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Three steps forward for predictability. Consideration of methodological robustness, indexical and 

prosodic factors, and replication in the laboratory.  

 

Introduction 

As the studies in this special edition demonstrate, there is now abundant evidence that phonetic 

forms of linguistic categories (i.e. words and their constituent sounds) are shaped by a number of 

different factors, and that these governing factors include probabilistic patterns reflecting 

predictability (Shaw and Kawahara 2018). These studies have shown that phonetic forms vary as a 

function of both phonological properties (e.g. phonotactic predictability) and also message 

predictability or informativity (Cohen Priva 2015, 2017). More controversial, perhaps, are related 

claims that abstract properties of phonological systems change over time as a consequence of the 

systematic phonetic patterns shaped by the long-term effects of predictability (e.g. Wedel et al 

2013, Bowern & Babinski 2018). 

While fully recognising the analytic and theoretical richness of the work on predictability illustrated 

in this collection, our aim here is to highlight what appears to be a fragility to this work commonly 

hinging on small differences in acoustic measurements, or interpretations of small statistical effect 

sizes.  

We first highlight a number of caveats about the methods and assumptions encountered in many 

studies of predictability effects, particularly in reference to corpus-based approaches. Some of the 

arguments expressed here are relevant not just to predictability work but also to corpus-based 

research in general. We then consider the wide range of factors that influence patterns of variability 

in phonetic forms, taking a broad perspective on what is meant by ‘the message’ in order to show 
that predictability effects need to be considered alongside many other factors. 

We end by suggesting a number of ways forward to extend our understanding of the form-

predictability relationship. While some of the points we make are not being made here for the first 

time, they bear repeating at a time when corpus-based linguistic research represents something of 

an intellectual gold rush.  

 

Corpus-based methods 

Much of the research on predictability effects is characterised by exploitation of large datasets 

extracted from automatically searchable corpora. (Experimental approaches which control morpho-

phonological content or simulate specific speaker or listener effects are increasing, e.g. Lam & 

Watson 2014, Buz et al 2016, Olejarczuk et al 2018, Tomaschek et al 2018.) Facilitated by the 

availability of large collections of conversational speech and by the development of increasingly 

sophisticated automatic analysis methods, corpus-based work is growing rapidly, with applications 

to many fields including sound change (e.g. Hay & Foulkes 2016) and forensic speaker comparison 

(e.g. Hughes 2014).  

Corpora offer many advantages, reviewed in detail by Harrington (2010). In particular, they provide 

the scale that enables researchers to tackle questions that can only be addressed by analysing large 

datasets, such as determining the statistical properties of speech as experienced by members of a 

speech community. However, corpus-based studies are also characterised by various challenges. 

Some of these are well known, but others are less widely recognised and their potential effects on 
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descriptive data and theoretical claims are less clear. This is especially so when the data presented 

are sets of acoustic measurements. For example, studies of predictability effects have focussed 

particularly on measures such as VOT (voice onset time), the two lowest formants of vowels, and 

word durations. The effects reported and interpreted are thus often based on inherently fine-

grained and fleeting acoustic details, or phonetic units that are short and problematic to measure 

even in studio-quality acoustic recordings. Here we highlight four specific issues: (i) within- and 

between-corpus variability, (ii) labelling of corpora, (iii) resolution of measurements, and (iv) 

robustness of statistical models. 

 

Within- and between-corpus variability 

Many researchers testing hypotheses about the effects of predictability on phonetic variation exploit 

pre-existing corpora, i.e. resources that have been assembled for a range of different purposes by 

other research teams using a variety of methods and corpus building and mining tools. For example, 

the speech samples available might include various modes of talk (interview, conversation, text 

reading), and varying methods of transmission and recording, in turn yielding different audio 

qualities. By way of illustration, the ONZE corpus (Origins of New Zealand English; Gordon et al. 

