebra, which give the coho-
mology the structure of a Gerstenhaber algebra (hence the name) and for C∞(M)

this is the natural structure mentioned in the last paragraph. This means that
Hochschild cohomology should be thought of as a noncommutative generaliza-
tion of the Gerstenhaber algebra of multivector fields. This — and the detailed
structure on the complex — play a central role in the theory of formal deformation
quantization.

1.3. Algebraic quantum field theory as noncommutative geometry. As described
above, an AQFT can be expressed as a functor A : X → Alg, where X ⊂ Loc is a
small subcategory.

Definition 1.3. A diagram of algebras is a covariant functor from a small category to
Alg.

Remark. In [16, 17] a diagram is defined as a presheaf (contravariant functor) but
an AQFT is covariant, and the difference is just a matter of replacing X with its
opposite category.

Let 1 be the category with one object and one morphism. A single algebra is
trivially equivalent to a functor 1→ Alg. Thus:

• An AQFT is in particular a diagram of algebras.
• A diagram of algebras is a generalization of an algebra.
• An algebra is a generalization of an algebra of functions on a space.

In this way, QFT is a generalization of geometry. This is the perspective that I will
pursue here.

1.4. Notation and terminology. Vec and Alg will denote the categories of vector
spaces and algebras over the field of complex numbers, C. ∗-Alg will denote the
category of ∗-algebras.

For anyM ∈ Obj(Loc), let D(M) := C∞c (M,R) be the space of smooth, compactly
supported functions (test functions). Because any Loc morphism φ : M → N is



A COHOMOLOGICAL PERSPECTIVE ON ALGEBRAIC QUANTUM FIELD THEORY 5

injective and open, there is a push-forward mapφ∗ : D(M)→ D(N); for f ∈ D(M),
φ∗f is defined by the conditions thatφ∗φ∗f = f and Supp(φ∗f) ⊆ Imφ. If we define
D[φ] := φ∗, then D : Loc→ Vec is a covariant functor.

Given two points x, y ∈M ∈ Obj(Loc), denote [1, 20]:

• x ≤ y if there exists a future-directed causal curve from x to y.
• x < y if x ≤ y and x 6= y.
• x ∼ y if neither x < y nor x > y.
• x . y if x < y or x ∼ y.

These relations extend to sets. For example, if O1,O2 ⊂M, then write

O1 . O2 ⇐⇒ ∀x ∈ O1, y ∈ O2 : x . y .

If O ⊆M ∈ Obj(Loc), then denote

J+M(O) := {x ∈M | ∃y ∈ O : x ≥ y}

and

J−M(O) := {x ∈M | ∃y ∈ O : x ≤ y}

(or J±(O), if there is no ambiguity). Further, let JM(O) := J+M(O) ∪ J
−
M(O) and

J⋄M(O) := J+M(O) ∩ J
−
M(O). The causal complement of O is O ′ := M r J(O) and O

is causally complete if O = O ′′.
A subset O ⊂ M ∈ Obj(Loc) is future/past compact if for any x ∈ M, J±(x) ∩ O is

compact.
A function V (not necessarily linear) from D(M) to a vector space is additive if

for f, g, h ∈ D(M),

Supp f ∩ Supph = ∅ =⇒ V(f+ g+ h) = V(f+ g) − V(g) + V(g+ h) .

This is really a locality condition, but note that a linear map is automatically addi-
tive.

The bracket notation [ · , · ] will be used for both the Gerstenhaber bracket and
the commutator in an associative algebra. I hope that this will be clear in context.

1.5. Outline. In Section 2, I review the definitions of Hochschild cohomology and
the Gerstenhaber algebra structure for a single algebra and for a diagram of alge-
bras.

In Section 3, I discuss the relationship of “asimplicial” Hochschild cohomology
to the deformations and automorphisms of a diagram of algebras. Seeking a simi-
lar interpretation of full Hochschild cohomology leads me to define skew diagrams
of algebras and their morphisms. This gives the first main results: a generaliza-
tion of AQFT and a more general definition of global symmetries of an AQFT.
The category of skew diagrams is shown to be a 2-category of functors between
2-categories.

The first main calculation is in Section 4, where I compute the characteristic class
in Hochschild cohomology of an interaction term for an AQFT. This involves defin-
ing a smoothed out analogue of Cauchy surfaces.

In Section 5, I discuss the construction of perturbative AQFT by the algebraic
adiabatic limit. The next main result is an alternative, more concrete construction;
this is motivated by my computation of the characteristic class. This construction
leads to the last main calculation — a direct proof that the characteristic class sat-
isfies the appropriate Maurer-Cartan equation.
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2. HOCHSCHILD COHOMOLOGY

The definition of Hochschild cohomology H•(A,A) for an algebra extends to dia-
grams of algebras1. This is referred to as Yoneda cohomology by Gerstenhaber and
Schack in [16] because they were working with algebras over a ground ring that
was not necessarily a field; that degree of generality is irrelevant here.

Hochschild cohomology of a diagram of algebras is still a Gerstenhaber algebra.
This cohomology governs deformations of diagrams, just as it does for a single
algebra.

This does not perfectly characterize deformations of LCQFTs, because a LCQFT
might be deformed to a diagram of algebras that violates Einstein causality. Nev-
ertheless, this does describe a lot of the relevant structure, and an infinitesimal
deformation will have a characteristic class in Hochschild cohomology.

The category of algebras in AQFT is most often taken to be C∗-algebras or von Neu-
mann algebras. These are not well suited for studying infinitesimal deformations.
To construct multivector fields via Hochschild cohomology, we use not the C∗-
algebra of continuous functions but the dense subalgebra of smooth functions.
This suggests that studying infinitesimal deformations of an LCQFT may require
identifying analogous dense subalgebras.

The main explicit calculation here will be in the setting of perturbative LCQFT,
which does not use C∗-algebras.

Let’s begin by recalling the definition and properties of Hochschild cohomology
for an algebra.

2.1. A single algebra. [22] Let A be an associative algebra over C, and B a bimod-
ule of A.

2.1.1. The complex.

Definition 2.1. Cq(A,B) := HomC(A
⊗q, B) is the space of q-multilinear maps.

Definition 2.2. The maps δi : C
q(A,B) → Cq+1(A,B) are defined by, for any Γ ∈

Cq(A,B) and a1, . . . , aq+1 ∈ A,

(δ0Γ)(a1, . . . , aq+1) := a1Γ(a2, . . . , aq+1) ,

(δiΓ)(a1, . . . , aq+1) := Γ(a1, . . . , aiai+1, . . . , aq+1)

for 1 ≤ i ≤ q, and

(δq+1Γ)(a1, . . . , aq+1) := Γ(a1, . . . , aq)aq+1 .

The Hochschild coboundary δ : Cq(A,B)→ Cq+1(A,B) is

δ :=

q+1∑

i=0

(−1)iδi .

Definition 2.3. The Hochschild cohomologyH•(A,B) is the cohomology ofC•(A,B)
with the coboundary δ.

1The functorial Hochschild cohomology HH•(A) = H•(A,A∗) does not extend to diagrams,
because A 7→ A∗ is not a covariant functor.
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2.1.2. The Gerstenhaber bracket. [14] Now consider the case that B = A.
Let Γ ∈ Cq(A,A) and ∆ ∈ Cq

′

(A,A).

Definition 2.4. For 1 ≤ i ≤ q, Γ ◦i ∆ ∈ Cq+q
′−1(A,A) is defined by

(Γ ◦i∆)(a1, . . . , aq+q ′−1) := Γ(a1, . . . , ai−1, ∆(ai, . . . , ai+q−1), ai+q, . . . , aq+q ′−1)

for a1, . . . , aq+q ′−1 ∈ A.

Definition 2.5. From this, define

Γ ◦ ∆ :=

q∑

i=1

(−1)(q−i)(q
′−1)Γ ◦i ∆

and the Gerstenhaber bracket

[Γ, ∆] = Γ ◦ ∆− (−1)(q−1)(q
′−1)∆ ◦ Γ ∈ Cq+q

′−1(A,A) .

This bracket is a graded Lie bracket of degree −1. Equivalently, C•(A,A) with
this bracket is a graded Lie algebra with the shifted grading in which Γ ∈ Cq(A,A)
has degree q− 1.

Definition 2.6. m ∈ C2(A,A) is the multiplication map, i.e., m(a, b) := ab.

Note that δΓ = [m, Γ ]. From this, it is a simple exercise to deduce that C•(A,A)
is a differential graded Lie algebra. The defining property,

δ[Γ, ∆] = [δΓ, ∆] + (−1)q−1[Γ, δ∆]

follows from the Jacobi identity. This implies that the Gerstenhaber bracket in-
duces a well defined graded Lie bracket on the Hochschild cohomology H•(A,A).

There is also an associative product.

Definition 2.7. Γ ⌣ ∆ ∈ Cq+q
′

(A,A) is defined by

(Γ ⌣ ∆)(a1, . . . , aq+q ′) := Γ(a1, . . . , aq)∆(aq+1, . . . , aq+q ′)

for a1, . . . , aq+q ′ ∈ A.

This is obviously associative but is not commutative. Less obviously, this de-
scends to an associative product on cohomology, and on cohomology:

• The product is commutative.
• The bracket is a derivation of the product (in each argument).

2.1.3. Significance of the Gerstenhaber bracket. [15] Note that m◦m = m◦2m−m◦1m,
so

(m ◦ m)(a, b, c) = a(bc) − (ab)c

and the equation

0 = m ◦ m = 1
2
[m,m] (2.1)

is precisely equivalent to the associativity of m.
Imagine that m is part of a smooth, 1-parameter family of associative products.

Differentiating eq. (2.1) once gives

0 = m ◦ ṁ + ṁ ◦ m = [m, ṁ] = δm ,
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so an infinitesimal deformation of an associative product is a 2-cocycle. Differenti-
ating again gives

0 = [ṁ, ṁ] + [m, m̈] =⇒ [ṁ, ṁ] = −δm̈ ,

so the Gerstenhaber bracket of ṁ with itself is exact. This and eq. (2.1) are examples
of Maurer-Cartan equations.

A deformation is trivial if Awith the deformed product is isomorphic to Awith
the undeformed product. If α ∈ C1(A,A) is such an isomorphism, then the de-
formed product of a and b is

m(a, b) = α−1 (α(a)α(b)) .

Suppose that there is a 1-parameter family of such isomorphisms, starting from the
identity. Differentiating this expression and then setting α = id gives

ṁ(a, b) = α̇(a)b− α̇(ab) + aα̇(b) ,

so ṁ = δα̇. In other words, trivial infinitesimal deformations correspond to exact
cocycles. This means that the Hochschild cohomology class of an infinitesimal
deformation describes it modulo trivial deformations.

Similarly, if there is a 1-parameter family of automorphisms, starting from the
identity, then 0 = ṁ = δα̇. (This means precisely that α̇ is a derivation.) So, an
infinitesimal automorphism is a 1-cocycle.

If A is unital, an invertible element b ∈ C0(A,A) = A determines an inner auto-
morphism, α(a) = b−1ab. Suppose that b is part of a 1-parameter family, starting
from the unit. Differentiating gives

α̇(a) = aḃ− ḃa =⇒ α̇ = δḃ ,

so infinitesimal inner automorphisms are exact 1-cocycles. This means thatH1(A,A)
describes infinitesimal automorphisms modulo inner ones.

Finally, the equation 0 = δb is the condition that b be central, so H0(A,A) =

Z(A), the center of A.
Note that here there are various structures — algebra elements, automorphisms,

multiplication — that are elements of C•(A,A) in various degrees. These sat-
isfy properties that are most naturally expressed as the vanishing of elements of
C•(A,A) in other degrees.

2.2. A diagram of algebras. [26, 16, 17] Let X be a small category and A : X→ Alg
a covariant functor, i.e., a diagram of algebras over X. Because I have mainly in
mind X ⊂ Loc, I will denote elements of X asM, N, et cetera.

Such a functor consists of 3 types of information: Every object determines a
vector space; every object also determines an associative product on that vector
space; and every morphism determines a homomorphism of algebras. A vector
space cannot be deformed, but the other two structures can. This is in contrast to a
single algebra, where there is only one deformable structure.

