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Abstract

Building prediction models based on complex omics datasets such as transcriptomics, pro-

teomics, metabolomics remains a challenge in bioinformatics and biostatistics. Regularized

regression techniques are typically used to deal with the high dimensionality of these data-

sets. However, due to the presence of correlation in the datasets, it is difficult to select the

best model and application of these methods yields unstable results. We propose a novel

strategy for model selection where the obtained models also perform well in terms of overall

predictability. Several three step approaches are considered, where the steps are 1) net-

work construction, 2) clustering to empirically derive modules or pathways, and 3) building a

prediction model incorporating the information on the modules. For the first step, we use

weighted correlation networks and Gaussian graphical modelling. Identification of groups of

features is performed by hierarchical clustering. The grouping information is included in the

prediction model by using group-based variable selection or group-specific penalization. We

compare the performance of our new approaches with standard regularized regression via

simulations. Based on these results we provide recommendations for selecting a strategy

for building a prediction model given the specific goal of the analysis and the sizes of the

datasets. Finally we illustrate the advantages of our approach by application of the method-

ology to two problems, namely prediction of body mass index in the DIetary, Lifestyle, and

Genetic determinants of Obesity and Metabolic syndrome study (DILGOM) and prediction

of response of each breast cancer cell line to treatment with specific drugs using a breast

cancer cell lines pharmacogenomics dataset.

Introduction

The advent of the omic era in biomedical research has led to the availability of an increasing

number of omics measurements representing various biological levels. Omics datasets (e.g.

genomics, methylomics, proteomics, metabolomics, and glycomics) are measured to provide
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insight in biological mechanisms. In addition, new predictions models can be built based on

omics predictors. Omic data are typically high-dimensional (i.e. n< p, n sample size and p the

number of variables) and they present unknown dependence structures reflecting various bio-

logical pathways, co-regulation, biological similarity or coordinated functions of groups of fea-

tures. Since traditional regression methods have been developed for low-dimensional settings

only, they are too restrictive and hence unable to deal with omic datasets and to determine the

actual role of their various components. As a result, an important methodological challenge in

omic research is how to incorporate these complex datasets in prediction models for health

outcomes of interest. This paper is motivated by the previous work of Rodrı́guez-Girondo [1]

in which we showed that metabolomics were predictive of future Body Mass index (BMI)

using data from the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic

syndrome study (DILGOM) [2]. However, when we tried to identify the important metabo-

lites, using lasso regression for variable selection in a cross-validation framework, we obtained

inconsistent effect sizes and variable selection frequencies. Specifically, metabolites with largest

effects were not always selected and highly correlated variables presented different selection

frequencies. These results inspired us to develop more stable prediction models by using net-

work methods.

To obtain a good balance between stability and predictive ability, we propose to incorporate

information on the structure between features from an omics dataset into predictions models

for health outcomes. The incorporation of such a structure in prediction models is a relatively

new and expanding strategy in prediction models. For classification problems methods have

been developed, such as the partial correlation coefficient matrix (PPCM) method [3], net-

work-based support vector machines [4], or the selection protein-protein interactions discrim-

inative subnetworks [5]. In this paper we focus on the prediction on continuous outcomes.

Also several methods have been developed for this type of outcomes. Zang and Horvath [6],

and Reis [7] have proposed to identify clusters of related variables inside the network and to

include a summary measure of these clusters, namely principal components and partial least

squares. While these approaches provide good results in terms of prediction accuracy, one of

their major drawbacks is the chosen summary measures which are hard to interpret and repli-

cate. An alternative approach is network penalization as proposed by Li and Li [8], using the

laplacian matrix of the network matrix to build a lasso-type penalization in order to force the

effect sizes of variables related to each other in the network to be similar. However, it is rela-

tively heavy in terms of computations and therefore not able to handle too large datasets. Win-

ter et al. [9] proposed to first rank variables based on their univariate association with the

outcome and their relationships between each other and then use the top ranked variables in a

prediction model. While this approach can provide good predictions in some settings, it

depends on various tuning parameters and therefore reproducibility is a challenge. Recently,

network-based boosting methods [10] and combination of network-based boosting and kernel

approaches [11] have been proposed to improve prediction models for GWAs and gene

expression studies. These methods include known relationships between genetic markers and

phenotypes of interest in order to detect new genetic-phenotypes relationship and therefore

improve prediction models. However, for some omic type of data, such as metabolomics and

transcriptomics, our lack of knowledge limits the application of these methods only to certain

omic sources such as genomics.

In this paper, we propose a flexible approach allowing investigators to apply several types of

network analysis approaches to estimate the structure of the data as well as several possible

group-penalizations methods. Namely, our approach consists of three steps (Fig 1): network

analysis (to empirically derive relations within an omic dataset), clustering (to empirically

establish groups of omic related features) and predictive modeling using the aforementioned

Improving stability of prediction models

PLOS ONE | https://doi.org/10.1371/journal.pone.0192853 February 20, 2018 2 / 23

can be downloaded on this webpage: https://

genomeinterpretation.org/content/breast-cancer-

cell-line-pharmacogenomics-dataset. The authors

did not have any special access privileges to the

breast cancer data.

Funding: This work was supported by FP7-Health-

F5-2012, under grant agreement no305280

(MIMOmics). The gene expression dataset was

funded by Sigrid Juselius Foundation and Yrjö
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grouping structure (via group-based variable reduction or group-penalization). This strategy

allows a lot of flexibility in terms of both network analysis and prediction models, as different

type of omics data have different properties and might need different network analysis strate-

gies or prediction models to obtain proper and biologically relevant results. Finally, to avoid

overoptimism in absence of an external validation set, a common situation in omic research,

cross-validation of the whole three-step procedure is used.

The rest of the paper is organized as follows: we present the various methods involved in

our three-step approach. An intensive simulation study is then presented to empirically evalu-

ate the performance of the various studied methods in terms of predictive ability and variable

selection properties. Standard regularized regression methods such as lasso, ridge and elastic

net are also considered. The methods are applied to two sets of omic sources (metabolomics

and transcriptomics) measured at baseline for the prediction of BMI after seven years of fol-

low-up using DILGOM and on gene expression to predict treatment response from the pub-

licly available breast cancer cell line pharmacogenomics dataset (https://genomeinterpretation.

org/content/breast-cancer-cell-line-pharmacogenomics-dataset). In the last section, the results

are discussed and concluding remarks are provided.

Methods

A common approach to build prediction models in high-dimensional settings or in presence

of strong correlation between features is regularized regression [12], which has shown to have

good properties in terms of predictive ability in various omic settings [13–16]. The choice of

the shrinkage type imposes certain constrains in the estimated parameters which can lead to

unstability or to models which are difficult to interpret. The lasso approach [17] introduces a

l1-norm constrain of the vector β of regression coefficients and shrinks some of the regression

coefficients towards zero, introducing sparsity by only selecting ‘the most important variables’

in the model. In the presence of (groups of) correlated features, lasso penalization appears not

Fig 1. Method summary. Step 1: Networks of features are derived from the data. Step 2: Using hierarchical clustering,

modules of features are identified. Step 3: Prediction models are derived using grouping information from Step 2.

https://doi.org/10.1371/journal.pone.0192853.g001
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to perform well in terms of stability since it tends to randomly choose among the strongly cor-

related features and can select at most n variables before saturation. Alternatively, ridge regres-

sion [18] considers a l2-norm constrain of the regression coefficients, which does not allow for

explicit variable selection but typically handles well strong correlations. Still, these ridge mod-

els are difficult to interpret since sparsity is not obtained. Alternative penalizations as elastic

net [19] have been proposed to overcome limitations of lasso and ridge regression, producing

sparse models but also allowing to select more than n correlated variables.

