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Abstract—We analyze the extended threshold wavelength 

photoresponse beyond the standard threshold limit 

(  /.t 241 , where   is the activation energy) in non-

symmetrical p-GaAs/AlGaAs heterostructure photodetectors 
with a barrier energy offset. We propose that hot-cold hole 
carrier interactions in the p-GaAs absorber are responsible for 
the threshold wavelength extension. Experimental results are 
analyzed by considering a quasi-Fermi distribution of hot holes 

at a hot hole temperature  HT , which is much higher than the

lattice temperature  LT . The experimental photoresponse is 

fitted using an escape cone model, modified with a quasi-Fermi 
level (EquasiF). The simulated results are found to be in good 
agreement with experimental data, justifying the model used.  

Index Terms—quasi-Fermi distribution, threshold wavelength, 
photoresponse, heterostructures, temperature. 

I. INTRODUCTION

ot-carrier effects in semiconductor heterostructures have
played a major role in the development of photodetectors 

[1-3]. They are governed principally by carrier-carrier and 
carrier-phonon scattering processes, which are also of 
fundamental interest for the study of semiconductor physics 
[4-6]. The dynamics of hot carriers in bulk GaAs [4-6], and in 
GaAs/AlGaAs quantum wells (QWs) [7-9] and 
heterostructures [5, 10], have been widely studied by hot 
carrier spectroscopy.  In general, hot carriers are created in 
energy states above the band edge, interact with the lattice 
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vibrations and cold carriers through carrier-carrier 
interactions; this leads to a quasi-equilibrium distribution at a 
carrier temperature that is much higher than the lattice 
temperature [4, 5]. The relaxation processes of hot carriers in 
bulk GaAs, GaAs/AlGaAs QWs structure, and 
heterostructures have been studied extensively by optical 
spectroscopy with ultrashort laser pulses [9, 11]. In most 
experiments on femtosecond [9, 12] and picosecond [13] time 
scales, a hot electron-hole plasma is created by interband 
excitation and the relaxation behavior of carriers is then 
monitored through the time evolution of the absorption or 
luminescence. Such time-resolved optical experiments, using 
pico- and femtosecond laser pulses, allow the creation of well-
defined non-equilibrium conditions, and provide direct 
information on the microscopic scattering processes by which 
the carriers relax into quasi-equilibrium [7, 9, 13].   

Recently, a new concept of very long-wavelength infrared 
(VLWIR) photodetection was proposed by Lao et al. [14] 
based on hot hole effects, which enable a spectral extension of 
the photoresponse beyond the standard limit set by the 
‘spectral rule’ t  =1.24/∆, where ∆ is the activation energy.

Typically, t  and ∆ is a good measure of performance in a 

variety of detectors, including GaAs/AlGaAs QWs [7-9] and 
heterostructures [5, 10]. However, there was no clear 
agreement between the observed extended wavelength 
photoresponse and the designed Ȝt in non-symmetrical p-
GaAs/AlGaAs heterostructures [14-16]. Therefore, a precise 
analysis is needed to understand fully the wavelength 
extended photoresponse; further optimize the performance; 
and, control the threshold of the extended wavelength 
photoresponse. This mechanism could then also be used to 
design IR photodetectors in other materials system and 
optimize detectors for specified threshold wavelengths. 
 Although various models have been reported to explain the 
spectral photoresponse of a variety of heterojunction detectors 
[17-20], none of those are able to explain the origin of the 
extended threshold wavelength photoresponse in non-
symmetrical GaAs/AlGaAs heterojunction photodetectors. 
Nevertheless, it was believed that the dynamics of the hot-cold 
hole interaction played a crucial role [14]. In this paper, we 
present a theoretical explanation of the experimentally 
observed extended threshold wavelength photoresponse, by 
modelling the quasi-Fermi distribution of hot holes in the 
absorber. This follows the interpretation of hot carrier 
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injector barrier, with contributions also arising from the 
absorber and collector. Furthermore, hot holes will  interact 
with cold holes and exchange their energy, and a quasi-Fermi 
distribution will  be formed in the absorber. However, current 
will  flow equally across the injector and absorber barriers, 
from the quasi-Fermi level, and there will  be no net flow of 
hot holes observed. Therefore, upon application of bias, 
photoresponse with conventional threshold wavelength will be 
observed in symmetric heterostructure. 

The possible escape pathways of hot holes are from the 
heavy-hole (HH), light-hole (LH) and split-off (SO) bands to 
the quasi-Fermi level across the collector barrier. In the first 
mechanism, light absorption, from a long wavelength photon, 
leads to the transition of hot holes from the HH and LH band 
to the SO bands which is followed by internal photoemission, 
and escape over the collector barrier [17]. In the second 
mechanism, a portion of the hot holes lose some of their 
energy via different scattering mechanism and relax to the 
band edge of the LH or HH bands and then escape over the 
collector barrier [17]. The escape probability can be 
determined by using an escape cone model [22]. 

