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Survival behavior in the cyclic Lotka-Volterra model with a randomly switching

reaction rate

Robert West,1, ∗ Mauro Mobilia,1, † and Alastair M. Rucklidge1, ‡

1Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

We study the influence of a randomly switching reproduction-predation rate on the survival be-
havior of the non-spatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors
game, used to metaphorically describe the cyclic competition between three species. In large and fi-
nite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite
time, while the species with the smallest reproduction-predation rate is the most likely to be the
surviving one (“law of the weakest”). Here, we model environmental (external) noise by assuming
that the reproduction-predation rate of the “strongest species” (the fastest to reproduce/predate)
in a given static environment randomly switches between two values corresponding to more and less
favorable external conditions. We study the joint effect of environmental and demographic noise
on the species survival probabilities and on the mean extinction time. In particular, we investigate
whether the survival probabilities follow the law of the weakest and analyze their dependence on the
external noise intensity and switching rate. Remarkably, when, on average, there is a finite number
of switches prior to extinction, the survival probability of the predator of the species whose reac-
tion rate switches typically varies non-monotonically with the external noise intensity (with optimal
survival about a critical noise strength). We also outline the relationship with the case where all
reaction rates switch on markedly different time scales.

PACS numbers: 05.40.-a, 87.23.Kg, 02.50.Ey, 87.23.-n

I. INTRODUCTION

Ecosystems consist of a large number of interacting
species and the competition for resources affects their
survival and reproduction probability [1, 2]. Studying
the mechanisms allowing the maintenance of species di-
versity and what affects their coexistence is therefore a
question of great interest and a major scientific chal-
lenge [3]. In this context, the birth and death events
arising in a population cause demographic fluctuations
in the number of organisms [4, 5]. This internal noise
is important because it can ultimately lead to species
extinction [2, 6–10]. For instance, experiments on coli-
cinogenic microbial communities have demonstrated that
cyclic, rock-paper-scissors-like, competition leads to in-
triguing behavior [12]: when the population is well mixed
in flasks, the strain that is resistant to the poison (colicin)
is the only one to survive after a brief transient; whereas
all species coexist for a long time when the same popu-
lation competes on a plate (Petri dish). It has also been
found that rock-paper-scissors-type competition charac-
terizes the dynamics of certain lizard communities and
coral reef invertebrates [13, 14]. These observations have
motivated a large body of work, with many theoretical
studies focusing on the circumstances under which cyclic
competition of rock-paper-scissors type yield species co-
existence, see, e.g., [8, 9, 15–24]. In particular, it has been
shown that species migration can both help promote and
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jeopardize biodiversity in these systems [17–21, 25], and
can lead to the formation of fascinating spiraling pat-
terns, see, e.g., Refs. [17–21, 26–32]. The question of
the species survival (or fixation) probability is also of
considerable interest both from a theoretical and practi-
cal viewpoint. For example, in the flask experiments of
Ref. [12], the surviving strain is always the one that is
resistant to the colicin. In order to understand this and
related puzzling results the survival behavior of the cyclic
Lotka-Volterra model (CLV), in which three species are
in cyclic competition according to zero-sum rock-paper-
scissors interactions, see, e.g., Refs. [8, 9, 16, 22, 33–48],
has been investigated. It has been shown that due to
demographic fluctuations the CLV dynamics necessarily
ends up in one of the absorbing states where only one of
the species survives [8, 9, 36–38, 47]. Furthermore, the
authors of Ref. [9] showed that, in a large and well-mixed
population, the species with the lowest reproduction-
predation rate (“weakest species”) is the most likely to be
the surviving one, with a probability that approaches one
in large populations, a result dubbed as the “law of the
weakest” (see also Refs. [36, 40] for other formulations of
this “law”).

In addition to demographic noise, populations are sub-
ject to ever-changing environmental conditions which in-
fluence their reproduction and survival probability. For
instance, variation in the abundance of nutrients, or
changes in external factors (e.g., light, pH, temperature,
moisture, humidity) can influence the evolution of a pop-
ulation [49–52]. The variation of environmental factors
is often modeled as external noise by assuming that the
reproduction or predation rate of some species fluctuates
in time [53–69]. The population is thus subject to demo-
graphic (internal) noise and environmental randomness
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(external noise). A question of great relevance is thus
to understand how populations evolve under the joint ef-
fect of internal and external noise. In fact, while it is
well known that internal noise can lead to species ex-
tinction it is unclear how external noise influences the
species survival probabilities and the mean extinction
time. For instance, in Ref. [61] the fixation probabil-
ity has been found to vary non-monotonically with the
external noise’s correlation time whereas in Refs. [70, 71]
the probability either increases or decreases with it.
For the sake of completeness, we mention that another