2007) contains material from speakers born across a range of more than 120 years, and recorded 

from 1946 to the present day. The technical quality of recordings naturally varies considerably, due 

to both the recording medium (from acetate discs to digital facilities) and environment (open field to 

sound-proofed booth).  

Technical differences create wide variation in acoustic quality, which in turn is bound to affect any 

acoustic measurements to be taken and the technical ease with which they can be extracted. 

Telephone transmission, for instance, removes or damps frequencies below around 300 Hz and 

above around 3500 Hz, depending on the telephony system. Spectral material outside the 300-3500 

Hz range is therefore impaired or totally unavailable for acoustic analysis. This leads in particular to 

loss of the high frequency energy characterising many fricatives, and to artificial overestimation of 

the first formant (F1) of vowels, especially with close vowels such as [i] (where F1 naturally falls close 

to 300 Hz for adult males). Künzel (2001) reports an upshift in F1 of up to 14% in landline recordings. 

The effects on mobile/cell lines are both stronger and more variable: Byrne & Foulkes (2004) found 

an average upshift of 29% for F1 compared to simultaneous clean recordings, with all vowel 

categories significantly affected to some extent. The effects of technical issues on data derived from 

a corpus are further investigated by De Decker (2016) and Rathcke et al. (2017). 

 

Labelling of corpora 

Parsing, labelling and searching of corpora can be done via a range of tools, with or without manual 

correction of the labelling (Harrington 2010). Forced alignment tools (e.g. LaBB-CAT, MAUS, FAVE) 

are widely available and improving in accuracy as the years go by, but are still far from perfect. The 

choice of tools and the extent of manual correction applied to a corpus naturally affect the accuracy 

of any extracted data.  

Automatic labelling faces particular difficulties with recordings that are suboptimal in quality or 

which involve multiple talkers in natural conversation (Das et al. 2010). Forced alignment, which in 

principle is usually segment-based, can struggle to identify boundaries where acoustic cues leak 

across segments. This may potentially occur over long sequences, as e.g. West (1999) shows for cues 
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to /l/ and /r/. Moreover, natural speech differs markedly from the idealised citation forms typically 

elicited in the laboratory. The speech signal is more appropriately approached as a series of acoustic 

landmarks rather than a messy series of segments (cf. Hockett’s much cited analogy of Easter eggs 

on a conveyor belt, smashed by rollers, which captures the massiveness of some surface phonetic 

variation, but does not recognize its systematicity).  That is, the abrupt spectral change events in the 

speech signal, known as acoustic landmarks (Stevens 2002), and associated with consonantal 

closures and releases, as well as acoustic minima associated with glides and maxima associated with 

vowels, provide an initial analysis structure for a spoken waveform which reflects the underlying CV 

structure of the words.  But these time-specifiable acoustic events do not necessarily define regions 

over which information about a phonemic segment is available; as noted above, information about 

the features of a segment can be spread over a much larger region of the speech signal. Even more 

tellingly, comparisons of the performance of forced alignment systems typically report measurement 

resolution in segment labelling of between 10 and 25 ms (Brognaux et al 2012, Sonderegger & 

Keshet 2012, Fromont & Watson 2016).  

 

Measurement resolution 

An important but rarely acknowledged issue to bear in mind is that, under normal circumstances, 

there is no objective ‘ground truth’ when it comes to acoustic analysis. That is, there is no 
inscrutably ‘correct’ frequency value or duration measurement. Acoustic analysis is rarely fully 

straightforward even on the most carefully controlled and articulated material. For example, 

Duckworth et al. (2011) compared manual formant measurements by experienced analysts on 

citation form data. Their comparisons showed considerable variation within and between analysts, 

especially with open vowels, and with variance increasing from F1 to F2 to F3. The mean absolute 

difference between analysts reached as high as 200 Hz for F3. 