Let φ :M→ N and ψ : N→ P be morphisms in X.
For a manifold M, there is a bilinear multiplication map m[M] : A(M)⊗2 →

A(M), a ⊗ b 7→ ab. For a morphism φ, there is a linear map, µ[φ] : A(M) →
A(N), a 7→ A(φ;a).
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These two structures satisfy three properties. Associativity means that for every
M, the map A(M)⊗3 → A(M), a⊗ b⊗ c 7→ a(bc) − (ab)c vanishes. Being a homo-
morphism means that for every φ, the map A(M)⊗2 7→ A(N), a ⊗ b 7→ A(φ;ab) −
A(φ;a)A(φ;b) vanishes. Functoriality means that for every pair of composable
morphisms, φ and ψ, the map A(M) → A(P), a 7→ A(ψ; A(φ;a)) − A(ψ ◦ φ;a)
vanishes.2

A symmetry3 of the functor A is a natural automorphism α : A →̇ A. This
is given by, for every object M, an automorphism α[M] : A(M) → A(M). This
satisfies two properties. Being an automorphism means that for everyM, the map
A(M)⊗2 → A(M), a ⊗ b 7→ α(M;ab) − α(M;a)α(M;b) vanishes (and that α[M]

is invertible). Naturality means that for every φ, the map A(M) → A(N), a 7→
A(φ;α(M;a)) − α(N; A(φ;a)) vanishes.

Each of these structures and conditions depends upon an element of the nerve,
B•X, of the category X. B0X = ObjX is the set of objects. B1X = MorX is the set
of morphisms. B2X is the set of composable pairs of morphisms. In general, BpX
is the set of composable p-tuples of morphisms. Each element of BpX begins at
an object and ends at an object; for example, M ∈ B0X begins and ends at M, but

M
φ
→ N

ψ
→ P begins atM and ends at P.

Each structure or condition consists of — for every chain of a given length in
B•X — a multilinear map from the algebra at the beginning to the algebra at the
end. This suggests that the generalization of C•(A,A) is bigraded. One degree is
(again) the multilinearity and the other degree is the chain length (the degree in
B•X).

2.2.1. The Hochschild bicomplex.

Definition 2.8.

Cp,q(A,A) :=
∏

(M0←···←Mp)∈BpX

HomC[A(Mp)
⊗q,A(M0)]

=
∏

(M0←···←Mp)∈BpX

Cq[A(Mp),A(M0)]

Remark. I am writing morphisms as arrows from right to left. This is consistent
with the usual convention for writing compositions.

Any chain in BpX can be composed to a single morphism. Applying A to this
morphism gives a homomorphism from A(Mp) to A(M0), which makes A(M0) a
bimodule of A(Mp).

Definition 2.9. The Hochschild coboundary δH : Cp,q(A,A) → Cp,q+1(A,A) is (−1)p

times the Hochschild coboundary on Cq[A(Mp),A(M0)], i.e.,

δH =

q+1∑

i=0

(−1)p+iδH
i .

2Note that I am denoting the linear map as A[φ] (with square brackets) and the value of that
linear map on a as A(φ;a) (with parentheses and a semicolon). This and similar notation will be
needed frequently.

3Fewster [10] showed that this is a good definition of symmetry for an LCQFT.
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The nerve, B•X is a simplicial set. In particular, there are face maps ∂i : BpX →
Bp−1X, for 0 ≤ i ≤ p. For φ : M → N, these are the source and target, ∂0(φ) = M
and ∂1(φ) = N. For p ≥ 2,

∂0(φ1, . . . , φp) = (φ2, . . . , φp)

∂i(φ1, . . . , φp) = (φ1, . . . , φi ◦ φi+1, . . . , φp)

∂p(φ1, . . . , φp) = (φ1, . . . , φp−1)

The face maps correspond to injective maps in the simplicial category. Specif-
ically, ∂i corresponds to the inclusion of {0, . . . , p − 1} into {0, . . . , p} that skips i.
Other injective maps can be specified by the numbers that they skip, and the cor-
responding face maps will be useful. Specifically,

∂i...j(φ1, . . . , φp) = (φ1, . . . , φi−1, φi ◦ · · · ◦ φj+1, φj+2, . . . , φp)

and

∂0...i,j...p(φ1, . . . , φp) = (φi+2, . . . , φj−1) .

There are also degeneracy maps, given by inserting identity morphisms, but these
will not be needed.

The simplicial coboundary δS : Cp,q(A,A) → Cp+1,q(A,A) is dual to this simpli-
cial structure.

Definition 2.10. For 1 ≤ i ≤ p, δS
i Γ = Γ ◦ ∂i. For p = 0, (δS

0Γ)[φ] = A[φ] ◦ Γ [M] and
(δS
1Γ)[φ] = Γ [N] ◦ A[φ]⊗q. For p ≥ 1, (δS

0Γ)[φ1, . . . , φp+1] = A[φ1] ◦ Γ [φ2, . . . , φp+1]
and (δS

p+1Γ)[φ1, . . . , φp+1] = Γ [φ1, . . . , φp] ◦ A[φp+1]
⊗q.

δS :=

p+1∑

i=0

(−1)iδS
i

These satisfy (δS)2 = (δH)2 = δHδS+δSδH = 0, soC••(A,A) with the coboundaries
δS and δH is a first quadrant bicomplex.

Definition 2.11. The Hochschild cohomology of a diagram of algebras is

H•(A,A) := H•(C•(A,A))

where

Cn(A,A) := totnC••(A,A) =

n
⊕

p=0

Cp,n−p(A,A)

with the coboundary δ := δS + δH. Denote the space of closed cycles as Z•(A,A).
Following Gerstenhaber and Schack [17], also define the asimplicial bicomplex4

Cp,qa (A,A) :=

{
0 q = 0

Cp,q(A,A) q ≥ 1

and from this, C•
a, Z•

a, and H•
a are defined analogously.

4They denoted this with an s in [16].
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2.2.2. Binary operations. The naive product of ∆ ∈ Cp,q(A,A) and Γ ∈ Cp,q
′

(A,A) is
∆ · Γ ∈ Cp,q+q

′

(A,A) defined by

(∆ · Γ)(φ1, . . . , φp;a1, . . . , aq, b1, . . . , bq ′) =

∆(φ1, . . . , φp;a1, . . . , aq)Γ(φ1, . . . , φp;b1, . . . , bq ′) .

Elements Γ ∈ Cp,q(A,A) and ∆ ∈ Cp
′,q ′

(A,A) can be combined by several binary
operations.

The cup product, Γ ⌣ ∆ ∈ Cp+p
′,q+q ′

(A,A) is defined by

Γ ⌣ ∆ := (−1)qp
′

δS
p+1,...,p+p ′+1Γ · δ

S
0,...,p−1∆ .

For 1 ≤ j ≤ q, the partial composition is defined by

(Γ ◦j ∆)(σ;a1, . . . , aq+q−1) :=

Γ(∂p+1,...,p+p ′+1σ; A(∂p,p+p ′+1σ;a1), . . . , ∆(∂0,...,p−1σ;ai, . . . , ai+q ′−1),

. . . ,A(∂p,p+p ′+1σ;aq+q ′−1)) .

These combine to define Γ ◦ ∆ ∈ Cp+p
′,q+q ′−1(A,A) by

Γ ◦ ∆ :=

q∑

j=1

(−1)(q−1)p
′+(q ′−1)(q−j)Γ ◦j ∆ .

For 1 ≤ i ≤ p, there is another kind of “composition” defined by Γ •i ∆ :=

δS
i,...,i+p ′−2∆ · δS

0,...,i−2,i+p ′,...,p+p ′−1Γ . Note that Γ and ∆ are multiplied in a surprising

order. These combine to define Γ • ∆ ∈ Cp+p
′−1,q+q ′

(A,A) by

Γ • ∆ :=

p∑

i=1

(−1)qq
′+(p ′−1)(p+q−i)Γ •i ∆

Remark. If q = 0, then ∆ ◦ Γ = 0. If p = 0 or p ′ = 0, then ∆ • Γ = 0.

The analogue of the composition operation for the ordinary Hochschild complex
is

Γ ◦̄ ∆ := Γ ◦ ∆+ Γ • ∆

and the generalized Gerstenhaber bracket is

[Γ, ∆] := Γ ◦̄ ∆− (−1)(p+q−1)(p
′+q ′−1)∆ ◦̄ Γ .

The cup product and bracket give well defined operations on cohomology, and
these make H•(A,A) and H•

a(A,A) into Gerstenhaber algebras. However, in con-
trast to the case of a single algebra, this bracket does not make C•(A,A) into a
graded Lie algebra.

2.2.3. Involution. If A : X → ∗-Alg, then there is also an antilinear involution on
this bicomplex.

Definition 2.12. For Γ ∈ Cp,q(A,A), Γ ⋆ ∈ Cp,q(A,A) is given by

Γ ⋆(φ1, . . . , φp;a1, . . . , aq) := (−1)pq+p(p+1)/2(Γ(φ1, . . . , φp;a
∗
q, . . . , a

∗
1))

∗

for anyM0
φ1←− . . .

φp←−Mp and a1, . . . , aq ∈ A(M0).
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This operation does not commute with the coboundaries. Instead,

(δΓ)⋆ = (−1)p+q+1δ(Γ ⋆) .

This is sufficient to give a well defined involution on cohomology.
This is an involution of the ⌣ product, up to a homotopy given by the • opera-

tion. For Γ ∈ Cp,q(A,A) and ∆ ∈ Cp
′,q ′

(A,A),

(Γ ⌣ ∆)⋆ − ∆⋆

⌣ Γ ⋆ =

(−1)(p+q)(p
′+q ′−1)+1

(

δΓ ⋆ • ∆⋆ − δ(Γ ⋆ • ∆⋆) + (−1)p+q+1Γ ⋆ • δ∆⋆
)

.

3. THE SIGNIFICANCE OF HOCHSCHILD COHOMOLOGY

Hochschild cohomology is mainly concerned with infinitesimal things such as
derivations and infinitesimal deformations. These concepts are appropriate to
purely algebraic AQFT (such as perturbative AQFT) but are not well suited to
C∗-algebraic AQFT. However, some of these infinitesimal concepts have finite ana-
logues, which are conceptually clearer and directly applicable to C∗-algebraic AQFT.

3.1. Asimplicial cohomology. The cohomologyH•
a(A,A) is more directly relevant

to deformations and symmetries of a diagram of algebras.

3.1.1. Z2a. A diagram of algebras, A, includes two deformable structures. Denote
the multiplication in A(M) as m(M;a, b) = ab; this defines m ∈ C0,2(A,A). Also
denote µ(φ;a) = A(φ;a); this defines µ ∈ C1,1(A,A).

These structures satisfy three conditions, which can be expressed as the vanish-
ing of cochains. Associativity is a condition on m, expressed in C0,3(A,A). The
compatibility between m and µ is that µ must consist of morphisms between the
products given by m; this is expressed in C1,2(A,A) and is explicitly

µ(φ;m(M;a, b)) = m(N;µ(φ;a), µ(φ;b)) (3.1)

for φ : M → N and a, b ∈ A(M). Functoriality is a condition on µ, expressed in
C2,1(A,A); explicitly,

µ(ψ ◦ φ;a) = µ(ψ;µ(φ;a)) (3.2)

for P
ψ
← N

φ
←M and a ∈ A(M).