source of randomness arises when the dynamics takes
place on complex networks with irregular connectivity.
For instance, the CLV dynamics on small-world networks
is characterized by limit cycles and noisy oscillations of
the species densities, see, e.g., Refs. [41, 72–74].
Here, we consider the non-spatial CLV and focus on

the interplay between demographic fluctuations and en-
vironmental noise. Most of the theoretical studies on the
joint influence of internal and external noise, have effec-
tively focused on two-species systems or non-interacting
populations [59–70, 75, 76], often with white external
noise, see, e.g., Refs. [1, 59, 63]. Here, we study how
internal and external dichotomous noise, a simple col-
ored noise with realistic finite correlation time [77, 78],
jointly influence the mean extinction time and survival
probabilities of the three species of the CLV. For this,
we assume that the reproduction-predation rate of the
fastest species to reproduce and predate in a static envi-
ronment (“strongest species”) switches between two val-
ues corresponding to more and less favorable external
conditions [54, 56]. By combining the properties of the
classical CLV with those of the underlying “piecewise-
deterministic Markov process” [81, 82], see Sec. III, we
study how the intensity and switching rate of the envi-
ronmental noise affects the species survival behavior.
The cyclic Lotka-Volterra model with dichotomous

noise (CLVDN) is defined in the next section, where its
mean-field and survival properties in the absence of ex-
ternal noise are reviewed. Section III is dedicated to the
description of the CLVDN in terms of the piecewise de-
terministic Markov process. The survival probabilities
and mean extinction time are discussed in Sec. IV and
comprehensively summarized in Section V. Our conclu-
sions are presented in Sections VI. In the appendices, we
give some technical details and outline how our results
shed light on the scenario where the three reaction rates
randomly switch on markedly different time scales.

II. THE CYCLIC LOTKA-VOLTERRA MODEL
WITH DICHOTOMOUS NOISE (CLVDN)

We consider a well-mixed population (no spatial struc-
ture) of size N containing three species. The population
consists of NA individuals of species A, NB of type B and
NC individuals of species C. While the population size is
constant, N = NA +NB +NC , its composition changes

in time due to the cyclic competition between all species:
A dominates over B which dominates over C, which in
turns out-competes A. While there are different forms of
cyclic dominance, here we model the cyclic competition
in terms of the cyclic Lotka-Volterra (CLV) according to
the reaction scheme [8, 9, 16, 22, 33–48]:

A+B
kA−−→ A+A

B + C
kB−−→ B +B (1)

C +A
kC−−→ C + C.

Accordingly, when A and B interact, A kills B and in-
stantly replaces it by one of its copy (“offspring”) with a
reproduction-predation rate kA. Similarly, kB and kC are
the reaction rates associated with the other reproduction-
predation reactions. This model corresponds to the cel-
ebrated (zero-sum) rock-paper-scissors game [16, 33–35].
Other popular choices to model cyclic dominance are the
May-Leonard model [15] and the combination of the lat-
ter and CLV, see, e.g., Refs. [11, 17, 18, 20, 21, 27–29, 31].
In this work, we are interested in the influence of en-

vironmental randomness on the dynamics of cyclic dom-
inance. As a simple form of external noise, in all Sec-
tions (except Sec. III), we assume that species A is the
strongest in a static environment, where kA = k >
kB , kC , and that its reproduction-predation rate fluctu-
ates with the environment, i.e. kA = kA(ξ) (see Eq. (3)
below). This can be interpreted as the situation where
species A, that is the most relentless to predate and re-
produce, is also the most exposed to changes in exogenous
factors. Here, these are assumed to be responsible for the
switch with rate ν of kA between the values k+ > k (in an
environment more favorable to A) and k− < k (in condi-
tions less favorable to A) , while the effect of the external
factors on kB and kC is assumed to be negligible (but see
also Appendix A).
As in other contexts, see, e.g., Refs. [62, 65–70],

the environmental colored noise is simply modeled as a
continuous-time dichotomous Markov noise (DN) ξ ∈
{−1,+1} with zero mean, 〈ξ(t)〉 = 0 (〈·〉 denotes
the ensemble average), and autocorrelation function
〈ξ(t)ξ(t′)〉 = exp(−2ν|t − t′|), where 1/(2ν) is the fi-
nite correlation time [77, 78]. We therefore study the
CLV subject to DN, a model henceforth labeled CLVDN,
obtained by supplementing the scheme (1) with the di-
chotomous colored noise corresponding to the switching
reaction