Studies such as these remind us that acoustic analysis should be regarded as yielding estimates of 

the quantitative measures at stake rather than inscrutable facts. Those estimates are inevitably 

sensitive to the technical quality of the material under analysis, and also to decisions made by the 

analyst in terms of where and how to measure. For example, the frequency range setting for a 

spectrogram has a powerful influence on measures of high-frequency sounds associated with 

fricative consonants, amplitude settings influence e.g. whether voice-bars during stop closures are 

measureable or not, and decisions about which pitch estimation algorithm to use (or even what F0 

range to search) can have a significant effect on the estimated F0 value. For such reasons we suggest 

that the term ‘measurement resolution’ is generally preferable to ‘measurement error’.  

Harrison (2013) conducted a detailed investigation of the resolution of formant measurements using 

different software systems and settings. Recognising the difficulty of quantifying errors, he used 

synthetic data, specifying formant values a priori to provide targets against which accuracy of 

measurement could be judged. He also used real speech data where ‘ground truth’ values were 
available in the form of carefully calculated vocal tract resonances based on acoustic analysis of a 

subset of the TIMIT corpus (Deng et al. 2006). The results make for sobering reading. For example, 

with synthetic data the average measurement error for the first three formants was 13 Hz (p. 138). 

For real speech the errors were far larger and much more variable. Praat’s default formant 
measuring tool with an LPC order of 10 – perhaps the most widely used (if not explicitly 

acknowledged) method in phonetic studies – resulted in an average error for the first three formants 

of 96 Hz or 9% (p. 184). Different formants were differently affected, however, and systematic error 

patterns were observed with changes to LPC order and other settings. Errors were reduced through 



 4 

changes in settings for different formants and speakers, though it should be borne in mind that fully 

automatic data extraction normally uses fixed settings for all speakers and tokens being analysed.  

Corpus-based studies, including those of predictability effects, vary in the extent to which extracted 

data are subjected to manual correction. It is reassuring that many studies on predictability effects 

report either manual labelling or manual correction of automatically-extracted data (e.g. Schuppler 

et al 2012, Stuart-Smith et al 2015, Buz et al 2016, Hay & Foulkes 2016. Clopper et al 2018), although 

this is not always the case in other areas of research (see for example Franco-Pedroso & Gonzalez-

Rodriguez 2016, who explore uncorrected data for a forensic study). The importance of manual 

correction is illustrated by Chodroff and Wilson (2017), who found an average 13 ms RMS difference 

in VOT of voiceless stops when comparing automated and manual measures. However, manual 

labelling is usually limited to the phonetic variable in focus; automatically-derived measures are also 

used within many of these studies. For example, Hay & Foulkes (2016) and Chodroff and Wilson 

(2017) also included articulation rate as a factor in their models, derived automatically from their 

corpora. 

The difficulty inherent in labelling of corpora and extraction of measurements suggests it is prudent 

to exercise very careful scrutiny of models that report extremely small duration or frequency 

differences as evidence for predictability effects. These observations further highlight the 

importance of establishing the degree of reliability for acoustic measurements in any study, and the 

potential effects on the statistical models reported. 

 

Robustness of statistical models 

Variation or errors in a dataset obviously have consequences for statistical models of the data. It 

goes without saying that any change to a dataset will affect the reported coefficients and associated 

statistical values. It is equally obvious that bad data can only yield a bad model. However, our aim 

here is to highlight the magnitude of the effects introduced by adjusting the acoustic dataset upon 

which a model is based. In order to illustrate the potential effects models from Hughes (2014; see 

also Hughes & Foulkes 2015) were re-run using data that were manually corrected in various ways. 

Tables 1-3 summarise the results.  