Now imagine that m + µ ∈ C2a(A,A) = C0,2(A,A) ⊕ C1,1(A,A) is part of a 1-
parameter family of structures satisfying these conditions. Differentiating these
conditions gives 3 conditions on ṁ and µ̇. As in the case of a single algebra, differ-
entiating associativity gives the condition 0 = δHṁ. Differentiating eq. (3.1) gives

δH
1 µ̇+ δS

0ṁ = δS
1ṁ + δH

2 µ̇+ δH
0 µ̇ ,

thus 0 = δSṁ + δHµ̇. Differentiating the functoriality condition (3.2) gives

δS
1µ̇ = δS

2µ̇+ δS
0µ̇ ,

thus 0 = δSµ̇. Together, these mean that ṁ and µ̇ give a cocycle ṁ + µ̇ ∈ Z2a(A,A).
Differentiating twice gives further conditions. As in the case of a single algebra,

the second derivative of associativity is 2ṁ ◦ ṁ = [ṁ, ṁ] = −δHm̈. The second
derivative of eq. (3.1) is

δH
1 µ̈+ δS

0m̈ + 2µ̇ ◦1 ṁ = δS
1m̈ + δH

2 µ̈+ δH
0 µ̈+ 2ṁ ◦1 µ̇+ 2ṁ ◦2 µ̇+ 2µ̇ •1 µ̇ ,
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thus 2ṁ ◦ µ̇+ 2µ̇ ◦ µ̇ = −δHµ̈− δSṁ. The second derivative of functoriality (3.2) is

δS
1µ̈ = δS

2µ̈+ δS
0µ̈+ 2µ̇ ◦1 µ̇ ,

thus 2µ̇ ◦ µ̇ = −δSµ̇. Together, these show that

[ṁ + µ̇, ṁ + µ̇] = −δ(m̈ + µ̈) ;

in other words, [ṁ + µ̇, ṁ + µ̇] is exact.
For a diagram of ∗-algebras, m and µ satisfy two further conditions. Being a

∗-algebra means that m(M;a∗, b∗) = m(M;b, a)∗; equivalently, m⋆ = m. Being
a ∗-homomorphism means that µ(φ;a∗) = µ(φ;a)∗; equivalently, µ⋆ = µ. The
conditions are the same on the derivatives, so ṁ + µ̇ is a self-adjoint cocycle.

3.1.2. H2a. The collection of diagrams of algebras, AlgX is a category in the usual
way, meaning that a homomorphism of diagrams of algebras is a natural transfor-
mation.

Consider a diagram of algebras, A, and let B be another diagram with the same
underlying vector spaces and the other structures denoted m and µ. Let α : B→ A

be a natural isomorphism. This means that for a, b ∈ A(M),

α(M;m(M;a, b)) = α(M;a)α(M;b) , (3.3)

and for φ :M→ N,

µ(φ;α(M;a)) = α(N; A(φ;a)) . (3.4)

Now, imagine that α is part of a 1-parameter family of isomorphisms, starting
from the identity. Differentiating eq. (3.3) (and then setting α = id) gives

δH
1 α̇+ ṁ = δH

2 α̇+ δH
0 α̇ ,

thus ṁ = δHα̇. Likewise, differentiating the naturality condition (3.4) gives

µ̇+ δS
0α̇ = δS

1α̇ ,

thus µ̇ = δSα̇. Together, this is ṁ + µ̇ = δα̇. In other words, a trivial deformation is
given to first order by an exact cocycle.

A class in H2a(A,A) is called a Maurer-Cartan element if the bracket with itself is
0. Deformations of A are classified to first order modulo trivial deformations by
the Maurer-Cartan elements.

3.1.3. H1a. The symmetries of A are its natural automorphisms, so now consider α
a natural automorphism of A. This means that for a, b ∈ A(M),

α(M;ab) = α(M;a)α(M;b) , (3.5)

and for φ :M→ N,

A(φ;α(M;a)) = α(N; A(φ;a)) . (3.6)

Suppose that α is part of a 1-parameter family of natural automorphisms, start-
ing from the identity. Differentiating eq. (3.5) (and setting α = id) gives

δH
1 α̇ = δH

2 α̇+ δH
0 α̇ ,

thus 0 = δHα̇. Differentiating eq. (3.6) gives

δS
0α̇ = δS

1α̇ ,
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thus 0 = δSα̇. Together, this gives 0 = δα̇, but since C0a(A,A) = 0, this means that
α̇ ∈ H1a(A,A).

The set of natural automorphisms of A is a group. For two natural automor-
phisms, α and β, their product is simply α ◦β = α ◦1 β, defined by (α ◦β)(M;a) =
α(M;β(M;a)).

The Lie algebra of the group of natural automorphisms is the space H1a(A,A),
with the ◦-commutator. This operation is the Gerstenhaber bracket in this degree.

For a diagram of ∗-algebras, we should also require that α(M;a∗) = α(M;a)∗.
This just means that α⋆ = α. The condition on the derivative is the same. The
Lie algebra of infinitesimal natural ∗-automorphisms is thus the ⋆-invariant part of
H1a(A,A).

3.2. Full Hochschild cohomology.

3.2.1. Z2. A cocycle in the full Hochschild complex contains more structure. This
complex should describe the deformations of a diagram of algebras to something
more general.

The additional structure is an element ξ ∈ C2,0(A,A). For any P
ψ
← N

φ
←M, this

gives some ξ(ψ,φ) ∈ A(P). For a diagram of ∗-algebras, if ξ⋆ = ξ, then ξ(ψ,φ) is
anti-selfadjoint; this suggests that this is the first order part of a unitary. In general,
we should have an invertible element u(ψ,φ) ∈ 1+A(P) ⊂ Ã(P) (the unitalization
of A(P)).

Let m + µ + u be an example of this (yet undetermined) generalization of a
diagram of algebras. Suppose that if this is part of an 1-parameter family of such
structures (starting from A with u = 1) then the first derivative satisfies 0 = δ(ṁ +

µ̇+ u̇) and

[ṁ + µ̇+ u̇, ṁ + µ̇+ u̇]

is exact. These conditions have components in degrees (0, 3), (1, 2), (2, 1), and
(3, 0).

The conditions in degrees (0, 3) and (1, 2) are unchanged, thus we should still
require that m[M] is an associative product, and µ[φ] is a homomorphism.

The condition in degree (2, 1) is modified by terms involving u. This means that
the functoriality condition (3.2) on µmust be modified by u. The second derivative
of this condition should be, 0 = δHµ̈+δSü+2ṁ◦ u̇+2µ̇◦ µ̇+2µ̇• u̇+2u̇• µ̇, which
is

δS
0µ̈+δ

S
2µ̈+δ

H
0 ü+2ṁ◦2u̇+2µ̇◦1µ̇+2u̇•1µ̇+2u̇•2µ̇ = δS

1µ̈+δ
H
1 ü+2ṁ◦1u̇+2µ̇•1u̇ .

The condition in degree (3, 0) is new and only involves u. This suggests that u
satisfies some nonlinear cocycle condition indexed by B3X. The second derivative
of this condition should be 0 = δSü+ 2u̇ • u̇, which is

δS
0ü+ δS

2ü+ 2u̇ •2 u̇ = δS
1ü+ δS

3ü+ 2u̇ •1 u̇ .

This leads to the following definition.

Definition 3.1. A skew diagram of algebras (A, u) over a category X consists of

• for everyM ∈ X, an associative algebra A(M),
• for every φ :M→ N in X, a homomorphism A[φ] : A(M)→ A(N), and

• for every P
ψ
← N

φ
←M, an invertible element u(ψ,φ) ∈ 1+ A(P),
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such that:

• For any P
ψ
← N

φ
←M and a ∈ A(M),

A(ψ; A(φ;a))u(ψ,φ) = u(ψ,φ)A(ψ ◦ φ;a) ;

• for any Q
χ
← P

ψ
← N

φ
←M,

A(χ;u(ψ,φ))u(χ,ψ ◦ φ) = u(χ,ψ)u(χ ◦ψ,φ) .

Remark. The penultimate condition can be stated as commutativity of the diagram,

A(M) A(P)

A(N) A(P)

A[ψ◦φ]

A[φ] Ad[u(ψ,φ)]

A[ψ]

where Ad[u] : a 7→ uau−1.

This definition extends easily to some other categories of algebras.

Definition 3.2. For a skew diagram of ∗-algebras, u(ψ,φ) is required to be unitary.
For a skew diagram of unital algebras, u(ψ,φ) ∈ A(M).

By construction, if a diagram of algebras, A, is deformed to a 1-parameter family
of skew diagrams of algebras, then at first order the deformation determines an
element of Z2(A,A) whose bracket with itself is exact.

3.2.2. H2. By analogy withH2a(A,A), the Maurer-Cartan elements ofH2(A,A) should
classify the deformations of A into skew diagrams up to first order, modulo trivial
deformations. A trivial deformation should mean one in which all of the skew dia-
grams are isomorphic to A. This guides us to define morphisms of skew diagrams.

If A is a diagram of algebras, then a trivial deformation of A to skew diagrams
can be constructed using a 1-parameter family of isomorphisms. This is given to
first order by an element of C0,1(A,A) ⊕ C1,0(A,A). The first part is not new, and
corresponds to a family of homomorphisms (indexed by the objects of X). The
second part is a family of algebra elements indexed by morphisms in X. In the
case of ∗-algebras, a ⋆-invariant element of C1,0(A,A) is a family of anti-self-adjoint
algebra elements. This corresponds to a family of unitary (or generally, invertible)
elements of the unitalized algebras.

We don’t yet know what a morphism of skew diagrams is, but suppose that
(α, v) : (B, u) → (A, 1) is an isomorphism of skew diagrams, where B has the
same underlying vector spaces. The structures m, µ, and u of this (B, u) should
be determined by some formulae from α, v, and the structures of A. As before, the
product is defined by

α(M;m(M;a, b)) = α(M;a)α(M;b) ,

for a, b ∈ A(M)

Suppose that (α, v) is part of a 1-parameter family, starting from α = id and
v = 1. To first order, µ is given by µ̇ = δSα̇ + δHv̇ = δS

0α̇ − δS
1α̇ − δH

0 v̇ + δ
H
1 v̇; more

explicitly,

µ̇(φ;a) + α̇(N; A(φ;a)) + A(φ;a)v̇(φ) = A(φ; α̇(M;a)) + v̇(φ)A(φ;a) ,
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for φ :M→ N and a ∈ A(M). This is the derivative of

α(N;µ(φ;a))v(φ) = v(φ)A(φ;α(M;a)) ,

which defines µ.
To first order, u is given by u̇ = δSv̇ = δS

0v̇− δ
S
1v̇+ δ

S
2v̇. More explicitly,

u̇(ψ,φ) + v̇(ψ ◦ φ) = A(ψ; v̇(φ)) + v̇(ψ) ,

forM
φ
→ N

ψ
→ P. This is the first derivative of

α(P;u(ψ,φ))v(ψ ◦ φ) = v(ψ)A(ψ; v(φ)) ,

which defines u.

Remark. The orderings in the products in this formula are not obvious. This is
linked with the reversed order of multiplication in the definition of •.

In fact, there are 2 possible conventions. The definition of a skew diagram of
algebras can be changed so that the multiplication here and in the definition of •
is in the obvious order. The repercussion of this choice is that the definition of the
cup product would be more awkward. I am using the convention consistent with
Gerstenhaber and Schack [16, 17].

Further extrapolation leads to the following definition.

Definition 3.3. A morphism of skew diagrams of algebras (α, v) : (A, u) → (B, u ′) is
given by

• For every objectM ∈ ObjX, a homomorphism α[M] : A(M)→ B(M), and
• for every morphism φ :M→ N, an element v(φ) ∈ 1+B(N),

such that

• for φ :M→ N and a ∈ A(M),

α(N; A(φ;a)) v(φ) = v(φ)B(φ;α(M;a)) (3.7)

• and forM
φ
→ N

ψ
→ P,

α(P;u(ψ,φ)) v(ψ ◦ φ) = v(ψ)B(ψ; v(φ))u ′(ψ,φ) . (3.8)

For a morphism of skew diagrams of unital algebras, v(φ) ∈ B(N), and for a
morphism of skew diagrams of ∗-algebras it should be unitary.

Remark. Equation (3.7) generalizes the definition of a natural transformation. It can
be expressed as commutativity of the diagram

A(M) A(N)

B(N)

B(M) B(N) B(N)

A[φ]

α[M]

α[N]

·v(φ)

B[φ] v(φ)·

which is like the diagram defining naturality, but with the lower right corner mod-
ified.
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3.2.3. Z1. A diagram of algebras A is in particular a skew diagram, if we set u =

1. We can thus consider the group, SAut(A), of skew automorphisms of A, i.e.,
automorphisms of (A, 1) in the category of skew diagrams of algebras (which I
have not yet fully defined).

The defining properties of a skew automorphism (α, v) of A simplify to: α[M] is
a homomorphism,

α(N; A(φ;a)) v(φ) = v(φ) A(φ;α(M;a)) ,

and

v(ψ ◦ φ) = v(ψ) A(ψ; v(φ)) .

For a 1-parameter family of such automorphisms, starting from (id, 1), the first
derivatives of these conditions give precisely that α̇ + v̇ is closed. So, Z1(A,A) is
the space of infinitesimal skew automorphisms.