In the rest of this paper, let the observed data be given by (y, X), where y = (y1, . . ., yn)T is

the continuous outcome measured in n independent individuals and X is a matrix of dimen-

sion n × p, representing an omic predictor source with p features. We propose a three-step

approach (Fig 1) to get an interpretable prediction model for y based on X, where X is high-

dimensional (p> n). In the first step, we estimate the intensity matrix (network) of X, which

contains the degree of relation among the features of X. We investigate three different tech-

niques for network estimation: weighted gene co-expression network analysis (WGCNA, [6]),

where the relationship is based on Pearson correlation, and two proposals based on gaussian

graphical modeling [20], where the relationship is given by the precision matrix. Here two dif-

ferent penalization methods are considered. Namely, ridge [21] and lasso [22]. In the second

step, we identify modules (groups) of features by applying hierarchical clustering to the dissim-

ilarity matrix obtained from the estimated network of Step 1. The grouping information is

incorporated in the prediction model. Here we consider two strategies: group-based variable

reduction and group-penalization. In the variable reduction approach, ‘hubs’ in each group

are identified, i.e. variables with the strongest connectivity within a module, and then included

in a standard regression. Group penalization, such as adaptive group ridge [23], group lasso

[24], and sparse group lasso [25], penalizes the features from the same module jointly. Finally,

double cross-validation [1, 26, 27] was applied, over all steps, to obtain proper tuning parame-

ters and summary performance measures in absence of an external validation set.

Step 1: Network construction

A network is, by definition, an adjacency matrix A = [aij], where aij is either an indicator of

presence of connection (edge) between two features (nodes) xi and xj or a value between 0 and

1 which represents how close the two nodes are. We focus on the latter case because of its con-

tinuous nature, and we refer to the resulting networks as weighted networks.

WGCNA. Co-expression networks based on pairwise correlations have been proposed in

the context of analyzing gene expression data [6]. Due to the presence of many correlated gene

expression data, a parameter β (soft threshold) is introduced in order to shrink “low” pairwise

correlation values towards zero. The parameter βmight be chosen in such a way that the free-

scale topology criterion holds, i.e, the fraction of nodes with k edges should follow the power

law P(k)� k−γ, with P(k) the fraction of nodes in the network with k edges and γ a constant

with a value comprised between 2 and 3. The rationale behind the free scale topology criterion

relies on maximizing the within cluster connectivity while minimizing the between cluster

connectivity.

Co-expression networks have been successfully used in the context of transcriptomics

[28–30]. A drawback of the approach is that the soft thresholding does not provide a sparse

network as none of the correlation coefficients is set to zero. In some omic settings, such as

metabolomics and glycomics where correlations are high the network might be too dense to

interpret. This limitation has motivated the use of alternative approaches such as Gaussian

graphical models based on partial correlations which are, by definition, more sparse.
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Gaussian graphical modeling. Partial correlation coefficients represent the pairwise cor-

relation between two variables conditional on all other variables. Thus the linear effects of all

other variables are removed and association is based on the remaining signals. The use of par-

tial correlations appears to provide sparser and more biologically relevant networks compared

to networks based on Pearson correlation [31, 32].

In the low-dimensional setting (p< n) the partial correlation matrix is straightforward esti-

mated as P ¼ � scaleðS� 1Þ ¼ � diagðSÞ�
1
2SdiagðSÞ�

1
2, where S is the sample variance-covariance

matrix. However, note that the calculation of partial correlations relies on the inversion of the

sample variance-covariance matrix, which is challenging (or impossible) in case of strong col-

linearity between variables or in high-dimensional (p> n) situations. To overcome this diffi-

culty, several authors have considered penalizing the covariance matrix in order to invert it. In

this work, we focus on two methods namely a ridge-type [21] and a lasso-type penalty [22].

Ridge-penalty approach Ha and Sun [21] proposed a method to obtain a sparse partial cor-

relation matrix, based on a ridge-type penalty to invert the variance-covariance matrix. Specifi-

cally, let S be the empirical variance-covariance matrix. To deal with singularity of S due to

collinearity or high-dimension a positive constant to the diagonal elements of S is added,

S0 ¼ Sþ lIp. For any λ> 0, S0 has full rank. The partial correlation matrix R is estimated as

follows:

R̂ ¼ � scaleðS0� 1Þ

When the penalty parameter λ goes to infinity, the partial correlation matrix is shrunk

towards the identity matrix. To obtain a sparse matrix, it is tested whether each coefficient rij is

significantly different from zero by applying a Fisher’s z-transformation [33] on the partial

correlation estimates and assuming that these transformations follow a mixture of null and

alternative hypotheses. Efron’s central matching method [34] allows to estimate the null distri-

bution of this test statistic by approximating the mixture distribution using polynomial Pois-

son regression. Thus, p-values can be computed for each estimated partial correlation rij, and a

sparse network (if rij not significant, rij is set to zero) is obtained.

Lasso approach An alternative penalization method is to apply a lasso-type penalty when

estimating the inverse of the estimated variance-covariance matrix [22]. Assume that we have

n multivariate normal observations of dimension p, with mean vector μ and variance-covari-

ance matrix S. To estimate S the following penalized log-likelihood has to be maximized:

LðYÞ ¼ logðdetðYÞÞ � traceðSYÞ � ljjYjj
1

with Θ = S−1. The optimal tuning parameter λ is determined by minimizing the

AIC (AIC = n × tr(SΘ) − log(det(Θ)) + 2E) with E the number of non-zero elements in Θ. Note

that, especially for small values of the penalty parameter, the resulting partial correlation

matrix is not exactly symmetric. Symmetry can be imposed by duplicating one of the estimated

triangular matrices (upper or lower).

Step 2: Hierarchical clustering

Hierarchical clustering is used to detect groups of related features from the estimated network

which was obtained with the methods introduced in the previous section.

Specifically, we have used the dynamic tree cut algorithm based on the dendogram obtained

by hierarchical clustering [35]. This is an adaptive and iterative process of cluster decomposi-

tion and combination until the number of clusters becomes stable. This approach, in contrast

to a constant height cut-off method, is capable of identifying nested clusters and is imple-

mented in the R package WGCNA. The measure used for the hierarchical clustering aproach
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was the topological overlap dissimilarity measure. The topological overlap of two nodes quan-

tifies their similarity in terms of the commonality of the nodes they connect [36] and is given

by:

TOMij ¼

P
uaiuauj þ aij

minðki; kjÞ þ 1 � aij

with aij the weight between i and j in the adjacency matrix, and ki = ∑u aiu. The topological

overlap dissimilarity measure is now defined as: dissTOMij = 1 − TOMij.