The initial purpose of the analysis in Hughes (2014) was forensic, exploring the potential of different 

variables to discriminate between individual speakers. Analysis was made of several variables, each 

of which were then used in paired discrimination tasks. Pairs of speech samples were classified via 

Bayesian likelihood ratios as ‘same’ or ‘different’ speaker, depending on the distribution of the 
variable in question. In one experiment tokens of the FACE vowel (/ei/) were extracted from male 

speakers in the ONZE corpus. The LaBB-CAT system with which ONZE is annotated and searched 

returned measurements capturing the dynamic movement of the first three vowel formants in 10% 

intervals across the duration of the vowel. The data shown below reflect F1 at the 20% point, as a 

measure of the vowel’s peak openness, which is expected to display variation as a function of socio-

economic class, age, and vowel duration. It was not possible at the time to inspect the data manually 

(due to the size of the corpus and because manual checking needs to be done in situ in New Zealand, 

for various reasons). A series of heuristics was therefore applied cumulatively by Hughes (2014) to 

remove potential errors before running models (cf. similar procedures by Hay et al. 2015). At stage 

1, outliers were removed if ±3.29 SDs from the mean (following e.g. Tabachnick and Fidell 1996). At 

stage 2, tokens were removed if they fell outside the expected range based on published literature 

(a generous 200-900 Hz to avoid being overly prescriptive). At stage 3, tokens were removed if the 
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measurement represented an unrealistic jump relative to adjacent measurement points (established 

pragmatically as > 100 Hz).  

 

Tables 1 and 2 summarise the effects on the size of the corpus and the descriptive statistics at each 

stage of correction. In order to establish the magnitude of effects on the statistical model, the data 

available at each stage were fitted with the same generic linear mixed effects model using the final 

data set (i.e. at stage 3). The model included social class, age, and vowel duration as fixed effects and 

speaker and word as random effects. Table 3 displays the model fit to the data using the r2 value for 

both the fixed and random effects at each stage, as well as the percentage improvement in model fit 

over the previous iteration of the data. 

 

Table 1: corpus size and effects of correction 

 

 corpus size 

(N data 

points) 

tokens 

removed 

% attrition 

from original 

dataset 

% attrition 

from 

previous 

stage 

 Original dataset 16,960 - - - 

1 Removal of outliers (> ±3.29 SDs from 

mean) 16,610 350 2.1 2.1 

2 Removal of values outside 200-900 Hz 14,987 1,623 9.8 9.6 

3 Removal of jumps > 100 Hz  10,608 4,379 29.2 25.8 

 

 

Table 2: descriptive statistics on F1 of FACE (in Hz where appropriate) after each correction stage (% 

change relative to original dataset) 

 

  

mean  

% 

change sd  

% 

change range  

% 

change skew 

% 

change 

kurt

osis 

% 

change 

 Original 

dataset 609 - 157 - 1817 - 1.47 - 10.6 - 

1 Removal of 

outliers  600 -1.5 131 -16.3 1017 -44.0 0.09 -93.8 3.9 -63.1 

2 Removal of 

values 

outside 

200-900 Hz 596 -2.3 119 -24.0 698 -61.6 -0.28 -119.0 3.1 -71.2 

3 Removal of 

jumps > 

100 Hz  594 -2.5 113 -28.2 697 -61.6 -0.22 -114.9 3.1 -71.3 

 

 

Table 3: model fit (r2) and % change in model fit after each correction stage using a generic linear 

mixed effects model (fixed effects = class, age, duration; random effects = speaker, word) 

 fixed and random effects (conditional) 

 r2 % change 

 Original dataset 0.2369 - 

1 Removal of outliers (> ±3.29 SDs from mean) 0.3574 50.8 
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2 Removal of values outside 200-900 Hz 0.4281 80.7 

3 Removal of jumps > 100 Hz  0.4635 95.6 

  

 

The three stages of correction each had a marked effect on the dataset and statistics. With respect 

to removal of tokens (Table 1), stage 3 resulted in over 25% of the available data being lost relative 

to stage 2. The final corpus had seen almost 30% of the original data removed. The descriptive 

statistics (Table 2) show by stage 3 a reduction in the mean F1 of 15 Hz (-2.5% compared to the 

original dataset) and large proportional changes in skew (-114.9%) and kurtosis (-71.3%). Table 3 

confirms that the model fit improved, as expected with the removal of doubtful data, but the size of 

this effect is dramatic – the r2 value of the fixed and random effects almost doubles from 0.2369 to 

0.4635 (i.e. the model fit to the data is twice as good after reduction of the dataset compared with 

using the original data).  