The Gerstenhaber bracket onC•(A,A) does not satisfy the graded Jacobi identity.
Nevertheless, Z1(A,A) actually is a Lie algebra. So, let’s compute the Gerstenhaber
bracket of ξ + υ and ξ ′ + υ ′ ∈ C0,1(A,A) ⊕ C1,0(A,A). Because of the low degrees,
ξ • υ ′ = 0. The only degree (0, 1) part of (ξ+ υ) ◦̄ (ξ ′ + υ ′) is ξ ◦ ξ ′ = ξ ◦1 ξ

′, given
by

(ξ ◦ ξ ′)(M;a) = ξ(M; ξ ′(M;a)) .

The degree (1, 0) part is υ • υ ′ + ξ ◦ υ ′ = υ •1 υ
′ + ξ ◦1 υ

′, given by

(υ • υ ′ + ξ ◦ υ ′)(φ) = υ ′(φ)υ(φ) + ξ(N;υ(φ)) .

(Note the order of multiplication.) The Gerstenhaber bracket is given by antisym-
metrizing this.

The Gerstenhaber bracket actually satisfies the Jacobi identity on the larger sub-
space of ξ + υ ∈ C1(A,A) such that δHξ = 0 (i.e., ξ[M] is a derivation). This Lie
algebra has subalgebras indexed by the objects and morphisms of X. For every
object M ∈ ObjX, there is the Lie algebra der(A(M)) of derivations. For every
morphism φ : M → N, there is a copy of A(N) with bracket equal to minus the
commutator. Obviously, der(A(M)) acts on A(M) by derivations. This Lie algebra
is the semidirect product of all of the subalgebras.

The corresponding group has subgroups indexed by the objects and morphisms
in X. For every object, M, there is the group of automorphisms, Aut(A(M)). For
every morphism with codomain M, there is the group of invertible elements in
1+A(M)op. The group of skew automorphisms of A is a subgroup of the semidirect
product of these groups.

This leads to the definition of composition.

Definition 3.4. If (α, v) : (A, u) → (B, u ′) and (β, v ′) : (B, u ′) → (C, u ′′) are mor-
phisms of skew diagrams of algebras, then their composition (γ, v ′′) = (β, v ′)(α, v) :
(A, u)→ (C, u ′′) is given by

γ(M;a) = β(M;α(M;a)) (3.9)

and

v ′′(φ) = β(N; v(φ)) v ′(φ) . (3.10)
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Remark. There are two natural ways of identifying the semidirect product of groups
with the Cartesian product as a set. The other choice is not compatible with the fact
that v(φ) ∈ 1+ A(N).

Theorem 3.1. With these definitions of the objects, morphisms, and compositions, skew
diagrams of algebras over X form a category.

The proof is a straightforward calculation. It also follows from Theorem 3.2,
below

3.2.4. H1. As I have noted, Z1(A,A) is a Lie algebra under the Gerstenhaber bracket.
It acts on C0(A,A) and on itself by the Gerstenhaber bracket, and the coboundary

δ : C0(A,A)→ Z1(A,A)

is equivariant, so its image is an ideal, and thusH1(A,A) is a Lie algebra. The obvi-
ous commutator bracket makes C0(A,A) a Lie algebra and −δ a homomorphism.
This suggests that the analogue ofH1(A,A) should be a quotient group of SAut(A).

Let ξ+υ ∈ Z1(A,A) and ζ ∈ C0(A,A). The Gerstenhaber bracket in these degrees
reduces to

[ξ+ υ, ζ] = ξ ◦ ζ = ξ ◦1 ζ,

so the action of (α, v) ∈ SAut(A) on ζ is also just α ◦1 ζ, i.e.,

(α ◦1 ζ)(M) = α(M; ζ(M)) .

The finite analogue of C0(A,A) is the set of functions w ∈ C0(A, Ã) such that
w(M) ∈ 1 + A(M) is invertible; this is a group under the naive product. The
finite analogue of −δ should be an equivariant homomorphism from this group to
SAut(A). Let (α, v) be the image of w. If w is part of a 1-parameter family starting
from w = 1, then the first derivative should be given by minus the coboundary,
i.e., α̇ = −δHẇ = −δH

0 ẇ+ δH
1 ẇ and v̇ = −δSẇ = −δS

0ẇ+ δS
1ẇ. Explicitly,

α̇(M;a) = ẇ(M)a− a ẇ(M)

and

v̇(φ) = ẇ(N) − A(φ; ẇ(M)) .

These requirements lead uniquely to the formulae,

α(M;a) = w(M)aw(M)−1

and

v(φ) = w(N)A(φ;w(M)−1) .

Definition 3.5. The group of outer skew automorphisms, SOut(A), is the quotient of
SAut(A) by this image.

This is the finite analogue of H1(A,A). I discuss this further in Section 3.6.
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3.2.5. H0. In this case the infinitesimal and finite concepts are the same.
H0(A,A) is the joint kernel of δS and δH in

C0,0(A,A) =
∏

M∈ObjX

A(M) .

Let ζ ∈ C0,0(A,A).
The Hochschild coboundary δHζ ∈ C0,1(A,A) is defined by, for M ∈ ObjX and

a ∈ A(M),

(δHζ)(M;a) = aζ(M) − ζ(M)a = [a, ζ(M)] .

The condition 0 = δHζ means precisely that ζ(M) ∈ A(M) is central for all M ∈
ObjX.

The simplicial coboundary δSζ ∈ C1,0(A,A) is defined by, for φ :M→ N in X,

(δSζ)(φ) = A(φ; ζ(M)) − ζ(N) .

The condition that 0 = δSζ is a sort of invariance.

Example. If X = G is a group (viewed as a category with one object, ∗ ∈ Obj(X))
then A : G→ Alg is equivalent to a single algebra A = A(∗) with an action of G by
automorphisms of A. The condition that 0 = δSζ means that ζ is G-invariant, and
0 = δHζmeans that ζ is central, so

H0(A,A) = Z(A)G .

For a diagram of ∗-algebras, ζ⋆ = ζ precisely if ζ(M) is self-adjoint.
For A : Loc → ∗-Alg a LCQFT, ζ = ζ⋆ ∈ H0(A,A) is an observable whose values

are unaffected by the action of other observables. Moreover, it can be measured in
any arbitrarily small region of spacetime.

3.3. Higher categorical interpretation. For the definitions of 2-categories and their
functors, transformations, and modifications, see [24, 25].

Definition 3.6. Let AlgInn be the strict 2-category whose underlying 1-category is
Alg and

• for any homomorphisms α,β : A → B, a 2-morphism α
u

=⇒ β is u ∈ 1 + B
such that for any a ∈ A,

uα(a) = β(a)u ;

• the horizontal composition of α
u

=⇒ β
v

=⇒ γ is α
vu
=⇒ γ (i.e., v ◦ u = vu);

• the vertical composition of α
u

=⇒ β and γ
v

=⇒ δ is v • u := v γ(u) = δ(u) v :
(γ ◦ α) =⇒ (δ ◦ β).

As a category, X is in particular a strict 2-category, with only identity 2-morphisms.
Both X and AlgInn are in particular weak 2-categories (bicategories).

Theorem 3.2. The category of skew diagrams of algebras over X is the category whose
objects are pseudofunctors from X to AlgInn (written as oplax functors) and whose mor-
phisms are lax transformations.
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Proof. An oplax functor (A, u) : X → AlgInn maps objects to objects, morphisms
to morphisms, and composable pairs to 2-morphisms. In a pseudofunctor, these
2-morphisms are required to be invertible. For eachM ∈ ObjX, it gives an algebra
A(M). For φ : M → N it gives a homomorphism A[φ] : A(M) → A(N). For
(ψ,φ) ∈ B2X, it gives u(ψ,φ) : A[ψ ◦ φ]⇒ A[ψ] ◦ A[φ].

By the definition of AlgInn, this means that u(ψ,φ) ∈ 1+ A(P) and

u(ψ,φ)A(ψ ◦ φ;a) = A(ψ; A(φ;a))u(ψ,φ) .

These are the components of a natural transformation, but because X has only
identity 2-morphisms, the naturality condition is trivial.

For any (χ,ψ,φ) ∈ B3X, there is a commutative diagram of 2-morphisms,

A[χ ◦ψ ◦ φ] A[χ] ◦ A[ψ ◦ φ]

A[χ ◦ψ] ◦ A[φ] A[χ] ◦ A[ψ] ◦ A[φ]

u(χ,ψ◦φ)

u(χ◦ψ,φ) idA[χ] ◦u(ψ,φ)

u(χ,ψ)◦idA[φ]

that is,

[idA(χ) ◦u(ψ,φ)] • u(χ,ψ ◦ φ) = [u(χ,ψ) ◦ idA(φ)] • u(χ ◦ψ,φ) .

(Here, id denotes the identity 2-morphism over a 1-morphism in AlgInn.) The def-
inition of horizontal composition in AlgInn gives that

idA(χ) ◦u(ψ,φ) = A(χ;u(ψ,φ)) : A(χ) ◦ A(ψ,φ)⇒ A(χ) ◦ A(ψ) ◦ A(φ)

and

u(χ,ψ) ◦ idA(φ) = u(χ,ψ) : A(χ ◦ψ) ◦ A(φ)⇒ A(χ) ◦ A(ψ) ◦ A(φ) .

The definition of vertical composition in AlgInn simplifies this to

A(χ;u(ψ,φ))u(χ,ψ ◦ φ) = u(χ,ψ)u(χ ◦ψ,φ) .

This shows that a pseudofunctor (A, u) : X → AlgInn is a skew diagram, and that
a skew diagram is a pseudofunctor.

Let (A, u) and (B, u ′) be diagrams of algebras over X. As we have just seen,
these are pseudofunctors X → AlgInn, written as oplax functors. A lax transfor-
mation (α, v) : (A, u) →̇ (B, u ′) consists of, for every object M ∈ ObjX, a ho-
momorphism α[M] : A(M) → B(M), and for every 1-morphism φ : M → N, a
2-morphism v(φ) : B[φ] ◦ α[M] ⇒ α[N] ◦ A[φ]. This means that v(φ) ∈ 1 +B(N)

and for any a ∈ A(M),

α(N; A(φ;a)) v(φ) = v(φ)B(φ;α(M;a)) .

This is precisely eq. (3.7).
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For P
ψ
← N

φ
←M, there is a commutative diagram of 2-morphisms,

B[ψ ◦ φ] ◦ α[M] α[P] ◦ A[ψ ◦ φ]

B[ψ] ◦B[φ] ◦ α[M] α[P] ◦ A[ψ] ◦ A[φ]

B[ψ] ◦ α[N] ◦ A[φ]

v(ψ◦φ)

u ′(ψ,φ)◦idα[M] idα[P] ◦u(ψ,φ)

idB[ψ] ◦v(φ) v(ψ)◦idA[φ]

that is,

[u ′(ψ,φ)◦idα[M]]•v(ψ◦φ) = [v(ψ)◦idA[φ]]• [idB[ψ] ◦v(φ)]• [u
′(ψ,φ)◦idα[M]] .

By the definitions of horizontal and vertical composition, this is precisely eq. (3.8).
Finally, consider two lax transformations (α, v) : (A, u) →̇ (B, u ′) and (β, v ′) :

(B, u ′) →̇ (C, u ′′), and denote their compositon as (γ, v ′′) : (A, u) →̇ (C, u ′′). At
M ∈ ObjX, γ[M] = β[M] ◦ α[M]; this is eq. (3.9). For φ : M → N, v ′′(φ) : C[φ] ◦
γ[M]⇒ γ[N] ◦ A[φ] is diagrammatically

B(N) A(N)

C(N) A(M)

C(N) B(M)

β[N]

α[N]

A[φ]

α[M]C[φ]

v ′(φ)

β[M]

v(φ)
B[φ]

and explicitly

v ′′(φ) = [idβ[N] ◦v(φ)] • [v
′(φ) ◦ idα[M]]

= β(N; v(φ)) v ′(φ) ,

which is eq. (3.10). �

Remark. There are a few minor variations possible on these definitions, depending
upon what is required to be invertible and lax versus oplax versions.

From this perspective, an additional structure becomes apparent: The category
of skew diagrams is actually a strict 2-category. The 2-morphisms are modifica-
tions between the lax transformations.