Step 3: Outcome prediction

Finally, we incorporate the obtained grouping information in the prediction models. One of

the major challenges in prediction using high dimensional data is to avoid overfitting. Overfit-

ting occurs when a model is too complex, i.e when it has too many parameters. We used two

of the most standard approaches for parameter reduction which are a priori variable reduction

based on variable importance and shrinkage methods. Namely, we consider within-group vari-

able selection and regularized regression models with group penalization. In general, regular-

ized regression models are characterized by the optimization problem

minb2Rpðk y �
P

Xb k2
2
þRðbÞÞ where R(β) is the regularization or penalty term. Examples of

commonly used penalization functions are: R(β) = λ∑j|βj| (lasso; [17]), RðbÞ ¼ l
P

jb
2

j (ridge;

[18]) and RðbÞ ¼ a
P

jb
2

j þ ð1 � aÞ
P

jjbjj α 2 (0, 1) (elastic net; [19]).

Variable importance. The general idea of this simple approach is to retain the most rele-

vant (according to some pre-defined criterion) variables from each of the estimated groups

obtained by hierarchical clustering in step 2. We propose to consider only the most strongly

connected variables within its group (‘hubs’), assuming that strong connectivity is indicative of

biological importance and hence relevance to predict the outcome of interest. Specifically, for

a specific group G:

hubG ¼ max
i

X

j2G

Iaij 6¼0

 !

with aij the ij element of the adjacency matrix. If multiple nodes have the same maximum, all

these hubs are selected. Ridge regression is used to deal with collinearity in case of several

selected hubs.

Group penalization. An alternative to within-cluster variable selection is to consider clus-

ter-based penalties in the context of regularized regression.

Group lasso Group lasso [24] selects groups of variables since it simultaneously shrinks all

the coefficients belonging to the same group towards zero. The group lasso estimator is given

by:

min
b2Rp

�
�
�
�

�
�
�
�y �

XL

l¼1

Xlbl

�
�
�
�

�
�
�
�

2

2

þ l
XL

l¼1

ffiffiffiffi
pl
p
k blk2

 !

where l 2 (1� � �L) represents the index of the group of predictors, L is the the total number of

clusters, Xl is the matrix of predictors in the group l and
ffiffiffiffipl
p

is a penalty to take into account

the varying group size. The tuning parameter λ is made by cross-validation based on minimi-

zation of the AIC. The group lasso estimator is asymptotically consistent even when model

complexity increases. Note that if each group contains just one variable, group lasso is equiva-

lent to the standard lasso [17].
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Sparse group lasso Sparse group lasso [25] can be applied when one also wish to select vari-

ables within a group. Shrinkage is carried out at the group level and at the level of the individ-

ual features, resulting in the selection of important groups as well as members of those groups.

The sparse group lasso estimator is given by:

min
b2Rp

�
�
�
�

�
�
�
�y �

XL

l¼1

Xlbl

�
�
�
�

�
�
�
�

2

2

þ ð1 � aÞl
XL

l¼1

ffiffiffiffi
pl
p
k blk2 þ al k b k1

 !

where l, Xl,
ffiffiffiffipl
p

and are defined as in group lasso. Note that the sparse group lasso is a combi-

nation of group lasso and lasso. The parameter α regulates the weight of each approach. For α
= 1 sparse group lasso equals lasso and for α = 0 group lasso.

Adaptive group-regularized ridge regression Finally, the recently proposed adaptive

group ridge approach [23] which extends ridge regularized regression to group penalization is

considered. The adaptive group ridge considers group specific penalties λl for the L groups.

The adaptive group ridge estimator is given by:

min
b2Rp

�
�
�
�

�
�
�
�y �

XL

l¼1

Xlbl

�
�
�
�

�
�
�
�

2

2

þ
XL

l¼1

ll

X

q2Gl

b
2

q

 !

where l and Xl are defined as in group lasso, Gl is the lth group of variables and λl is the penalty

term for the group Gl. The penalty terms can be expressed as: ll ¼ l
0

ll with λ a unique penalty

term and l
0

l as penalty multipliers for each group.

Software implementation

The proposed three-step approach has been implemented in the R function PredNet which is

available at github (https://github.com/RenTissier/NetPred). The function allows to apply all

the possible combinations of the previously presented network analysis and group penalization

methods. The function calls the packages WGCNA (co-expression based on pairwise correla-

tion), huge (gaussian graphical modeling), GGMridge (ridge-penalty approach), grpreg
(group lasso), SGL (sparse group lasso), and GRridge (adaptive group-regularized ridge

regression).

Simulation study

Simulation setup

An intensive simulation study was conducted to study the performance of our proposed pre-

diction methods using estimated grouping information and to compare them wit9h existing

regularized regression methods (without grouping information), such as lasso, ridge and elas-

tic net (α = 0.5). We also included the special case of ‘known clustering’, in which we assume

that the true underlying grouping structure is known, mimicking the situation in which infor-

mation on biological clustering is available from previous analyses or open source pathway

databases. The omic predictor X is simulated from a zero-mean multivariate normal distribu-

tion with correlation matrix S. Following the recent literature on pathway and network analy-

sis of omics data [6], we generated S according to a hub observation model with added

realistic noise [37].

The continuous outcome y is generated by y ¼ Xbþ �, where β is the vector of regression

coefficient of size p, and �* N(0, 1). The singular value decomposition (svd; [38]) of

X, X = U D Ut allows to generate y in terms of the various latent modules present in X since

they represent different independent subspaces of features accounting for different
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proportions of variation in X. In practice, we first generate β �, the regression coefficients cor-

responding to each independent module (given by U), and we then transform it to the predic-

tor space by using b ¼ Utb
�
.

Within this general framework, we consider three different scenarios: (Scenario a)

b
�

j ¼ 0:01, j = 1; b
�

j ¼ 0, j 6¼ 1. y is then associated to a high variance subspace of U, corre-

sponding to the largest eigenvalue of X. (Scenario b) b
�

j ¼ 0:01, j = 4; b
�

j ¼ 0, j 6¼ 4. The associ-

ation with y relies on a low-variance subspace of U. Hence, we expect lower predictive ability

of X compared to Scenario a. (Scenario c) b
�

j ¼ 0:01, j = 1, 4; b
�

j ¼ 0, j 6¼ 1, 4. The association

with y relies on several subspaces of U. As a result, Scenario c is less sparse than Scenarios a

and b.

For each scenario, we considered two sample sizes (n = 50 and n = 100), different number

of features in X, (p = 200 features and p = 4000), and different number of underlying modules

(k = 4 and k = 8). Each module presents various within-correlation levels and in all the scenar-

ios, we assumed the presence of one module of uncorrelated variables. Fig 2 shows the corre-

sponding heatmaps of S for k = 4 (left panel) and k = 8 (right panel). For each scenario, we

generated M = 500 replicates and for each trial we consider 10-fold partitions in order to

obtain cross-validated summary measures.

We evaluated our methods in terms of obtaining the correct grouping structure, of predic-

tion performance, and variable selection. Grouping is summarized in two ways. On the one

hand, we compared the estimated number of groups with the underlying parameter k. On the

other hand, for each of the k underlying modules, we calculated the correct and incorrect clas-

sification rates (belonging or not belonging to the underlying module taken as reference) of

each of the p features. Predictive ability is measured by Q2 ¼

Pn

i¼1
ðpi � p0iÞ

2

Pn

i¼1
ðyi � piÞ

2
, the cross-validated

version of the fraction of variance explained by the prediction model, in which the perfor-

mance of the model-based is compared to the naive double cross-validated predictions p0

based on the mean value of the outcome variable y [1]. Variable selection properties are

assessed by comparing the simulated β coefficients with the average estimated regression

coefficients.