 

A similar conclusion can be derived from another forensically-oriented study by Zhang et al. (2013), 

who compare formant measurements for the Mandarin triphthong /iau/ using manual and a range 

of automated measurements. Although the manual measurements were more accurate and yielded 

the best models, the authors concluded that the manual measurements were only a marginal 

improvement and thus did not justify the expense of using human analysts in preference to 

automatic formant tracking. (In a forensic context, where lives could literally be changed by the 

outcome of an analysis, we would argue that any improvement to that analysis is worth making.) 

However, when judged proportionally the manual measurements yielded markedly better models. 

For example, judging from their Figure 2 manual analysis improved the statistical model by around 

30% compared to the baseline automatic (MFCC-based) speaker recognition system. 

 

Summary of issues related to corpus-based studies 

Corpus tools generate large datasets, but there are many potential sources of error in the data. An 

implicit assumption in many studies appears to be that noise in the data can be disregarded if the 

data set is large enough. However, critical evaluation of the raw material is crucial when (i) the 

object of study is expected to be subtle, such as small differences in VOT, and found intertwined 

with the effects of many other factors known to affect phonetic form (including social factors, 

addressed below), and (ii) theoretical claims are advanced on the basis of those measures, without 

consideration of the resolution with which the measures can be reliably made. The margins of error 

reported in studies of forced alignment or comparison of automated and manual measurements 

suggest that any study should cater for a margin of measurement error in the data. Duration 

measurements are obviously affected if, say, boundaries are inaccurate by 25 ms, but so too will any 

spectral analysis of incorrectly labelled phones. Manual correction alleviates such problems and also 

allows the researcher to estimate the margin of error across the corpus. Thus, to increase the 

usefulness and reliability of corpus results, and to ensure that replication is possible, manual 

correction ought to be applied to a subset of the data, and the outcome reported in order to gauge 

the resolution of the data. So too should the effects on any statistical models if they prove sensitive 

to the adjusted data. 

A further consequence of measurement resolution challenges is that we should be careful to 

translate statistical models back into interpretable units. It has become commonplace in recent 

years for phonetics researchers to reify statistical models, presenting and discussing the key 

coefficients of interest as if they are themselves the object of study. Few studies compare model 



 7 

predictions with the effects in the raw data1 (Hay & Foulkes 2016 is an exception), or attempt to 

establish the real-world equivalents of the model predictions (e.g. in terms of milliseconds or Hertz 

values). The small effects found in some studies, coupled with the uncertainties over accuracy of 

corpus-based data, highlight how important it is to do so, since differences that cannot be perceived 

are unlikely to be significant factors in speech signal transmission. While JNDs (just noticeable 

differences) vary according to stimulus, frequency differences less than 10-20 Hz and duration 

differences less than 20 ms are unlikely to be perceptible by human beings in real contexts of 

language use (Stevens 2000: 228-9; but see e.g. Pardo et al. 2017, who report significant effects 

derived from smaller differences in experiments on conversational convergence). Finally, in an era 

when acoustic measurements are often reported to several decimal places, it is worth amplifying the 

advice of Ladefoged (2003) when it comes to instrumental phonetic analysis: to cater for 

measurement error, reliable data should only be reported in a suitably rounded form (e.g. duration 

to the nearest 5 ms). 