Again, let (A, u), (B, u ′) : X → AlgInn and (α, v), (β, v ′) : (A, u) →̇ (B, u ′). A
modification w : (α, v) →̈ (β, v ′) consists of, for every M ∈ ObjX, a 2-morphism
w(M) : α[M] ⇒ β[M], such that for any φ : M → N, there is a commutative
diagram of 2-morphisms,

B[φ] ◦ α[M] B[φ] ◦ β[M]

α[N] ◦ A[φ] β[N] ◦ A[φ]

idB[φ] ◦w[M]

v(φ) v ′(φ)

w(N)◦idA[φ]
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Applying the definition of AlgInn makes this explicit:

Definition 3.7. Given two 1-morphisms of skew diagrams, (α, v), (β, v ′) : (A, u)→
(B, u ′), a 2-morphism w : (α, v) ⇒ (β, v ′) consists of w(M) ∈ 1 +B(M) (for every
objectM) satisfying

w(M)α(M;a) = β(M;a)w(M) (3.11)

for all a ∈ A(M), and

v ′(φ)B(φ;w(M)) = w(N)v(φ) , (3.12)

for every φ :M→ N.
For w : (α, v) ⇒ (β, v ′) and w ′ : (β, v ′) ⇒ (γ, v ′′), the vertical composition

w ′ •w : (α, v)⇒ (γ, v ′′) is

(w ′ •w)(M) = w ′(M) •w(M) = w ′(M)w(M) .

For three skew diagrams, (A, u), (B, u ′), and (C, u ′′), four 1-morphisms (α, v),
(β, v ′) : (A, u) → (B, u ′) and (δ, v ′′), (γ, v ′′′) : (B, u ′) → (C, u ′′), and two 2-
morphisms, w : (α, v) ⇒ (β, v ′) and w ′ : (δ, v ′′) ⇒ (γ, v ′′′). The horizontal compo-
sition w ′ ◦w is

(w ′ ◦w)(M) = w ′(M) ◦w(M) = w ′(M)γ(M;w(M)) .

In particular, for a given diagram A, there is a 2-group of automorphisms, which
can be described by a crossed module involving the structures discussed in Sec-
tion 3.2.4. The crossed module consists of:

• the finite analogue of C0(A,A), i.e., the group of invertible elements of
C0(A, Ã) of the form w(M) ∈ 1+ A(M),

• the finite analogue of Z1(A,A), i.e., SAut(A),
• the finite analogue of −δ : C0(A,A)→ Z1(A,A), and
• the finite analogue of the action of Z1(A,A) onC0(A,A) by the Gerstenhaber

bracket.

It is easy to check that in Section 3.2.4, w : (id, 1)⇒ (α, v).
This gives interpretations of the finite analogues ofH1(A,A) andH0(A,A). SOut(A)

is the 0’th homotopy group of the automorphism 2-group of A. The group of in-
vertible elements of H0(A,A) is the first homotopy group of the automorphism
2-group of A.

3.4. Generalized AQFT. Definition 3.1 of a skew diagram of algebras suggests a
generalization of algebraic quantum field theory. With X = Loc or the category of
causally complete regions of a fixed spacetime, we can simply define a generalized
AQFT as a skew diagram of ∗-algebras over X. Einstein causality, the time-slice
axiom, and isotony can be required just as before. This sets AQFT models within a
larger class of structures.

Given a skew diagram (A, u) of algebras over X, there exists another category Y,
a functor π : Y → X, a diagram B : Y → Alg, and a (non-functorial) section σ of π
such that A = B ◦ σ.

If, in some attempt to construct an AQFT, it is only possible to construct a gener-
alized AQFT in this sense, then this is an indication that some additional structure
is required beyond the globally hyperbolic spacetimes in Loc.
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For example, a model with a spin-1
2

field cannot be formulated as a LCQFT over
Loc (see remarks following Cor. 13 in [11]) but can be formulated over the category
of globally hyperbolic spin-manifolds. It appears likely that such a model can be
formulated as a generalized AQFT with a skew diagram over Loc.

This situation is extremely similar to that considered in [3], and the relationship
deserves further investigation. Can a quantum field theory on a category Y fibered
in groupoids over Loc be described by a skew diagram over Loc? Can a general-
ized AQFT be described by a QFT over a fibered category? The answers are almost
certainly yes in some cases.

4. INTERACTION

As I have mentioned, an AQFT (or any diagram of algebras) has two deformable
structures: the associative products and the maps between algebras. These are
elements of the Hochschild bicomplex in degrees (0, 2) and (1, 1), respectively. This
means that there are 2 qualitatively different ways of deforming an AQFT. For
example:

• The transition from a classical to a quantum field theory deforms the asso-
ciative algebra structures.

• The transition from a free to an interacting field theory deforms the maps
between algebras.

It may not always be possible to disentangle these 2 aspects of deformation, but
it is known that the von Neumann algebra associated to any connected, precom-
pact region of spacetime is isomorphic to the (unique) hyperfinite type III1 factor
[6, 13, 12]. (This does not apply to classical field theories.) This strongly indicates
that deformation of maps is far more important to the deformation of a quantum
field theory.

If an AQFT, A, is deformed smoothly by changing the interaction, then this
should be described to first order by a class in H2a(A,A). This suggests that that
class can be given by an element of C1,1(A,A).

In practice, computing a cohomology class means computing some cocycle in
that class. This requires making some additional choice.

In principle, in order to compute the characteristic class of an interaction, we
should (for each M) identify the algebras for a family of field theories with a fixed
vector space. It may then be possible to differentiate the product and homomor-
phisms to get a cocycle. Different choices of identifications should give cohomolo-
gous cocycles.

To understand what is needed, it is simplest to first consider classical field theo-
ries. A classical algebra of observables is a commutative algebra of functionals on
the space of solutions. We need to choose a way of identifying solutions of differ-
ent field theories on a spacetime M. The simplest way to do this is by initial data.
Given a Cauchy surface Σ ⊂ M, solutions of field theories on M can be identified
with their initial data on Σ. The characteristic class of an interaction can thus be
computed by using an arbitrary choice of a Cauchy surface for every spacetime
M ∈ Obj(Loc).

To see how this can work, first consider a classical field theory given by some
Lagrangian density, L, on a spacetime M ∈ Obj(Loc). Let Σ1, Σ2 ⊂ M be Cauchy
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surfaces, and suppose for simplicity that5 Σ1 . Σ2 and that these are equal outside
of some compact set.

Assume for simplicity that this theory has no gauge degeneracies, so that the
phase space is just the set of solutions of the equations of motion for L. Such a
solution can be identified with initial data along Σ1 or Σ2. If we change the La-
grangian density to L + λV, then the equations of motion change, and evolution
from Σ1 to Σ2 defines a map from the phase space to itself. Differentiating with
respect to λ and then setting λ = 0 gives a vector field, Ξ, on the phase space.

Let

H :=

∫

{x∈M|Σ1.x.Σ2}

V .

This is a functional on the phase space, and Ξ is the Hamiltonian vector field given
by H. (This is immediate from Peierls’ construction of the Poisson structure [27,
19].)

If we define

θi(x) :=

{
1 x & Σi

0 otherwise

then

H =

∫

M

(θ1 − θ2)V (4.1)

(and we no longer need to assume Σ1 . Σ2).
This is good enough for classical field theory, but for a quantum field theory V

will need to be a distribution, which is best thought of as a linear map,

V : f 7→
∫

M

fV

from D(M) to the algebra of observables. Unfortunately, θ1 − θ2 is not smooth.
Note that because Σi is a Cauchy surface, Supp θi = J+Σi is past compact and

Supp(1− θi) = J
−Σi is future compact. (See [1] for a discussion of these concepts.)

This suggests a smoothed out analogue of the set of Cauchy surfaces:

Definition 4.1.

Θ(M) := {θ ∈ C∞(M,R) | Supp θ past compact, Supp(1− θ) future compact}

So, now let θ1, θ2 ∈ Θ(M) and suppose that θ1 − θ2 has compact support. Even
if V is distributional, we can define H = V(θ1−θ2). The action of this on a classical
observable, a, is the Poisson bracket,

Ξ(a) = {H,a} = {V(θ1 − θ2), a} .

Note that if Supp f ∼ Suppa, then {V(f), a} = 0, therefore

Ξ(a) = {V(χ), a} (4.2)

for any test function χ ∈ D(M) such that χ = θ1 − θ2 over J(Suppa).
This allows us to drop the assumption that θ1 − θ2 has compact support. By

construction, Supp(θ1−θ2) is future compact and past compact, so Supp(θ1−θ2)∩

5See Sec. 1.4 for notation.
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J(Suppa) is compact, and there exists χ ∈ D(M) equal to θ1 − θ2 on J(Suppa).
Equation (4.2) can then be taken as the definition of Ξ.

This was for a classical field theory. For a quantum field theory, Ξ should be a
derivation of the algebra A(M) of quantum observables. In the classical limit, the
commutator is approximately proportional to the Poisson bracket. This suggests
that the quantum version of (4.2) may be

Ξ(a) = −i
h̄
[V(χ), a] .

This is indeed a derivation, and we shall see that it is the right answer.

4.1. The character of an interaction. Let X ⊂ Loc be a small subcategory that
is closed under pullbacks (i.e., intersections) and such that the inclusion of any
causally complete open subset into M ∈ Obj(X) is a morphism in X. Let A be a
functor from X to topological C-algebras, satisfying Einstein causality.

In perturbative AQFT, the algebra A(M) is constructed from functionals, which
have clearly defined support in M. However, I am trying to be more general here.
Instead of defining the support of an observable, I have the following definitions
for the subalgebra of observables supported on a given subset and for the subal-
gebra of compactly supported observables.

Definition 4.2. For anyM ∈ ObjX and K ⊂M, let

A(M;K) :=
⋂

{ImA[ι] | ∀O ∈ ObjX, ι : O→M, such that K ⊂ Im ι}

and

Ac(M) :=
⋃

K⊂M compact

A(M;K) .

For φ :M→ N, Ac[φ] is the restriction of A[φ] to Ac(M).

Lemma 4.1. Ac : X→ Alg is a functor.

Proof. Any a ∈ Ac(M) is in A(M;K) for some compact K ⊂ M. Consider some
φ :M→ N. For ι1 : O1 → N, let ι2 : O2 →M be the pullback of ι1 by φ :M→ N. If
φ(K) ⊂ Im ι1, then K ⊂ Im ι2 so a ∈ ImA[ι2] and

A(φ;a) ∈ ImA[φ ◦ ι2] ⊆ ImA[ι1] .

Therefore,

A(φ;a) ∈ A(N;φ(K)) ⊂ Ac(N) .

�

Let V : D →̇ A be a linear natural transformation. The idea is to use this as an
interaction term for a Lagrangian, L+λV , although this works even if A is not given
by a Lagrangian, and it certainly doesn’t need to be free. In perturbative AQFT, it
is normally only assumed that V is additive, rather than linear; however, we are
only interested in the first order effect of this interaction, and only the linear part
of V will be relevant.

In order to choose a specific cocycle in the character of the interaction V , we
need a choice of smoothed out Cauchy surface on each spacetime, so following
Definition 4.1 define:
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Definition 4.3.

Θ(X) :=
∏

M∈ObjX

Θ(M) .

Lemma 4.2. For V : D →̇ A,M ∈ Obj(X), and f ∈ D(M),

VM(f) ∈ A(M; Supp f)

Proof. Let ι : O → M be such that Supp f ⊂ Im ι, and note that f = ι∗ι
∗f. By

naturality of V ,

VM(f) = VM(ι∗ι
∗f) = A(ι;VO(ι

∗f)) . �

Lemma 4.3. If K1 ∼ K2 ⊂ M are spacelike separated and compact, a ∈ A(M;K1), and
b ∈ A(M;K2), then ab = ba.

Proof. Let K ′
1 ⊂ M be the causal complement of K1. This is an open neighborhood

of K2.
Because K ′

1 is locally compact, every point of K2 has a relatively compact (i.e.,
with compact closure) open neighborhood. This gives a cover of K2 by relatively
compact open subsets of K ′

1. By compactness of K2, this has a finite subcover. The
union is a relatively compact open neighborhood of K2. Let O2 ⊂ K ′

1 ⊂ M be

the Cauchy development of this neighborhood. Let O1 := O2
′
⊂ M be the causal

complement of O2.
Write ιi : Oi → M for the inclusions. Because O1 and O2 are globally hyperbolic

neighborhoods of K1 and K2, a ∈ ImA[ι1] and b ∈ ImA[ι2]. Because these are
spacelike separated, a and b commute. �

Lemma 4.4. For V : D →̇ A additive, K ⊂M compact, a ∈ A(M;K), and f, g ∈ D(M),
if K ∼ Supp(f− g), then

[VM(f), a] = [VM(g), a] ,

where the bracket is the commutator.