Fig 2. Simulation study; correlation matrices. Example of simulated correlation matrices obtained with 200 variables

for 4 and 8 modules respectively.

https://doi.org/10.1371/journal.pone.0192853.g002
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Simulation results

Network analysis and clustering Tables 1 and 2 show the performance of the studied methods

for network analysis and hierarchical clustering. WGCNA obtains number of clusters closer to

the truth than graphical lasso and the ridge-penalty approach. WGCNA estimates, on average,

k̂ ¼ 3 and k̂ ¼ 5 for k = 4 and k = 8 underlying modules, respectively. This slight underestima-

tion of k yields a large number of false positives (see Table 2). Focusing on the situation of

k = 4, and taking the group with highest simulated within correlation as reference, Table 2

shows a false positive rate of 38.2% for WGCNA, mainly due to the incorrect assignment of

features of the second cluster to the first one. In contrast, graphical lasso overestimates the

number of simulated modules.

The number of estimated modules is not affected by the number of underlying modules

(for example, k̂ ¼ 14 for both k = 4 and k = 8 with n = 50), but it increases with the number of

p simulated features. This is likely due to the reliance of graphical lasso on partial correlations

instead of Pearson correlations. After having a closer look at the estimated modules, we

observe that graphical lasso generates k̂ groups, which are subsets of the underlying simulated

k modules. In other words, graphical lasso does not group together features belonging to dif-

ferent underlying modules (WGCNA does), and the estimated modules can be grouped in

Table 1. Simulation study. Average number of clusters obtained accross cross-validation by WGCNA, graphical lasso, and ridge penalty. The minimum and maximum

number of clusters identified are presented in brackets.

200 variables

4 modules 8 modules

n = 50 n = 100 n = 50 n = 100

WGCNA 3.1(2-5) 3.0(2-5) 5.0(3-8) 5.0(4-7)

Graphical lasso 14.7(9-21) 17.0(12-23) 14.4(9-21) 17.6(13-25)

Ridge penalty 1.0(1-3) 1.3(1-6) 1.5(1-8) 9.8(1-21)

1000 variables

4 modules 8 modules

n = 50 n = 100 n = 50 n = 100

WGCNA 3.1(2-5) 3.0(2-5) 5.6(4-18) 5.0(4-11)

Graphical lasso 48.3(40-86) 76.5(57-93) 59.6(39-81) 77.5(63-95)

Ridge penalty 10.2(1-71) 52.6(3-72) 13.1(1-69) 61.5(6-81)

https://doi.org/10.1371/journal.pone.0192853.t001

Table 2. Simulation study. Average (across 10 cross-validation folds and 500 replicates) true positive rate (TPR), false negatives rate (FNR) and false positives rate (FPR)

for WGCNA, graphical lasso and ridge penalization. Top part: Scenario a. Reference module: module 1 (corresponding to the first 50 variables in Fig 2 left panel which

present the highest level of correlation). Bottom part: Scenario b. Reference module: module 3 (corresponding to the variables 100-150 in Fig 2 left panel).

50 Individuals 100 Individuals

TPR FNR FPR TPR FNR FPR

module 1 WGCNA .999 .001 .382 .998 .002 .375

Graphical lasso .308 .692 .000 .259 .741 .000

Ridge penalty .999 0.001 .997 .962 .038 .951

module 3 WGCNA .918 .082 .190 .989 .011 .148

Graphical lasso .189 .811 .001 .192 .808 .000

Ridge penalty .999 .000 .997 .960 .040 .951

https://doi.org/10.1371/journal.pone.0192853.t002
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such a way that the original k modules are recovered. This translates in a very small false posi-

tive rate when taking any of the k simulated modules as reference (see Table 2). Finally, the

ridge-penalty approach is, in most of the cases, not able to lead to the identification of any clus-

ter with small number of features and subjects (see p = 200 and n = 50 in Table 1). For larger

number of individuals and variables, the number of clusters is overestimated for the same rea-

son as graphical lasso. Namely, the reliance of this method on partial correlations.

Predictive ability. Tables 3 and 4 show the results in terms of the predictive accuracy

measure Q2 for p = 200 and n = 50 and, for p = 1000 and n = 50 respectively. Table A and

Table B in S1 File, show results for n = 100. Adaptive group ridge and group lasso present simi-

lar performances in most of the studied situations. These two methods outperform the other

considered three-step approaches. Also they are the best performing methods when the known

grouping was used. Further, these approaches may outperform the commonly used regularized

regression methods lasso, ridge and elastic net regression in terms of predictive ability. Specifi-

cally, group lasso relying on grouping structure coming from WGCNA and graphical lasso sys-

tematically outperforms ridge and lasso and it presents a similar predictive ability than elastic

net when p = 200. For p = 1000 the predictive ability of the standard ridge, lasso and elastic net

Table 3. Simulation study. Results obtained in terms of average Q2 (across 500 replicates) for scenarios a, b, c, p = 200 variables, k = 4 and k = 8 modules, and n = 50 indi-

viduals. Standard errors are given in brackets. The first column represents the method used to build the network. A Priori represents the situation were the true clustering

of the predictors is known and no network analysis is performed.

4 modules 8 modules

Scenario a b c a b c

A Priori Sparse group lasso0.5 .79(.01) .51(.06) .65(0.02) .75(.02) .71(.02) .69(0.03)

Sparse group lasso0.9 .79(.01) .48(.06) .59(.03) .74(.02) .69(.04) .65(0.04)

Sparse group lasso0.1 .79(.01) .53(.06) .66(.02) .75(.02) .72(.02) .70(0.03)

Group lasso .87(.01) .53(.07) .77(.02) .84(.02) .78(.03) .81(0.02)

Group ridge .94(.01) .43(.08) .69(.07) .90(.02) .73(.06) .85(0.03)

WGCNA Hubs .81(.03) .15(.10) .59(.11) .81(.05) .18(.13) .55(.12)

Sparse group lasso0.5 .72(.12) .15(.12) .57(.15) .41(.21) .28(.19) .36(.20)

Sparse group lasso0.9 .73(.13) .13(.22) .53(.13) .41(.22) .26(.12) .35(.19)

Sparse group lasso0.1 .69(.12) .16(.12) .58(.15) .39(.20) .29(.17) .36(.19)

Group Lasso .90(.02) .58(.07) .87(.02) .83(.04) .76(.06) .83(.04)

Group ridge .78(.03) .46(.06) .62(.05) .69(.07) .61(.08) .53(.09)

Graphical lasso Hubs .52(.20) .26(.15) .51(.18) .52(.22) .45(.20) .51(.22)

Sparse group lasso0.5 .69(.13) .08(.06) .45(.16) .31(.21) .22(.15) .27(.18)

Sparse group lasso0.9 .68(.13) .06(.05) .42(.16) .32(.21) .19(.15) .26(.17)

Sparse group lasso0.1 .69(.13) .08(.06) .46(.16) .31(.21) .24(.15) .28(.18)

Group lasso .92(.01) .54(.08) .87(.03) .86(.03) .76(.06) .86(.03)

Group ridge .93(.02) .46(.08) .61(.06) .85(.08) .71(.06) .70(.11)

Ridge penalty Hubs .52(.06) .11(.02) .47(.06) .27(.10) .22(.07) .27(.09)