 

Understanding ‘the message’ 

Our second point when it comes to understanding predictability effects considers what is meant by 

‘the message’. Usually the message is conceptualised as a purely abstract set of linguistic symbols 

and associated referential meaning, with variation investigated at the level of e.g. positional 

allophones or frequency effects on segment or word form in context. However, variation in speech is 

ubiquitous, highly complex, systematic, and – crucially – meaningful on many levels (e.g. Foulkes & 

Docherty 2006). Variation in phonetic form also reflects systematic influences of (i) other linguistic 

dimensions such as prosodic structure, (ii) non-linguistic factors such as speaking rate and speaking 

situation (e.g. amount of background noise), and (iii) a huge range of biological, learned (social) and 

external factors. Collectively the latter can be termed indexical or sociophonetic factors.  

 

Prosodic structure 

Prosodic structure (hierarchical groupings/boundaries and prominences, often signalled by 

systematic variation in the values of acoustic parameters such as duration, F0, amplitude, voice 

quality etc.) may be one of the most significant contributors to systematic context-governed 

variation in the surface phonetics of word forms. Moreover, the effects of prosodic constituent 

structure and prominence can be very large.  As a result, a thorough understanding of the role of 

predictability in shaping the phonetic realisation of a word or sound must take this level of linguistic 

structure into account. However, prosodic structure is rarely taken into detailed consideration in 

corpus-based research. Turk and Shattuck-Hufnagel (2007) provide an illustration of the importance 

of prosodic structure. In a study of American English they reported mean phrase-final lengthening 

effects in read laboratory speech that ranged from 84 ms to 150 ms longer durations of the rhyme of 

the phrase-final syllable, with individual tokens sometimes exhibiting duration lengthening of 250 ms 

compared to the same word produced in phrase-medial position.  Similarly, Turk and White (1999) 

reported duration lengthening of 23% (a mean of approximately 30 ms) for syllables that bear 

phrase-level prominences (pitch accents), compared to unaccented syllables.  These effects are not 

limited to English: for example, Berkovits (1993) reported up to 250% lengthening for phrase-final 

fricative consonants in Hebrew. This means that the prosodic structure of a speech sample can have 

a powerful effect on the duration of segments, syllables, words, and strings of words; as a result, 

                                                           
1 We record our thanks to Jonathan Harrington for raising this issue. 
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samples that include a higher rate of pitch-accented syllables, or a higher number of phrase 

boundaries, will show a greater degree of duration lengthening.  Moreover, these effects can be 

considerably larger than the effects often reported for predictability, suggesting the importance of 

controlling for these prosodic factors when calculating the effect of predictability on duration.  

Variation in duration is furthermore likely to have indirect effects on spectral properties such as 

vowel formants, since longer vowels can provide the time required to more closely approximate 

their canonical formant values (e.g Lindblom 1963). 

 

Indexical factors 

Indexical factors convey information about a wide range of potential differences among speakers 

and speaking contexts, including: 

• regional & social background (e.g. age, class, gender, ethnicity, communities of practice); 

• speech style (e.g. degree of formality); 

• pragmatic intent; 

• conversational structure (e.g. cues to turn-taking); 

• characteristics of the individual voice (e.g. short-term effects of health, affect & emotion); 

• external phenomena (e.g. transmission medium, environmental setting). 

Indexical variation is meaningful in that speakers adjust subtle aspects of their speech to convey 

those indexical properties that are under their control. Listeners in turn respond to the acoustic 

variation produced voluntarily and involuntarily by speakers, which enables them (among other 

things) to identify interlocutors, interpret their background, understand their attitudes and 

emotions, and negotiate spoken interaction. Furthermore, the effects of indexical variation are not 

separate from the transmission of ‘purely linguistic’ information. Perceptual processing is affected 
by systematic variation: for example, we understand words and sounds faster if spoken in a familiar 

voice (e.g. Nygaard et al. 1994) or a voice with indexical features congruent to the context (e.g. 