Proof. J(K) is closed, so J(K) ∩ Supp f is compact. There exists another function
h ∈ D(Mr Supp(f− g)) that equals f (and hence g) over J(K) ∩ Supp f.

By definition, Supph is disjoint from Supp(f− g), so additivity of VM gives

VM(h+ [g− h] + [f− g]) = VM(h+ [g− h]) − VM(g− h)

+ VM([g− h] + [f− g])

VM(f) = VM(g) − VM(g− h) + VM(f− h) .

In particular, Supp(g− h) and Supp(f− h) are spacelike to K, so

[VM(f), a] − [VM(g), a] = [VM(f− h), a] − [VM(g− h), a] = 0 . �

Definition 4.4. Given φ :M→ N and θM ∈ Θ(M), define θ̃M ∈ C∞(JN(M)) by

θ̃M(φ(x)) = θM(x) x ∈M

θ̃M(x) = 0 x ∈ J−N(M)rM

θ̃M(x) = 1 x ∈ J+N(M)rM .

To avoid clutter I am sometimes not writing φ, as in J+N(M).
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K

M

JN(K)

θN = 1

θN = 0
θM = 1

θM = 0

FIGURE 1. An example of the possible arrangement of subsets of N
in Lemma 4.5. The shaded region represents Suppχ.

Lemma 4.5. For V : D →̇ A additive and any θ ∈ Θ(X), there exists a unique ΞV,θ ∈
C1,1(Ac,Ac) such that for φ :M→ N, K ⊂M compact, and a ∈ A(M;K), if χ ∈ D(N)

such that χ = θ̃M− θN on a neighborhood of JN(K) then ΞV,θ is defined by the commutator

ΞV,θ(φ;a) =
−i
h̄
[VN(χ),A(φ;a)] .

(See Fig. 1.)

Proof. Let O ⊂ M be a relatively compact neighborhood of K. Observe that θ̃M −

θN ∈ C∞(JN(M)) has future and past compact support, so J±(O) ∩ Supp(θ̃M − θN)

are compact, and therefore, J(O)∩ Supp(θ̃M − θN) is as well. Therefore there exists

a function χ ∈ D(N) that equals θ̃M − θN on JN(O) ⊃ JN(O). This satisfies the
conditions in the hypothesis, so such functions do exist.

By the previous lemma, −i
h̄
[VN(χ),A(φ;a)] is independent of the choice of such a

function. This is clearly linear in a ∈ A(M;K), but any a, b ∈ Ac(M) are contained
in A(M;K) for some K. Therefore this is a well defined linear map. �

Lemma 4.6. If V : D →̇ A is linear and θ ∈ Θ(X), then δΞV,θ = 0.

Proof. Firstly, δHΞV,θ measures whether ΞV,θ[φ] : Ac(M)→ Ac(N) is a derivation. By
construction, it is an inner derivation on A(M;K) for any compact K ⊂ M. Since
Ac(M) is the union of these algebras, this shows that δHΞV,θ = 0.

Now consider two composable morphisms P
ψ
←− N

φ
←−M, some compact K ⊂

M, and a ∈ A(M;K). Choose a relatively compact neighborhood O ⊂ M of K,
and functions χψ ∈ D(P) and χφ ∈ D(N) such that χψ = θ̃N − θP on JP(O) and
χφ = θ̃M − θN on JN(O).
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Note that χψ◦φ := χψ +ψ∗χφ satisfies

x ∈ JM(O) =⇒ χψ◦φ(ψ ◦ φ(x)) = θN(φ(x)) − θP(ψ ◦ φ(x))

+ θM(x) − θN(φ(x))

= θM(x) − θP(ψ ◦ φ(x))

x ∈ J−N(O)r O =⇒ χψ◦φ(ψ(x)) = χψ(φ(x)) + χφ(x)

= θN(φ(x)) − θP(ψ ◦ φ(x)) − θN(φ(x))

= −θP(ψ ◦ φ(x))

x ∈ J+N(O)r O =⇒ χψ◦φ(ψ(x)) = θN(φ(x)) − θP(ψ ◦ φ(x))

+ 1− θN(φ(x))

= 1− θP(ψ ◦ φ(x))

x ∈ J−M(O)rN =⇒ χψ◦φ(x) = χψ(x) = −θP(x)

x ∈ J+M(O)rN =⇒ χψ◦φ(x) = χψ(x) = 1− θP(x) .

So, χψ, χφ, and χψ◦φ satisfy the hypotheses of Lemma 4.5 for computing ΞV,θ(ψ; A(φ;a)),
ΞV,θ(φ;a), and ΞV,θ(ψ ◦ φ;a). Using the linearity and naturality of V , this gives

VP(χψ◦φ) = VP(χψ) + VP(ψ∗χφ) = VP(χψ) + A(ψ;VN(χφ)) .

Therefore

δSΞV,θ(ψ,φ;a) =

A(ψ; −i
h̄
[VN(χφ),A(φ;a)])−

−i
h̄
[VP(χψ◦φ),A(ψ◦φ;a)]+ −i

h̄
[VP(χψ),A(ψ◦φ;a)]

= 0 .

�

Lemma 4.7. For V : D →̇ A linear and θ, θ ′ ∈ Θ(X), there exists ΛV,θ ′−θ ∈ C
0,1(Ac,Ac)

such that for anyM ∈ ObjX, K ⊂M compact, a ∈ A(M;K), and ξ ∈ C∞(M) satisfying
ξ(x) = θ ′

M(x) − θM(x) for x ∈ J(K), we have

ΛV,θ ′−θ(M;a) = −i
h̄
[VM(ξ), a] ,

and ΞV,θ ′ = ΞV,θ + δΛV,θ ′−θ.

Proof. Clearly, Supp(θ ′
M−θM) is future and past compact, so J(K)∩Supp(θ ′

M−θM)
is compact, and there exists a function ξ ∈ D(M) that equals θ ′

M − θM on this
subset. By Lemma 4.4, ΛV,θ ′−θ(M;a) is independent of the choice of ξ, so ΛV,θ ′−θ ∈
C0,1(Ac,Ac) is well-defined.

By construction, ΛV,θ ′−θ[M] is a derivation on any A(M;K), so δHΛV,θ ′−θ = 0.
Now, let φ : M → N and choose χ ∈ D(N), ξM ∈ D(M), and ξN ∈ D(N)

suitable to compute ΞV,θ(φ;a), ΛV,θ ′−θ(M;a), and ΛV,θ ′−θ(N; A(φ;a)), respectively.
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If we define χ ′ := χ+ φ∗ξM − ξN, then

x ∈ JM(K) =⇒ χ ′(φ(x)) = θM(x) − θN(φ(x)) + ξM(x) − ξN(φ(x))

= θ ′
M(x) − θ

′
N(φ(x))

x ∈ J−N(K)rM =⇒ χ ′(x) = −θN(x) − ξN(x) = −θ ′
N(x)

x ∈ J+N(K)rM =⇒ χ ′(x) = 1− θN(x) − ξN(x) = 1− θ
′
N(x)

therefore (using linearity of V)

ΞV,θ ′(φ;a) = −i
h̄
[VN(χ

′),A(φ;a)]

= −i
h̄
[VN(χ),A(φ;a)] +

−i
h̄
[VN(ξN),A(φ;a)] −

−i
h̄
[VN(φ∗ξM),A(φ;a)]

= ΞV,θ(φ;a) + A(φ;ΛV,θ ′−θ(M;a)) −ΛV,θ ′−θ(N; A(φ;a))

= ΞV,θ(φ;a) + δ
SΛV,θ ′−θ(φ;a) . �

Putting these results together proves:

Theorem 4.8. If V : D →̇ A is linear, then it defines a cohomology class ΞV ∈ H2a(Ac,Ac),
which is the class of ΞV,θ ∈ C

1,1(Ac,Ac) for any θ ∈ Θ(X).

It is not completely clear whether linearity of V is a necessary assumption, as
only additivity was needed in Lemma 4.5.

A test function f ∈ D(M) in VM(f) serves as an infrared cutoff of the interaction.
It can be thought of as varying the coupling constant over M, and thus λVM(f)
should really be VM(λf). The characteristic class ΞV is supposed to describe the
first order effect of the interaction. From this perspective, even if V is nonlinear,
then only the first order, linear part of V should be used to construct ΞV .

I have tried to prove the results in this section as generally as possible, but this
has led to constructing ΞV ∈ H2a(Ac,Ac) rather than inH2a(A,A). In order to fix this,
we need to use some more specific category of topological algebras and A such
that Ac(M) ⊂ A(M) is dense and ΞV,θ extends uniquely and continuously. This is
true in the setting of perturbative AQFT.

5. PERTURBATIVE AQFT

Now turn to the setting of perturbative algebraic quantum field theory. Let Alg[[h̄]]
denote the category of h̄-adically complete C[[h̄]]-algebras and homomorphisms.

The h̄-adic topology can be defined by a norm such as ‖a‖ = e−k, where h̄k is the
largest power of h̄ dividing a. Completeness of A ∈ Obj Alg[[h̄]] means that any
power series in h̄with coefficients in A converges to an element of A.

Any C[[h̄]]-linear map between h̄-adically complete modules is norm-contracting,
and hence continuous. If A is a dense C[[h̄]]-submodule of a complete module and
h̄a ∈ A =⇒ a ∈ A, then any linear map from A to a complete module extends
uniquely to a homomorphism defined on the closure of A.

Similarly, Alg[[h̄, λ]] denotes the category of complete C[[h̄, λ]]-algebras.

Remark. These should really also be ∗-algebras, but for simplicity, I am ignoring
the involution here.
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As in the previous section, X ⊂ Loc is a small subcategory, closed under pull-
backs and inclusion of causally complete open sets. Let A : X → Alg[[h̄]] satisfy
Einstein causality and V : D →̇ A be additive.

Definition 5.1. A time ordered product ·T on A(M) is a commutative, associative
product such that if O1 & O2 ⊂ M, a ∈ A(M;O1), and b ∈ A(M;O2), then a ·T b =

b ·T a = ab.

Suppose that we have made a natural choice of time ordered product ·T on each
A(M); naturality, in this case, means that each A[φ] is a homomorphism under the
time-ordered products. Let Exp

T
denote the ·T exponential function.

The formal S-matrix SM : D(M)→ A(M)[[h̄−1λ]] is SM(f) := Exp
T
{ i
h̄
VM(λf)}; this

satisfies the causal factorization property that if f, g, h ∈ D(M) with Supp f & Supph,
then

SM(f+ g+ h) = SM(f+ g)SM(g)
−1SM(g+ h) . (5.1)

Naturality of V and ·T imply that S is natural.

Definition 5.2. The retarded Møller operator

Rf : A(M)→ A(M)[[λ]] (5.2)

is defined by Rf(a) := SM(f)
−1 [SM(f) ·T a].

This is a linear map, but not a homomorphism.

Remark. The formal S-matrix includes negative powers of h̄, so it is slightly sur-
prising that Rf does not. See [8, 21].

Remark. I am not concerned with the details of renormalization here, but these are
needed in order to actually construct ·T and V .

Remark. The interaction V is not actually used directly to construct the interacting
theory. We only need a natural time-ordered product and a natural formal S-matrix
satisfying eq. (5.1) and (5.2)

Note that, for a ∈ A(M;K),

Supp f & K =⇒ Rf(a) = a ,

Supp f . K =⇒ Rf(a) = SM(f)
−1a SM(f) .

Roughly speaking, the interaction to the future ofK is irrelevant and the interaction
to the past of K only gives a unitary transformation.

If we heuristically imagine that f is {0, 1}-valued, and f = 1 on the causal com-
pletion K ′′ of K, then Rf(a) uses the interacting theory to evolve a back to the past
boundary of Supp f, where it is identified with an observable of the free theory.
This is good enough to identify interacting observables supported in K with free
observables.