Sparse group lasso0.5 .77(.09) .42(.05) .67(.02) .68(.07) .63(.04) .67(.04)

Sparse group lasso0.9 .79(.07) .46(.06) .61(.03) .72(.05) .66(.05) .65(.05)

Sparse group lasso0.1 .73(.08) .40(.04) .68(.02) .62(.09) .59(.03) .63(.04)

Group lasso .87(.02) .48(.06) .84(.02) .79(.04) .71(.05) .78(.03)

Group ridge .67(.05) .07(.03) .69(.05) .47(.06) .32(.07) .45(.07)

Common Lasso .88(.03) .52(.10) .73(.05) .81(.04) .74(0.06) .79(0.05)

Ridge .67(.05) .07(.03) .59(.06) .46(.06) .55(0.04) .70(0.03)

Elastic net .96(.04) .74(.26) .79(.20) .87(.02) .81(.04) .89(.02)

https://doi.org/10.1371/journal.pone.0192853.t003
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is lower while the methods based on group lasso and adaptive group ridge present similar

behavior than for p = 200. Therefore, the gain of these new approaches appears to be larger

when the number of predictors increases.

Compared to adaptive group ridge, group lasso was less sensitive to the chosen network

method. Namely, all scenarios adaptive group ridge presents bad performance when using the

ridge penalty approach [21] for network construction. The performance of group lasso is

robust with respect to the studied network construction methods in all the studied scenarios,

and close to its performance when using the true underlying grouping structure. Sparse group

lasso provides proper results in terms of prediction ability when the clustering is known a pri-

ori, with Q2 values only slightly lower than the corresponding values of adaptive group ridge

and group lasso. However, when the grouping is estimated, its performance drops. The predic-

tive ability appears to drop to a Q2 < 0.1 for scenario b, which is 8 times lower than the predic-

tive ability obtained with a combination of graphical lasso and group lasso. The variable

selection approach based on selecting hubs only provides satisfactory results when using the

WGCNA method for network construction in scenario a.

Table 4. Simulation study. Results obtained in terms of averageQ2 (across 500 replicates) for scenarios a, b, c, p = 1000 variables, k = 4 and k = 8 modules, and n = 50 indi-

viduals. Standard errors are given in brackets. The first column represents the method used to build the network. A Priori represents the situation were the true clustering

of the predictors is known and no network analysis is performed.

4 modules 8 modules

Scenario a b c a b c

A Priori Sparse group lasso0.5 .80(.002) .64(.02) .63(.03) .77(.016) .69(.036) .69(.030)

Sparse group lasso0.9 .80(.001) .56(.036) .54(.047) .76(.019) .62(.047) .67(.056)

Sparse group lasso0.1 .80(.002) .66(.026) .66(.032) .77(.016) .70(.033) .72(.025)

Group lasso .89(.003) .76(.021) .71(.046) .87(.011) .81(.022) .84(.016)

Group ridge .97(.011) .65(.076) .55(.083) .95(.018) .87(.033) .78(.065)

WGCNA Hubs .87(.026) .48(.12) .45(.324) .45(.324) .13(.127) .08(.088)

Sparse group lasso0.5 .74(.143) .61(.098) .57(.153) .43(.244) .36(.206) .32(.221)

Sparse group lasso0.9 .74(.147) .54(.090) .53(.138) .44(.252) .35(.193) .29(.223)

Sparse group lasso0.1 .70(.134) .62(.098) .58(.155) .40(.227) .34(.196) .32(.205)

Group lasso .94(.01) .85(.031) .87(.027) .88(.036) .79(.043) .78(.058)

Group ridge .80(.037) .59(.061) .62(.059) .70(.067) .50(.088) .62(.096)

Graphical lasso Hubs .52(.054) .55(.054) .21(.039) .42(.059) .46(.063) .43(.050)

Sparse group lasso0.5 .79(.032) .54(.110) .12(.08) .46(.251) .32(.202) .34(.185)

Sparse group lasso0.9 .79(.030) .49(.122) .09(.075) .46(.249) .30(.191) .30(.195)

Sparse group lasso0.1 .79(.030) .56(.111) .13(.083) .46(.254) .32(.208) .37(.180)

Group lasso .96(.01) .81(.039) .61(.084) .93(.023) .83(.044) .82(.054)

Group ridge .96(.02) .61(.062) .59(.075) .81(.127) .66(.106) .75(.069)

Ridge penalty Hubs .02(.052) .07(.064) .01(.028) .04(.069) .05(.075) .05(.060)

Sparse group lasso0.5 .59(.245) .57(.163) .13(.14) .69(.137) .62(.140) .59(.136)

Sparse group lasso0.9 .70(.186) .49(.148) .13(.149) .72(.132) .59(.136) .60(.147)

Sparse group lasso0.1 .47(.254) .59(.164) .13(.127) .59(.139) .58(.130) .53(.116)

Group lasso .91(.031) .79(.029) .42(.065) .82(.053) .75(.042) .70(.059)

Group ridge .75(.07) .63(.078) .10(.055) .53(.097) .48(.11) .37(.10)

Common Lasso .91(.016) .59(.060) .51(.080) .87(.035) .68(.065) .70(.074)

Ridge .80(.028) .73(.037) .26(.046) .66(.041) .63(.044) .539(.050)

Elastic net .92(.015) .54(.089) .60(.057) .87(.032) .69(.067) .68(.065)

https://doi.org/10.1371/journal.pone.0192853.t004
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Variable selection. Finally, we investigated the variable selection properties of the best

performing (in terms of predictive ability) three-step procedures. Figs 3 and 4 show for sce-

nario a, k = 4, p = 200 and n = 100 the variable selection properties of adaptive group ridge and

group lasso in combination with WGCNA and graphical lasso, respectively. In both cases, the

performance of lasso and elastic net is also shown. For each method, each boxplot shows for

each of the p variables of X the distribution of the average estimated regression coefficients

over the 10 fold cross-validation folds for each of the M = 500 Monte Carlo trials. The true sim-

ulated regression coefficients are also shown (red dots). Complete results for all scenarios are

presented in the S2 File, Fig A to Fig R.

These results show that our three step approaches perform well in terms of specific regres-

sion coefficient estimation and variable selection. The four investigated approaches given by

the combination of WGCNA and graphical lasso with adaptive group ridge and group lasso

clearly separate informative from non-informative variables. In contrast, lasso regression,

especially in scenario a, shows a very poor performance. The mean estimated coefficients by

lasso for all p variables are close to zero, while the variability is very high for the features with

non-zero effects, reflecting that lasso randomly selects a few of the informative variables and

assigns a very large effect to them. To a lesser extent, the same phenomenon is also observed

for elastic net. Even if the mean estimate for informative variables is larger and variability is

lower than for lasso, the overall performance of elastic net is inferior to our three-step methods

based on including grouping information.

Fig 3. Simulation study: Variable selection results with WGCNA. Variable selection results for scenario a, k = 4,

p = 200, and n = 100. Box-plots of the absolute values of the estimated parameters for the 200 variables over the 500

simulated datasets are plotted. The red points represent the absolute average true values over the 500 datasets.

https://doi.org/10.1371/journal.pone.0192853.g003
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Fig 3 top panel shows that the combination of WGCNA and group lasso tends to overesti-

mate the effect of the variables belonging to the second cluster of variables. This is due to the

underestimation of the number of clusters by WGCNA and the joint penalization of group

lasso. Interestingly, adaptive ridge is less affected by this issue. When using graphical lasso as

network analysis method, the first informative group of variables is clearly separated from the

rest, and the estimation is close to the theoretical one (Fig 4).