Johnson et al 1999, Walker & Hay 2011). We accommodate to our interlocutors (Bell 1984, Lindblom 

1990), for example by drawing on past experience with a speaker or accent when interpreting newly 

encountered speech (Kleinschmidt & Jaeger 2015), and adjust speech in line with our attitudes 

towards the listener (Babel 2012) and our perceived success in communication (Buz et al. 2016, 

Pardo et al. 2017).  

When we consider phenomena like phonetic reduction in VOT or shifts in vowel formant patterns as 

a function of predictability, it is essential to consider both indexical and prosodic factors. The neat 

conception of full acoustic form = higher information content (and vice versa) is not always tenable. 

Reduction patterns may themselves be highly informative, perhaps not about the identity of the 

carrier word but certainly about a speaker’s attitude or the ongoing negotiation of a conversation 

(see also Tomaschek et al 2018). Hawkins (2003) discusses the example of I don’t know being 

reduced to [ə̝̃̃ə̃ə̞̃̃], signalling a great deal about the informality of the situation in which the form was 

used, and the speaker’s attitude to the question previously posed, but without apparently affecting 

or obscuring referential meaning in context. Local & Walker (2012) discuss a number of subtle but 

systematic phonetic variations that serve to structure conversational interaction. For example, talk 

projection (holding the floor in conversation) is cued by articulatory anticipation, avoidance of 
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lengthening, continued voicing, and segmental reduction, while potential turn transitions are cued 

by the opposite phonetic effects, including full plosive release. 

Those studies that have investigated predictability effects alongside indexical effects invariably find 

that the latter account for a great deal of the variation in the data, and often considerably more than 

the effects of predictability factors such as repetition. For example, Hay and Foulkes (2016) 

conducted a detailed analysis of phonetic, social, lexical and discourse effects on intervocalic /t/ in 

New Zealand English, which is undergoing a voicing/lenition change from [t] to [d/ɾ]. The lexical and 

discourse factors included predictability measures related to lexical frequency and whether a word 

was repeated (i.e. primed) in discourse. Note that the frequency calculation here is based on the 

whole lexicon contained in the ONZE corpus. It does not take into account segment frequency in 

context, relative to other segments, and is thus a weaker estimate of predictability that that in e.g. 

Cohen Priva (2015, 2017). Prosodic effects were not considered in detail, although all tokens were in 

the same word-internal environment in trochees, e.g. water. Table 4 presents the logistic mixed 

effects regression model for 76 speakers in the ONZE corpus, born from 1932-1982 (based on Table 

5 in Hay & Foulkes 2016). The significant effects, calculated as the log odds of [d/ɾ], are presented in 

decreasing order of size. Social effects (shaded) dominate the model, led by sex and social class. The 

next two effects relate to discourse topic (discussion of recent events, here in interaction with 

repetition) and ‘word age’, a measure of whether a word is used more by younger than older 
speakers. The predictability effects, as main effects or in interaction, are significant but relatively 

small (see also Schleef & Turton 2016).  

 

Table 4: regression model for /t/ > [d/ɾ] in New Zealand English, ranked by coefficient size (adapted 

from Hay & Foulkes 2016, Table 5). Estimates reflect the change in log odds of the variant [d/ɾ]. 

factor estimate SE z p factor type 

(Intercept) -3.517 0.661  −5.317 < 0.0001  

sex = male 2.556 0.356 7.188 < 0.0001 social 

class = professional -1.379 0.347  −3.978 < 0.0001 social 

time = recent x repeated = 

true 1.102 

0.365  3.018 < 0.005 social/predictability 

(interaction) 

word age 0.809 0.376  2.153 < 0.05 social 

log frequency 0.796 0.151  5.284 < 0.0001 predictability 

log frequency x repeated  -0.628 

0.207  −3.039 < 0.005 predictability 

(interaction) 

year of birth 0.403 0.179  2.248 < 0.05 social 

speech rate 0.291 0.061  4.784 < 0.0001 phonetic 

time = recent -0.120 0.206  −0.585 0.56 social/discourse 

repeated  -0.103 0.279  −0.370 0.71 predictability 

 