The problem is that, as we consider larger subsets of M, we must adjust f and
change the identification with free observables. No single choice of f works for all
observables, and this is why the algebraic adiabatic limit is needed.
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5.1. Adiabatic limit. The following is a formalization of the algebraic adiabatic
limit construction [9] as applied to constructing an interacting LCQFT.

Definition 5.3. Define a strict functor K : X → Cat (the category of small cate-
gories) by:

• For M ∈ ObjX, ObjK(M) is the set of pairs (K, f) where K ⊂M is compact
and f ∈ D(M) such that f = 1 on J+(K) ∩ J−(K).

• ForM ∈ ObjX, MorK(M) is the set of inclusions of compact subsets (with-
out any condition relating the test functions).

• For φ : M → N, the functor (Cat morphism) K(φ) : K(M) → K(N), is
defined by K(φ) : (K, f) 7→ (φ(K), φ∗f).

Definition 5.4. Given M ∈ ObjX, define a functor AV(M; −) : K(M) → Alg[[h̄, λ]]
such that:

• On objects, AV(M;K, f) ⊂ A(M)[[λ]] is generated by the image Rf(A(M;K)).
• On morphisms, it is determined by the condition that R : A(M; −) →̇ AV(M; −)

be a natural linear transformation — i.e., for any (K1, f1), (K2, f2) ∈ K(M)

with K1 ⊆ K2,

A(M;K1) A(M;K2)

AV(M;K1, f1) AV(M;K2, f2)

⊆

Rf1 Rf2

AV (M;K1,f1,K2,f2)

is a commutative diagram.

For any φ : M → N and (K, f) ∈ K(M), we can consider the restriction of A[φ]
to AV(M;K, f) ⊂ A(M)[[λ]]. To determine the codomain, observe that A[φ] ◦ Rf =
Rφ∗f ◦ A[φ], so

A(φ; AV(M;K, f)) ⊆ AV(N;φK,φ∗f) = AV(M;K(φ)(K, f)) .

Now consider (K1, f1, K2, f2) ∈ MorK(M). Observe that,

A[φ] ◦ AV(M;K1, f1, K2, f2) ◦ Rf1 = A[φ] ◦ Rf2 = Rφ∗f2 ◦ A[φ]

= AV(N;φK1, φ∗f1, φK2, φ∗f2) ◦ Rφ∗f1 ◦ A[φ]

= AV(N;φK1, φ∗f1, φK2, φ∗f2) ◦ A[φ] ◦ Rf1 ,

which implies that the restrictions of A[φ] give a natural transformation

AV(M; −) →̇ AV(N; −) ◦K(φ) . (5.3)

The transformation (5.3) and universality of the direct limit lim
−→AV(M; −) give a

homomorphism

lim
−→AV(M; −)→ lim

−→ {AV(N; −) ◦K(φ)} . (5.4)

Universality of lim
−→ {AV(N; −) ◦K(φ)} gives a homomorphism

lim
−→ {AV(N; −) ◦K(φ)}→ lim

−→AV(N; −) . (5.5)

Definition 5.5. Define a functor AV : X→ Alg[[h̄, λ]] by:

• ForM ∈ ObjX,

AV(M) := lim
−→AV(M; −) .
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K

J+(K)

J−(K ∪ Suppg)

θ = 1

θ = 0

g = 1− θ

f = θ

FIGURE 2. In Theorem 5.1, g = 1 − θ in J+K, and f = θ in J−(K ∪
Suppg). The shaded region is Suppg.

• For φ : M → N, AV [φ] : AV(M) → AV(N) is the composition of the homo-
morphisms (5.4) and (5.5).

This AV is the perturbative AQFT given by modifying A with the interaction λV .

5.2. Modified construction.

Definition 5.6. For f, g ∈ D(M) and a ∈ A(M),

R̃f,g(a) := SM(f)
−1[SM(f+ g) ·T a]SM(f+ g)

−1SM(f) . (5.6)

Remark. If we heuristically imagine that f and f + g are {0, 1}-valued, then R̃f,g(a)
evolves a forward to the future boundary of Supp(f+ g) and then back to the past
boundary of Supp f, where it is identified with an observable of the free theory.

This gives a uniform way of identifying interacting observables with free ob-
servables, because R̃f,g(a) does not change if f is changed in the future and g is
changed in the past.

Theorem 5.1. Given θ ∈ Θ(M), there exists a unique linear map (the modified Møller
operator) R̃θ : A(M)→ A(M)[[λ]] such that if K ⊂M compact, a ∈ A(M;K), and f, g ∈
D(M) with Supp(g−1+θ) . K and Supp(f−θ) & K∪Suppg, then R̃θ(a) = R̃f,g(a).

The different regions are sketched in Figure 2.

Proof. Supp(1 − θ) ∩ J+(K) is compact, so such a g exists, and (Supp θ) ∩ J−(K ∪
Suppg) is compact, so such an f exists.

For a given choice of g, if f ′ is another possible choice of f, then Supp(f − f ′) &
K ∪ Suppg. This implies that

SM(f
′ + g) ·T a = SM(f

′)SM(f)
−1[SM(f+ g) ·T a]

and

SM(f
′ + g) = SM(f

′)SM(f)
−1SM(f+ g) ,

so the right side of (5.6) is independent of the choice of f. If g ′ is another possible
choice of g, then Supp θ ∩ J−(K ∪ Suppg ∪ Suppg ′) is compact, so a choice of f
exists that is compatible with both g and g ′. Now, Supp(g− g ′) . K, so

SM(f+ g
′) ·T a = [SM(f+ g) ·T a]SM(f+ g)

−1SM(f+ g
′) ,
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K

θN = 1

θN = 0

θM = 0

θM = 1g2 = 1− θM

f2 = θN

M

FIGURE 3. Some of the relationships in the proof of Theorem 5.2. The
darker shaded region is Suppg2. The lighter shaded region is Suppχ.

and therefore the right side of (5.6) is independent of the choice of g, i.e., R̃θ(a) is
well defined for a ∈ A(M;K).

For any a, b ∈ Ac(M), there exists K ⊂ M compact such that a, b ∈ A(M;K).
Any larger compact set determines the same R̃θ(a), therefore R̃θ is well defined.
Because a+ b ∈ A(M;K), we have R̃θ(a+ b) = R̃θ(a) + R̃θ(b), therefore R̃θ is linear
on Ac(M). Finally, this extends uniquely to A(M). �

Theorem 5.2. Given θ ∈ Θ(X), there is a unique functor AV,θ : X → Alg[[h̄, λ]] such
that:

• AV,θ(M) = A(M)[[λ]];
• R̃θ : A →̇ AV,θ is a natural linear transformation.

Proof. Because R̃θM : A(M)[[λ]] → A(M)[[λ]] is equal to the identity plus higher
order terms in λ, it is automatically a bijective linear map. The naturality condition
means that for any φ :M→ N

A(M) A(N)

A(M)[[λ]] A(N)[[λ]]

R̃θM

A[φ]

R̃θN

AV,θ[φ]

should commute. Because R̃θM is injective, this clearly defines a linear map from
Im R̃θM to Im R̃θN , and hence A(M)[[λ]] → A(N)[[λ]]. It is automatically functorial.
We need to check that it is a homomorphism.

Consider a ∈ A(M;K) and compare R̃θM(a) with R̃θN(A(φ;a)). First, note that if
R̃θM(a) is computed with f, g ∈ D(M) as before, then

A(φ; R̃θM(a)) = SN(φ∗f)
−1[SN(φ∗f+φ∗g) ·TA(φ;a)]SN(φ∗f+φ∗g)

−1SN(φ∗f) .

In this formula, φ∗f can safely be replaced with a test function onN, as long as the
support of the difference is & φ(K ∪ Suppg).
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With this in mind, choose g1 ∈ D(M) such that Supp(g1 − 1 + θM) . K. Again,
denote by θ̃M ∈ C∞(JN(M)) the function such that φ∗θ̃M = θM and θ̃M = 1 in the
future of φ(M) and 0 in the past. Next choose χ ∈ D(N) such that χ = θ̃M − θN
on J(φ(K)) ∪ J−(φ(Suppg1)). Define g2 = φ∗g1 + χ. Choose f2 ∈ D(N) such that
Supp(f2 − θN) & φ(K ∪ Suppg1) ∪ Suppg2. Finally, let f1 = f2 + χ. (Some of this is
sketched in Fig. 3.)

The point of these choices is that they can be used to compute A(φ; R̃θM(a)) and
R̃θN(A(φ;a)), and f1 + φ∗g1 = f2 + g2. Now,

A(φ; R̃θM(a)) = SN(f1)
−1[SN(f2 + g2) ·T A(φ;a)]SN(f2 + g2)

−1SN(f1)

and

R̃θN(A(φ;a)) = SN(f2)
−1[SN(f2 + g2) ·T A(φ;a)]SN(f2 + g2)

−1SN(f2)

= SN(f2)
−1SN(f1)A(φ; R̃θM(a))SN(f1)

−1SN(f2) .

This shows that for b ∈ R̃θM(A(M;K)),

AV,θ(φ;b) = SN(f2)
−1SN(f1)A(φ;b)SN(f1)

−1SN(f2) . (5.7)

This AV,θ[φ] is manifestly a homomorphism.
Finally, this extends uniquely to all of AV,θ(M). �

Corollary 5.3. For any θ, θ ′ ∈ Θ(X), there is a natural isomorphism α : AV,θ →̇ AV,θ ′

such that

A(M)

AV,θ(M) AV,θ ′(M)

R̃θM
R̃θ ′
M

αM

commutes for anyM ∈ ObjX.

Proof. The calculation is the same as in the previous proof, although slightly sim-
plified. More formally, this result follows if we apply the previous theorem to a
doubled version of the category X in which every object of X appears as 2 isomor-
phic copies. �

Theorem 5.4. For any θ ∈ Θ(X), AV,θ is naturally isomorphic to AV .

Proof. First, forM ∈ ObjX, K ⊂M compact, θ ′ ∈ Θ(M) such that Supp(1−θ ′) . K,
and a ∈ A(M;K), we can compute R̃θ ′(a) using g = 0. So, if Supp(f−θ ′) & K, then

Rf(a) = R̃f,0(a) = R̃θ ′(a) .

Now, for any (K, f) ∈ K(M), there exists θ ′ ∈ Θ(M) such that Supp(f − θ ′) &

K. So, the isomorphism that intertwines R̃θ ′ with R̃θM also maps AV(M;K, f) to
AV,θ(M). These maps are consistent with AV(M; −), so these give a homomorphism
from AV(M) = lim

−→AV(M; −) to AV,θ(M). For the same reason, this homomorphism
is natural.

The image of AV(M;K, f) is densely generated by R̃θM(A(M;K)), but these sub-
algebras densely generate AV,θ(M), therefore this homomorphism is surjective. It
is injective by construction, therefore it is an isomorphism. �
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This shows that AV,θ is completely equivalent to AV . It has the advantage of
being more concrete. Whereas AV(M) is defined abstractly as a limit, AV,θ(M) is
just A(M)[[λ]].

5.3. Maurer-Cartan. The computations in the previous section make it possible to
explicitly show that the characteristic class ΞV of an interaction is a Maurer-Cartan
element of H2a(A,A), provided that a natural time-ordered product exists. In this
section A : X → Alg[[h̄]] satisfies Einstein causality and has a natural time-ordered
product as in the previous section.

If V is nonlinear, then only its linear part is relevant at first order in λ, so in this
section I will assume that V : D →̇ A is a natural linear transformation.

For θ ∈ Θ(M), the map R̃θ is a formal power series in λ, so denote this expansion
explicitly as

R̃θ = id+λR̃
(1)
θ + 1

2
λ2R̃

(2)
θ + . . . . (5.8)

Inverting this gives

R̃−1
θ = id−λR̃

(1)
θ + λ2

(

R̃
(1)
θ ◦ R̃(1)

θ − 1
2
R̃
(2)
θ

)

+ . . . . (5.9)

Theorem 5.5. For θ ∈ Θ(X), and φ :M→ N in X,

AV,θ[φ] ≡ A[φ] + λΞV,θ[φ] mod λ2 ,

where ΞV,θ ∈ C
1,1(A,A) is now h̄-adically completed.

Proof. This follows from eq. (5.7) by expanding SN to first order in λ. �

For θ ∈ Θ(X), I would like to compute a cochain ΨV,θ such that AV,θ = A+λΞV,θ+
1
2
λ2ΨV,θ + . . . . By definition, for φ :M→ N,

AV,θ[φ] = R̃θN ◦ A[φ] ◦ R̃−1
θM
.