Real data analysis

We analyzed data from the DILGOM study and from the breast cancer cell line pharmacoge-

nomics dataset. In both cases, the aim is to obtain biological insights about the features which

drive the prediction of BMI and treatment response.

In the DILGOM study we consider two omics datasets measured at baseline to predict the

body mass index (BMI) after seven years of follow-up. Serum nuclear magnetic resonance

(NMR) spectroscopy metabolites measures and gene expression profiles were considered. The

analysed sample contained n = 258 individuals for which both types of omic measurements

and the outcome of interest (log-transformed BMI) were available. In the breast cancer cell

lines dataset, we were interested in using gene expression for predicting the response to the

Erlotinib drug. Treatment response is measured using the GI50 index, a quantitative measure

Fig 4. Simulation study: Variable selection results with graphical lasso. Variable selection results for scenario a,

k = 4, p = 200, and n = 100. Box-plots of the absolute values of the estimated parameters for the 200 variables over the

500 datasets simulated are plotted. The red points represent the absolute average true values over the 500 datasets.

https://doi.org/10.1371/journal.pone.0192853.g004
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which measures the growth inhibitory power of the test agent. The analysed sample consisted

of 45 breast cancer cell lines.

DILGOM: Metabolites

The serum metabolomic data consists of quantitative information on 57 metabolic measure of

various types, including lipids, lipoprotein subclasses, amino acids, cholesterol, glycolysis-

related metabolites and fatty acids (see S3 File, Table A). Tables 5 and 6 show the main results

for the prediction of BMI after 7 years of follow-up using serum NMR metabolites as predic-

tors. Table 5 shows the performance of each method in terms of predictive ability measured

through Q2. We observe that adaptive group ridge and group lasso provide the best results and

that they perform slightly better than ridge, lasso and elastic net. Namely, for adaptive group

ridge when using graphical lasso Q2 = 0.244 and for adaptive group ridge in combination with

WGCNA Q2 = 0.233, while for ridge Q2 = 0.227 and for lasso Q2 = 0.222. Also, group lasso

combined with WGCNA outperforms ridge and lasso (Q2 of 0.241). Variable selection based

on hubs presents a notably lower predictive ability (best performance is reached with graphical

lasso, Q2 = 0.176) than methods based on regularization, except for sparse group lasso, which

is not competitive at all (Q2 < 0.002 in all cases). Table 6 shows the variable selection proper-

ties of the two top performing methods; the combination of WGCNA and group lasso and the

combination of graphical lasso and adaptive group ridge. The top 12 variables selected by the

combination of WGCNA and group lasso approach are shown in the left part of Table 6,

jointly with their average regression coefficient, selection frequency over the 10 cross-valida-

tion folds used in the analysis, and their cluster membership. For each of these top 12 variables,

average effect and selection frequencies over the 10 cross-validation folds are also shown for

the combination of graphical lasso and adaptive group ridge, lasso, and elastic net. These top

12 variables represent two different families of metabolites. Namely, lipids and fatty acids

(XSVLDLL, XLHDLL, SM, SHDLL, FAW6), and amino-acids and glycolysis-related metabo-

lites (ALB, TYR, PHE, GLY, GLOL, GLC). This means that the three-step approach based on

WGCNA and group lasso consistently points out these groups of metabolites as those driving

the prediction of BMI. Accordingly, these two families of metabolites are well separated in the

network analysis plus clustering steps (by both WGCNA and graphical lasso methods), consis-

tently belonging to different clusters (see columns labeled ‘Cluster’ in Table 6).

Table 5. DILGOM metabolomics. Prediction accuracy of the models obtained for the different approaches on metab-

olites. In bold are the combinations of network analyses and prediction approaches which perform better than lasso,

ridge, and elastic net.

WGCNA Graphical lasso Ridge penalty

Q2 Q2 Q2

Hubs + ridge 0.153 0.176 0.153

Group lasso 0.241 0.225 0.221

Sparse group lasso α = 0.5 0.013 0.010 0.015

Sparse group lasso α = 0.9 0.003 0.012 0.013

Sparse group lasso α = 0.1 0.013 0.007 0.016

Group ridge 0.233 0.244 0.225

Lasso 0.227 0.227 0.227

Ridge 0.222 0.222 0.222

Elastic net 0.208 0.208 0.208

Number of Clusters 4 7 4-6

https://doi.org/10.1371/journal.pone.0192853.t005
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Interestingly, our three-step approach based on the combination of WGCNA and group

lasso provides similar effect estimates for metabolites XSVLDLL, SM, FAW6 and SHDLL

(.038, .034, .031, and.030, respectively), all of them belonging to the same cluster of lipids and

fatty acids. The combination of graphical lasso and adaptive group ridge provides similar

results in terms of effect size. On the contrary, lasso provides more extreme estimates due to

within-group random variable selection, i.e. lasso selects at random oen feature over a set of

highly correlated variables. Specifically, lasso assigns quite different effect estimates to the lip-

ids and fatty acids group (XSVLDLL: .036, SM: .018, FAW6: .017, SHDLL: .003). The effect

size of SHDLL is particularly counter-intuitive since high density lipids are well established

risk factors for obesity [39]. Elastic net appears not to solve this issue and provides similar

results than lasso.

DILGOM: Transcriptomics

Due to the computational intensity of the graphical lasso approach, we considered two sets of

gene expression probes for analysis. A set of 2980 probes which was only analysed by WGCNA

to perform network analysis and a set of 732 filtered probes (probes with a variance higher

Table 6. DILGOM metabolomics. Top 12 metabolites (in terms of average beta) selected by the combination of WGCNA and group lasso, their selection frequencies and

cluster membership. For lasso, graphical lasso + ridge, and elastic net, the rank of the variables according to the absolute values of the average effect size is added.

WGCNA + Group lasso Graphical lasso + adaptive group ridge

Variable Average beta Frequency Cluster Average beta Rank Cluster

GLOL .064 10 1 .039 5 6

TYR .060 10 1 .070 2 1

ALB -.059 10 1 -.075 1 1

GLY -.041 10 1 -.039 4 1

PHE .038 10 1 .046 3 1

XSVLDLL .038 10 2 .017 16 2

XLHDLL -.038 10 3 -.034 7 5

HIS -.036 10 1 -.030 8 1

SM .034 10 2 .016 17 2

FAW6 .031 10 2 .003 31 3

GLC .031 10 1 .037 6 1

SHDLL .030 10 2 .030 9 5

Lasso Elastic Net

Average beta Frequency Rank Average beta Frequency Rank

GLOL .074 10 4 .063 10 3

TYR .080 10 3 .068 10 2

ALB -.086 10 2 -.069 10 1

GLY -.037 10 6 -.035 10 7

PHE .038 10 5 .042 10 5

XSVLDLL .036 10 7 .038 10 6

XLHDLL -.089 9 1 -.056 10 4

HIS -.024 9 8 -.020 10 11

SM .018 8 10 .011 8 17

FAW6 .017 7 12 .011 8 14

GLC .018 10 11 .022 10 9

SHDLL .003 3 20 .005 7 20

https://doi.org/10.1371/journal.pone.0192853.t006
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than 1) were WGCNA and graphical lasso were used. The main results are presented in

Tables 7 and 8. Table 7 presents the prediction ability results of the used methods. For the set

of filtered probes (left part of Table 7), the best method with regard to predictive performance

is the combination of WGCNA and group lasso (Q2 = 0.258). Adaptive group ridge appears to

provide poor results (Q2 = 0.158 in combination with WGCNA and Q2 = 0.188 in combination

with graphical lasso) in the transcriptomics context. In contrast to the observed results regard-

ing the NMR metabolites, adaptive ridge is clearly outperformed by lasso (Q2 = 0.227) and

elastic net (Q2 = 0.253), but still provide better results than the ridge regression (Q2 = 0.071).