III.  THEORETICAL SIMULATION U
 
SING ESCAPE CONE MODEL

To validate that the quasi-Fermi distribution (EquasiF) of hot 
holes in the p-GaAs absorber is responsible for the extended 
wavelength photoresponse, we have used an escape-cone 
model [22] to simulate the extended photoresponse spectrum. 
In this model, free-carrier absorption, described by Drude 
theory, is considered as the primary optical absorbing 
mechanism [19]. The responsivity of the heterostructure 

detector depends on the total quantum efficiency    and is

given by the following relation [17-19] 

hc
qR    (1)                                                                      

where q is the electron charge, c is the speed of light and h is 
the Planck’s constant. The total quantum efficiency    is the

product of the photon absorption probability a , the internal

quantum efficiency  i , and the hot carrier transport

probability  t , and is given by:

tia     (2) 

The value of a and t were calculated using the model

described in [18, 19]. i  was calculated using an escape cone 

model [22], and is defined as the ratio of the number of 
carriers at the excited EquasiF that have sufficient kinetic energy 
to overcome the barrier, associated with the momentum 
component normal to the interface, to the total number of 
excited carriers. Calculation of i can take into account 

scattering with cold holes and phonons, as given by[22]: 

...1.11 1
210

1
0

0 

























 












MMM

i    (3) 

where   nhEn 0  and  heh LLL  /

Here, n  is the number of scattering events, M is the

maximum quantum efficiency, and the value of 0 is defined

as the fraction of hot holes captured prior to any bulk 
scattering events, and is given by, 
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where W is the width of absorber, and Ideal is the ideal

quantum efficiency,  phph LLLLL  /* is the reduced 

scattering length for hot hole-cold holes, Lh is the hole-hole 
scattering length for hot-cold holes and Lp represents elastic 
scattering of hot holes with phonons and impurities, and 
multiple reflections of the excited hot holes from the surfaces 
of the absorber [22]. In this simulation, we have only modified 
the escape cone model by changing the Fermi distribution at 
EF to the perturbed EquasiF. 

IV. COMPARISON WITH EXPERIMENTS

   The simulated photoresponse obtained from the escape-
cone model with a modified hot-hole Fermi distribution, 
leading to a modified effective ∆, were compared with 
experimentally measured results. The spectral photoresponse 
of three heterostructure photodetectors with symmetrical 
(LH1002) and non-symmetrical  (SP1001, SP1007) 
configurations were measured at 5.3 K; fabrication and 
characterization have already been reported elsewhere [14, 23, 
24]. The valence band (VB) diagram of sample LH1002 with a 
p-type doped GaAs absorber sandwiched between two flat (60
nm) Al.57Ga0.43As barriers is shown in fig 2(a). Fig. 2(b) and
2(c) show VB diagrams of SP1001 (flat injector barrier withᅊEv = 0.10 eV) and SP1007 (graded injector barrier with Al
fraction varying from 0.45 to 0.75 and ᅊEv = 0.10 eV),
respectively. The activation energy (∆) is defined as the
energy difference between the Fermi level in the p-type GaAs
and the valence band-edge of the AlxGa1-xAs barrier. For Al
mole fraction values (x) of 0.45, 0.57 and 0.75, ∆ is calculated
to be 0.25 eV, 0.32 eV and 0.42 eV, respectively. Details of ∆
and ᅊEv for all the samples, calculated by taking into account
band offsets at the heterointerface and doping-induced
bandgap narrowing [14], are compared in Table.1. Spectral
responses were measured using a Perkin–Elmer system 2000
Fourier transform infrared (FTIR) spectrometer. A bolometer
with known sensitivity was used for background
measurements and calibrating the responsivity. In general,
holes in the p-GaAs absorber interact with incident photons
and, when they gain sufficient energy to surmount the barrier,
travel in both directions, i.e. towards the bottom (BC) and top
(TC) contacts, giving rising to forward and reverse
photocurrents.  As a consequence, the net photocurrents are
determined by the balance of the photoemission efficiencies
associated with movement of holes in the forward and reverse
directions [23].

TABLE.1: COMPARISON OF THE VALUES OF ACTIVATION ENERGY 
AND ENERGY OFFSET FOR LISTED DEVICES. IN ALL SAMPLES THE 
GaAs ABSORBER HAS A DOPING DENSITY OF p = 1×1019 cm-3. 

Samples  Activation Energy (eV) Barrier Energy offset 
  įEv (eV) ∆max ∆min ∆c 

LH1002 0 32 0.32 0 32   0 
SP1001 0.42 0.42 0 32   0.10 
SP1007 0.42 0.25 0 32   0.10 
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