Using (5.8) and (5.9), this gives

ΞV,θ[φ] = R̃
(1)
θN

◦ A[φ] − A[φ] ◦ R̃(1)
θM

(5.10)

and leads to:

Definition 5.7. For V : D →̇ A linear, θ ∈ Θ(X), let ΨV,θ ∈ C1,1(A,A) be such that
for φ :M→ N,

ΨV,θ[φ] = R̃
(2)
θN

◦ A[φ] − A[φ] ◦ R̃(2)
θM

− 2 ΞV,θ[φ] ◦ R̃
(1)
θM
. (5.11)

Lemma 5.6. For V : D →̇ A linear, θ ∈ Θ(X), φ :M→ N, K ⊂M compact, if O ⊂M
is a neighborhood of

K ∪ (J+K ∩ Supp[1− θM]) ∪ (J−K ∩ Supp θM) ,

and χ, f2 ∈ D(N), such that

χ = θ̃M − θN on JNO

f2 = θN on J−N(O ∪ Suppχ)
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(where θ̃M ∈ Θ(JNO) is again the extension of θM by 1 in the future and 0 in the past)
then for any a ∈ A(M;K),

ΨV,θ(φ;a) =
−1

h̄2
[VN(χ), [VN(χ),A(φ;a)]]

+ −1

2h̄2
[VN(2f2 + χ) ·T VN(χ) − VN(2f2 + χ)VN(χ),A(φ;a)] . (5.12)

Moreover, for any such φ and K, such O, χ, and f2 exist.

Proof. The map defined in (5.6) is natural in the sense that for φ :M→ N,

A[φ] ◦ R̃f,g = R̃φ∗f,φ∗g ◦ A[φ] .

Explicitly,

R̃
(1)
f,g(a) =

−i
h̄
(VM(f)a+ aVM(g) − VM(f+ g) ·T a) .

This only depends upon f in J−K and g in J+K, therefore R̃
(1)
f,g(a) = R̃

(1)
θM

(a) if f = θM
in J−K and g = 1− θM in J+K. If O ⊂M is a neighborhood of

K ∪ (J+K ∩ Supp[1− θM]) ∪ (J−K ∩ Supp θM) ,

then f and g can be chosen that are supported in O, therefore R̃
(1)
θM

(a) is in the image
of A[ι], where ι : O→M is the inclusion.

From the properties of R̃, R̃
(2)
f2,g2

◦A(φ;a) = R̃(2)
θN
◦A(φ;a), provided that g2 = 1−θN

on J+NK, and f2 = θN on J−N(K ∪ Suppg2).
Likewise, for f1 ∈ D(N) and g1 ∈ D(M),

A[φ] ◦ R̃(2)
θM

(a) = R̃
(2)
f1,φ∗g1

◦ A(φ;a)

if g1 = 1− θM on J+K and f1 = θ̃M on J−N(K ∪ Suppg1).
Thirdly, for χ, f1 ∈ D(N) and g1 ∈ D(M),

ΞV,θ[φ] ◦ R̃
(1)
θM

(a) = −i
h̄
[VN(χ),A[φ] ◦ R̃

(1)
θM

(a)]

= −i
h̄
[VN(χ), R̃

(1)
f1,φ∗g1

◦ A(φ;a)]

if χ = θ̃M − θN on JNO, f1 = θ̃M on J−NK, and g1 = 1− θM on J+K.
If all of these conditions are satisfied, then

ΨV,θ(φ;a) =
(

R̃
(2)
f2,g2

− R̃
(2)
f1,φ∗g1

)

◦A(φ;a)+ 2i
h̄
[VN(χ), R̃

(1)
f1,φ∗g1

◦A(φ;a)] . (5.13)

If f1 − f2 = g2 − φ∗g1 = χ, then the right side of (5.13) equals

−1

h̄2
[VN(χ), [VN(χ),A(φ;a)]]+

−1

2h̄2
[VN(f1+f2)·TVN(χ)−VN(f1+f2)VN(χ),A(φ;a)] .

This is most easily seen by expanding eq. (5.7) to second order in λ. Note that g1
and g2 do not appear in this expression.

Now suppose that O ⊂ M, and χ, f2 ∈ D(N) satisfy the hypotheses of this
lemma. O ⊂ M is an open neighborhood of the compact set J+K ∩ Supp(1 − θM),
therefore there exists a function in D(O) that equals 1 on J+K∩ Supp(1− θM); mul-
tiplying this with 1 − θM gives a function g1 ∈ D(M) such that g1 = 1 − θM on
J−K and Suppg1 ⊂ O. Define f1 := f2 + χ and g2 := φ∗g1 + χ. The conditions are
satisfied as follows:

• f1 = θ̃M on J−(K ∪ Suppg1), because K ⊂ O, Suppg1 ⊂ O, and f1 = f2 + χ =

θ̃M on J−NO.
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• g1 = 1− θM on J+K, by construction.
• f2 = θN on J−N(K ∪ Suppg2), because Suppg2 ⊂ Suppg1 ∪ Suppχ ⊂ O ∪

Suppχ.
• g2 = 1− θN on J+NK, because φ∗g1 + χ = 1− θ̃M + (θ̃M − θN) on J+NK.
• χ = θ̃M − θN on JNK, by hypothesis.

This verifies eq. (5.12) under the given hypotheses.
Finally, consider any φ :M → N and K ⊂M compact. The sets J+K ∩ Supp(1 −

θM) and J−K ∩ Supp θM are compact, because Supp(1 − θM) and Supp θM are (re-
spectively) future-compact and past-compact. Therefore,

K2 := K ∪ (J+K ∩ Supp[1− θM]) ∪ (J−K ∩ Supp θM)

is compact. BecauseM is locally compact, every point has a precompact neighbor-
hood. By compactness, K2 has a finite cover by precompact open sets, therefore K2
has a precompact open neighborhood, O ⊂M.

The function θ̃M−θN is defined over JNM, where it has future and past-compact

support. Because the closure O is compact, there exists χ ∈ D(N) with compact

support in JNM and χ = θ̃M − θN over JO.

Finally, because Suppχ and O are compact and Supp θN is past-compact, there

exists f2 ∈ D(N) such that f2 = θN over J−N(O ∪ Suppχ). �

Remark. I began by assuming the existence of a natural time-ordered product, ·T.
However, in the construction of ΨV,θ it is only used on the image of V , not on
arbitrary elements of the algebra. This suggests that it may be sufficient to only
define ·T on this subspace.

Theorem 5.7. 0 = δΨV,θ + [ΞV,θ, ΞV,θ].

Proof. Both terms have components in degrees (2, 1) and (1, 2), so this is really two
equations.

In degree (2, 1), we need to show that 0 = δSΨV,θ + 2 ΞV,θ ◦ ΞV,θ. More explicitly,

for any P
ψ
←− N

φ
←−M, we need to show that (δSΨV,θ)[ψ,φ] = −2 ΞV,θ[ψ] ◦ ΞV,θ[φ].

The first 2 terms in eq. (5.11) cancel perfectly in δSΨV,θ. This leaves

(δSΨV,θ)[ψ,φ] = ΨV,θ[ψ] ◦ A[φ] − ΨV,θ[ψ ◦ φ] + A[ψ] ◦ ΨV,θ[φ]

= −2 ΞV,θ[ψ] ◦ R̃
(1)
θN

◦ A[φ] + 2 (ΞV,θ[ψ ◦ φ] − A[ψ] ◦ ΞV,θ[φ]) ◦ R̃
(1)
θM
.

Because 0 = δSΞV,θ,

(δSΨV,θ)[ψ,φ] = −2 ΞV,θ[ψ] ◦ R̃
(1)
θN

◦ A[φ] + 2 ΞV,θ[ψ] ◦ A[φ] ◦ R̃
(1)
θM

= −2 ΞV,θ[ψ] ◦ Ξ[φ]

by eq. (5.10).
In degree (1, 2), we need to show that 0 = δHΨV,θ + 2 ΞV,θ • ΞV,θ. More explicitly,

for any φ : M → N and a, b ∈ A(M), we need to show that (δHΨV,θ)(φ;a, b) =

2 ΞV,θ(φ;a)ΞV,θ(φ;b).
Suppose that a, b ∈ A(M;K), for some compact K ⊂ M, and let χ be as in

Lemma 5.6. The last term of eq. (5.12) is manifestly a derivation, so it doesn’t
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contribute to δHΨV,θ. Note that in any associative algebra, the commutator satisfies

[A, [A,BC]] = [A, [A,B]C+ B[A,C]]

= [A, [A,B]]C+ 2[A,B][A,C] + B[A, [A,C]] .

This leaves

(δHΨV,θ)(φ;a, b) = −A(φ;a)ΨV,θ(φ;b) + ΨV,θ(φ;ab) − ΨV,θ(φ;a)A(φ;b)

= −2

h̄2
[VN(χ),A(φ;a)][VN(χ),A(φ;b)]

= 2 ΞV,θ(φ;a)ΞV,θ(φ;b) . �

In terms of the cohomology class ΞV ∈ H2a(A,A) of ΞV,θ, this means simply that it
satisfies the Maurer-Cartan equation,

[ΞV , ΞV ] = 0 . (5.14)

This is the analogue of the Jacobi identity satisfied by a Poisson structure.

6. CONCLUSIONS

This paper has presented several new ideas and perspectives on constructing mod-
els in algebraic quantum field theory.

The first is that the algebraic structures and properties of a locally covariant
quantum field theory are naturally organized in the Hochschild bicomplex. This
makes it possible to consider deformations of a quantum field theory as a general-
ization of deformation quantization of a Poisson manifold.

This perspective leads to the definition of skew diagrams of algebras (Def. 3.1) as
a generalization of functors X → Alg. Because the other axioms of AQFT are still
meaningful for a skew diagram, this is a more general framework for building
physical models.

An AQFT model is a functor A : X → Alg, and the global symmetries of the
model (e.g., the U(1)-symmetry associated to charge conservation) are described
as the natural automorphisms of A. This cohomological perspective leads to a
more general definition of symmetry as skew automorphisms (Def. 3.3) or outer skew
automorphisms (Def. 3.5) of A. This means that some models may have symmetries
that were not previously recognized.

From this perspective, an interaction is analogous to a bivector field on a man-
ifold. Just as bivectors can be constructed by multiplying and adding vectors, in-
teractions may be constructed by multiplying and adding infinitesimal skew auto-
morphisms, using the Gerstenhaber algebra structure on Hochschild cohomology.
For an interaction of this form, the full interacting model may then be constructed
directly by methods similar to those in [7], generalizing the strict deformation
quantization construction in [29].

One way of deforming AQFT is to begin with a model defined by a Lagrangian
and then perturb it by adding an interaction term, V , to that Lagrangian. I have
explicitly constructed (Thm. 4.8) the characteristic Hochschild cohomology class
ΞV of such an interaction term. However, this construction does not require the
initial theory to be defined by a Lagrangian. This makes it possible to perturb a
non-Lagrangian model with a Lagrangian interaction.
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The construction of this characteristic class required introducing a notion (Def. 4.1)
of a smoothed out Cauchy surface as a function that vanishes in the distant past
and equals 1 in the distant future. In order to compare this characteristic class
with the construction of perturbative AQFT, I introduced an alternative version
(Thm. 5.2) of that construction that uses smoothed out Cauchy surfaces instead of
the algebraic adiabatic limit. This is more concrete than the standard construction,
so this is likely to be advantageous for many calculations.

Finally, assuming the existence of a time-ordered product, I showed that the
characteristic class of an interaction satisfies the appropriate Maurer-Cartan equa-
tion (5.14).

Much remains to be done. In particular, nontrivial examples of skew automor-
phisms would be very useful, because they can be used to construct interacting
models. This cohomology is defined in a purely algebraic setting, so it needs to be
extended or adapted to apply to C∗-algebras or von Neumann algebras.

This is not the first cohomological structure to be associated with quantum field
theory. Rejzner used a BV-bicomplex to construct gauge theories in perturbative
AQFT [30]. Hochschild cohomology needs to be extended to gauge theories, and
combining the Hochschild complex with the BV-bicomplex may lead to further
new perspectives.
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discussions regarding this project. In particular, Kasia guided me through pertur-
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