Also, we observe that for transcriptomics elastic net provides better results than lasso which

was not the case for the metabolites. For the larger set of probes (right part of Table 7), the best

prediction accuracy is achieved using the combination of WGCNA with group lasso Q2 =

0.418 while lasso and elastic net show similar predictive abilities with Q2 = 0.257 and Q2 =

0.265, respectively. Ridge presented better prediction accuracy with the large set of probes but

its performance is still very low (Q2 = 0.131). In line with the simulation study, the benefits of

our three-step proposal is larger when the number of probes increases.

Table 8 presents the number of variable selected for the two group lasso approaches (based

on WGCNA and graphical lasso), lasso, and elastic net. The left part of Table 8 shows the

results for the filtered set of probes and the right part shows the results for the large set of

probes. For the filtered set of probes, it appears that group lasso retains more variables than

lasso and elastic net. WGCNA in combination with group lasso provided 687 variables which

Table 7. DILGOM transcriptomics. Prediction accuracy of the models obtained by combination of networks and pre-

diction models as well as lasso, ridge, and elastic net for transcriptomics.

Filtered set (p = 732) Larger set (p = 2980)

WGCNA Graphical lasso WGCNA

Q2 Q2 Q2

Group lasso 0.258 0.215 0.418

Group ridge 0.158 0.188

Lasso 0.227 0.227 0.257

Ridge 0.071 0.071 0.131

Elastic net 0.253 0.253 0.265

Number of clusters 16-17 32-36 40-45

https://doi.org/10.1371/journal.pone.0192853.t007

Table 8. DILGOM transcriptomics. Number of variables selected during the cross-validation process, at least once, in all croos-validation folds and the proportion of vari-

ables selected all in the set of variables selected at least once.

Filtered set (p = 732) Larger set (p = 2980)

Always At least once Proportion Always At least once Proportion

WGCNA and group lasso 137 687 0.199 48 252 0.190

Graphical lasso and group lasso 92 485 0.189

Lasso 3 78 0.038 13 134 0.097

Elastic net 7 123 0.056 21 176 0.119

https://doi.org/10.1371/journal.pone.0192853.t008
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were selected at least once during the cross validation process, while the combination of graph-

ical lasso and group lasso provided 485 variables. Lasso and elastic net identified only 78 and

123 variables, respectively. Moreover, the models obtained with group lasso are more stable

than those obtained with the standard approaches, lasso and elastic net. Indeed, using

WGCNA, 19.9% of the 687 variables are selected in all the 10 cross-validation folds and for

graphical lasso 18.9% of the 485 variables are selected. In contrast, for lasso and elastic net only

3.8% and 5.6% of the variables are selected in all the cross-validation folds. For the larger set of

probes, the number of variables always selected increased for lasso and elastic net with respec-

tively 13 and 21 variables, this is not the case for the combination of WGCNA with group lasso

with 48 variables always selected for the set of 2928 probes while 137 variables were always

selected with the smaller set of probes. From the 48 variables obtained, only 5 were also

included in the previous set of 137 variables.

To investigate the biological relevance of the selected variables in the prediction models

obtained, a gene set enrichment analysis was performed using the Gene Set Enrichment Analy-

sis software (GSEA) [40, 41] on the variables always selected by each approach during the

cross-valiadation process. A gene set enrichment analysis consists of comparing the set of gene

identified with a priori known group of genes that have been grouped together by their

involvement in the same biological pathway. Table 9 presents the results of the enrichment

analysis when using the large set of transcriptomics. None of the pathways obtained in the

enrichment analysis by the different methods has been previously identified as related to BMI.

The enrichment analysis based on the 137 and 92 genes obtained from the filtered set of probes

was more insightful. Among the 137 genes selected by the combination WGCNA and group

lasso, 33 were associated with cardiovascular disease (p = 0.019) and 6 of these 33 genes were

associated with obesity (p = 0.044). Among the 92 genes obtained with the combination of

graphical lasso and group lasso, 3 of them where included in the glucagon signaling pathway

(p = 0.070) and 3 were in the insulin resistance pathway (p = 0.080). These results are not sur-

prising since it is known that increased insulin and decreased glucagon secretion play a role in

obesity [42]. Due to the small number of variables of lasso and elastic net, 7 and 3 predictors

respectively, the enrichment analysis did not provide associated pathways.

Table 9. DILGOM transcriptomics. Top significant pathways identified by enrichment analysis using the GSEA software for all predictions model using the variables

always selected during the cross-validation process of the breast cancer cell lines study on the transcriptomics data. For each method, the number of variables common to

the pathway and the set of variables selected at least 5 times and the false discovery rate (FDR) of the enrichment test are presented.

method Pathway Number

variables

FDR

WGCNA and

group lasso

Genes transcriptionally modulated in the blood of multiple sclerosis patients in response to subcutaneous treatment

with recombinant IFNB1

10 9.68 e-15

Genes up-regulated in CD34+ hematopoetic cells by expression of NUP98-HOXA9 fusion off a retroviral vector at 3

days after transduction

10 3.86 e-12

Genes representing interferon-induced antiviral module in sputum during asthma exacerbations 8 1.27 e-11

Lasso Genes exclusively down-regulated in B lymphocytes from WM (Waldenstroem’s macroblobulinemia) patients but

with a similiar expression pattern in the normal cells and in the cells from CLL (chronic lymphocytic leukemia)

patients.

2 5.62 e-3

Genes down-regulated in erythroid progenitor cells from fetal livers of E13.5 embryos with KLF1 knockout

compared to those from the wild type embryos

6 5.62 e-3

Elastic net Genes down-regulated in CD4+ T lymphocytes transduced with FOXP3. 3 1.55 e-3

Genes up-regulated in MCF7 cells (breast cancer) after stimulation with NRG1 4 1.55 e-3

Genes down-regulated in normal hematopoietic progenitors by RUNX1-RUNX1T1 fusion 4 1.55 e-3

https://doi.org/10.1371/journal.pone.0192853.t009
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Breast cancer cell lines

The main results of the prediction of the treatment response of breast cancer cell lines to Erlo-

tinib are presented in Table 10. The best prediction performance is again the combination of

WGCNA and group lasso with Q2 = 0.654. Ridge with Q2 = 0.610 performs better than lasso

and elastic net with Q2 = 0.571 and Q2 = 0.564, respectively. For this dataset the combination

of WGCNA and group lasso is less stable and is not always able to pick the same variables dur-

ing the cross-validation process, while lasso and elastic net are able to always pick 2 probes.