The statistical model that generated Table 4 was re-run to assess the impact of focusing solely on 

predictability effects, i.e. ignoring social and other factors. The results of this reduced model are 

shown in Table 5, and comparison between the two models is summarised in Table 6. Reassuringly, 

Table 5 shows that the coefficients relating to frequency and the interaction of frequency and 

repetition remain similar to those shown in Table 4. However, the main effect of repetition now 

emerges as significant, despite not reaching near to significance in the full model.  Table 6 shows 
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that the full model is a vastly better fit than the reduced model which focuses solely on predictability 

effects. 

 

Table 5: regression model for predictability effects on /t/ > [d/ɾ] in New Zealand English, ranked by 

coefficient size (for comparison with Table 4, social effects removed). Estimates reflect the change in 

log odds of the variant [d/ɾ]. 

 

factor estimate SE z p 

(Intercept) -0.121 -0.2977 -0.406 0.68445 

log frequency 0.738 0.1521 4.848 < 0.0001 

log frequency x repeated -0.645 0.2154 -2.993 < 0.01 

repeated  0.521 0.1971 2.644 < 0.01 

 

Table 6: comparison based on ANOVA of models shown in Tables 4 (full) and 5 (reduced) 

 df AIC BIC logLIK deviance Chisq DF p 

full 13 1722.1 1793.9 -848.06 1696.1 89.724 7 2.2 e-16 

reduced 6 1797.8 1831.0 -892.92 1785.8    
 

Summary 

In assessing the results of corpus-based work, we should not assume that several thousand 

examples of a given segment are all equivalent to each other, shaped only by contextual 

predictability and linguistic and phonetic factors such as phonotactic position and articulation rate. 

Instead, an adequate model of predictability effects also needs to consider indexical, stylistic and 

prosodic factors on an equal footing – these can be at least as important as ‘pure linguistic’ 
processing for speaker-listeners in ordinary interaction, and potentially substantially larger. 

 

Ways forward 

The discussion above points to a number of areas where the findings of corpus-oriented research 

into the role of predictability require cautious interpretation (a point echoed by Clopper et al 2018, 

Daland & Zuraw 2018). In concluding, we suggest three ways in which these analytic and 

interpretative risks could be mitigated. 

First, corpus studies should routinely include a methodological section on the details of corpus tools, 

data extraction, data analysis, and correction. Explicit consideration should be given to the 

robustness of models taking into account the measurement resolution of the data. These details are 

essential for replication of any study, yet are rarely provided. Ideally such studies should also include 

manual correction of at least a subset of data, in order to estimate the resolution (i.e. the margin of 

error) in automatic measurements and the relation of this value to the size of effects reported. In 

addition, it might be instructive to run multiple statistical models with different datasets, corrected 

in various ways, with a spectrum of results reported where significant variation is obtained. The key 

findings of statistical analysis should be translated back into real-world phonetic terms and 
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quantitative units in order to evaluate the robustness of the findings relative to the resolution of the 

data. 

Second, models of data should consider, where possible, the effects of prosodic, stylistic and 

indexical factors. Sociolinguistically-labelled and prosodically-labelled corpora provide the 

opportunity to explore those effects alongside acoustic ones (e.g. Hay & Foulkes 2016, Schleef & 

Turton 2016). It would be valuable to replicate predictability studies using such corpora, to test the 

robustness of theoretical claims about the phonetic effects of predictability.  

Finally, it is vital to test the applicability of predictability models developed on corpus-based datasets 

in more focussed experimental contexts, where the effects of other factors can be controlled. Given 

adequate insight from prosodic phonology, sociolinguistics or conversation analysis, it should be 

possible to replicate corpus-based predictability effects experimentally. It is also possible to test 

claims made in the latter fields within large corpora. The marriage of corpus and laboratory methods 

offers huge potential for our understanding of how speech is tailored and understood. 
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