With regards to variables selected at least 5 times by WGCNA + group lasso, lasso and elastic

net, all 3 methods have a similar number of selected variables with respectively 22, 18 and 25.

The intersection between 3 identified sets of variables is empty. The enrichment analysis iden-

tified genes related to breast cancer for the WGCNA + group lasso and elastic net approaches

as presented Table 11. This was not the case for lasso.

Discussion

In this paper, we presented a new strategy to obtain accurate, stable and interpretable predic-

tion models. The key components of our proposed approach are to capture the correlation

structure of the features within an omic dataset, to derive clustering information, and to

include it in a group penalization model. Our approach seems to provide interpretable models

by capturing underlying biological mechanisms impacting the phenotype of interest.

Our applications showed that the proposed three step approach can outperform the stan-

dard regularized regression approaches in terms of prediction ability, stability and biological

interpretation in high-dimensional settings or when groups of strongly correlated features are

present in the data. Our analyses highlighted the weakness of methods such as lasso and elastic

net in terms of stable variable selection in highly correlated datasets. Indeed, for the metabo-

lites, our WGCNA and group lasso combination selected a group of highly correlated metabo-

lites (cluster 2 including XSVLDLL, SM, FAW6, and SHDLL) while lasso selected XSVLDLL

all the times in the cross-validation process but SHDLL only 3 out of 10 times. In addition it

appeared that for the large transcriptomics dataset the prediction accuracy is also larger for

our proposed methods than for the standard regularization methods. The analysis of the breast

cancer cell lines study showed some limitations in terms of stability for our network-based

approach when the number of samples is relatively small. Probably the networks obtained dur-

ing the cross-validation steps are less stable for a small number of samples leading to a less sta-

ble clustering and prediction model. Further with regard to transcriptomics, the obtained

groups of gene expression features identified by our strategies were enriched for known path-

ways linked to BMI (DILGOM) and breast cancer (breast cancer cell lines). This was only the

Table 10. Breast cancer analysis. Prediction accuracy and numbers of variable selected at least 5 times and always

selected in the 10-fold cross-validation process of the different approaches on the whole set of probes for the Breast can-

cer cell lines.

Q2 Number of Variables

At least 5 times always

WGCNA and group lasso 0.654 22 0

Lasso 0.571 18 2

Ridge 0.610 5376 5376

Elastic net 0.564 25 2

Total number of variables 5376 5376

https://doi.org/10.1371/journal.pone.0192853.t010
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case when using the filtered transcriptomics dataset. This was not always the case for lasso,

ridge, and elastic net. For the unfiltered transcriptomic datasets, the gene sets were not

enriched for pathways related to the outcome. Here more research is needed. These results

suggest that our proposed approaches can indeed improve the understanding of prediction

models while keeping a good prediction accuracy.

The performance of our approaches compared to the standard approaches was in line with

the results obtained from the simulation study. Indeed the combination of WGCNA or graphi-

cal lasso with group lasso appeared to provide the most stable results, hence probably better

interpretable. The prediction accuracy of these approaches was also good and for large omics

datasets even better than the prediction accuracy of the standard approaches. Further our sim-

ulations showed that several group penalization models (sparse group lasso and adaptive

group ridge) are quite sensitive to the used grouping structure. In contrast the group lasso

approach proved to be quite robust with respect to the network approach used. Also, we have

explored the idea of reducing the omic dataset dimensionality by choosing ‘important’ features

by group based on network topology (such as our ‘hubs’ selection). This attractive approach to

reduce the prediction complexity only performed well when using WGCNA for predictors

which are highly associated to the phenotype of interest. Its performance was very sensitive to

the used network method and bad in low-signal situations. Overall the combination of graphi-

cal lasso for network construction and group lasso was the best performing method in our sim-

ulation study. However, this approach computationally challenging for a large number of

features and, therefore, cannot deal with large omics datasets. Moreover in the real data analy-

sis better results were obtained when WGCNA was combined with group lasso. Therefore, for

large datasets we recommend the combination of WGCNA and group lasso, while for smaller

datasets both network approaches can be applied.

Table 11. Breast cancer analysis. Top significant pathways identified by enrichment analysis using the GSEA software

for all predictions model using variables selected at least 5 times during the cross-validation process on the transcrip-

tomics data of the breast cancer cell lines study. For each method, the number of variables common to the pathway and

the set of variables selected at least 5 times and the false discovery rate (FDR) of the enrichment test are presented.

method Pathway Number

variables

FDR

WGCNA and

group lasso

Candidate genes in genomic amplification regions in hepatocellular

carcinoma (HCC) samples

6 5.61 e-10

Genes within amplicon 17q11-q21 identified in a copy number

alterations study of 191 breast tumor samples.

6 6.49 e-8

Genes up-regulated in DLBCL (diffuse large B-cell lymphoma) cell

lines sensitive to stimulation of CD40 relative to the resistant ones

5 4.62 e-5

Lasso Genes up-regulated in confluent IMR90 cells (fibroblast) after

knockdown of RB1 by RNAi

7 5.621 e-6

Genes up-regulated in the neural crest stem cells (NCS), defined as

p75+/HNK1+

5 5.92 e-6

Genes down-regulated in BEC (blood endothelial cells) compared to

LEC (lymphatic endothelial cells)

5 6.66 e-6

Elastic net Genes down-regulated in TMX2-28 cells (breast cancer) which do

not express ESR1 compared to the parental MCF7 cells which do

11 5.41 e-10

Genes up-regulated in confluent IMR90 cells (fibroblast) after

knockdown of RB1 by RNAi.

9 2.52 e-8

Genes positively correlated with recurrence free survival in patients

with hepatitis B-related (HBV) hepatocellular carcinoma (HCC)

5 4.57 e-6

https://doi.org/10.1371/journal.pone.0192853.t011
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The presented work can be extended in various ways. So far, all our analyses focused on

prediction of a continuous outcome, but all the obtained results apply, in principle, to other

types of response variables, such as binary outcomes (classification problems) and to time-to-

event data. Also, prior knowledge on biological grouping could be included in our three-step

approaches if available, even if it is only partial. Our simulation study showed good results if

the correct underlying clustering is known. Given that such biological knowledge is only par-

tially known in many omic applications, we have proposed to use network analysis to infer the

correlation structure. Including external prior biological in the first step of network construc-

tion may lead to an improvement of the clustering obtained and, therefore, of the proposed

methods. Another possible extension is to build prediction models with two or more sets of

omic predictors. It is known [1] that using a common penalization (such as lasso or ridge) to

the extended dataset containing both omic sets to be combined can lead to worse predictive

ability than using only one of these omic sets. Therefore, applying our three-step approach to

the stacked dataset of different omic predictors may outperform current methods. Alterna-

tively, more advanced network techniques as multi-layer networks [43], based on obtaining

the correlation structure between and within the omic sets may be improve prediction models.

These extensions are currently under investigation.

To conclude, we presented a set of methods which provides accurate and stable predictions

possibly leading to better interpretation, as is shown in the real data application. In the DIL-

GOM study, a much more stable set of metabolomic predictors for BMI was obtained com-

pared to standard approaches. Moreover, better predictions were obtained with our approach

when using a large set of gene expression probes to predict BMI. Regarding the prediction of

breast cancer, identified gene modules with our approach appeared to be interpretable since

enrichment analyses showed that selected features could be linked with breast cancer tumors.

This was not the case when using the standard approaches.
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