ξ
ν
−→ −ξ (ξ ∈ {−1,+1}), (2)

such that the reaction A + B → A + A occurs with the
time-fluctuating rate kA = kA(ξ(t)), with

kA(ξ(t)) = k +∆ξ =

{
k+ = k +∆ if ξ = +1

k− = k −∆ if ξ = −1
, (3)

where 0 ≤ ∆ ≤ k is the intensity of the environmental
noise. In this setting, the environmental state ξ = +1 is
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more favorable to species A than the static environment
(∆ = 0), while it is less favorable when ξ = −1 [54, 56].
Clearly, ∆ = 0 corresponds to the CLV in the absence
of external noise, whereas we notice that when ν → 0,
kA = k+ or kA = k− with a probability 1/2, and in this
case also there is an external source of randomness when
∆ > 0. It is worth noting that the DN (2) has the same
autocorrelation function as an Ornstein-Uhlenbeck pro-
cess, which is another common type of external noise, see
e.g. [60, 61], with continuous environmental states [85].

The reactions (1)-(3) define a continuous-time Markov
process whose evolution is given by the master equation

(ME) for the probability P ( ~N, ξ, t) of finding the system

in the state ( ~N, ξ) at time t, where ~N = (NA, NB , NC).
The master equation associated with (1)-(2) reads [5]

dP ( ~N, ξ, t)

dt
= (E−

AE
+
B − 1)[WAB( ~N, ξ)P ( ~N, ξ, t)]

+ (E−
BE

+
C − 1)[WBC( ~N)P ( ~N, ξ, t)]

+ (E−
CE

+
A − 1)[WCA( ~N)P ( ~N, ξ, t)]

+ ν[P ( ~N,−ξ, t)− P ( ~N, ξ, t)], (4)

where the three transition rates are

Wij =
kiNiNj

N2
with i, j ∈ {A,B,C} (5)

and E
±
i denote the shift operators acting on functions

of Ni as E
±
i f(Ni, Nj 6=i, ξ, t) = f(Ni ± 1, Nj 6=i, ξ, t). The

first three lines on the right-hand-side (RHS) of Eq. (4)
correspond to the gain and loss terms associated with the
reactions in the same lines of the scheme (1), with WAB

depending on ξ(t) via (3), while the last line on the RHS
of (4) accounts for the switching reaction (2).

Before investigating the dynamics of the CLVDN (1)-
(3), it is useful to review the properties of the classical
CLV in the absence of external noise.

A. The Cyclic Lotka-Volterra model in the absence
of environmental noise (∆ = 0)

In the absence of external noise (i.e. ∆ = 0), the re-
actions (1) with constant ki’s correspond to the classical

CLV whose ME for the probability P ( ~N, t) of finding the

system in the state ~N at time t is given by (4) on the RHS
of which the last line is omitted [86]. When the popu-
lation size is infinitely large, N → ∞, with all forms of
(internal and environmental) randomness being ignored,
the CLV dynamics is deterministic and the species den-
sities a = NA/N , b = NB/N , and c = NC/N , obey the
rate equations (REs) obtained from a mean-field approx-

imation of the ME [5, 8]:

da

dt
= WAB −WCA = a(kAb− kCc)

db

dt
= WBC −WAB = b(kBc− kAa) (6)

dc

dt
= WCA −WBC = c(kCa− kBb).

These REs are characterized by the three absorbing fixed
points at (a, b, c) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} which are
saddles and correspond to the survival of one of the
species and to the extinction of the two others in turn.
Furthermore, Eqs. (6) also admit a reactive fixed point
S

∗ associated with the coexistence of the three species
at densities given by

S
∗ = (a∗, b∗, c∗) =

1

kA + kB + kC
(kB , kC , kA) . (7)

This coexistence fixed point is a center [8, 9]. In fact, in
addition to the conservation of the total density, a+ b+
c = 1, the REs (6) also conserve the quantity [8, 9, 33]

R = akBbkC ckA . (8)

The nontrivial constant of motion R(t) = R(0) governs
the deterministic CLV dynamics characterized by regu-
lar oscillations associated with nested closed orbits sur-
rounding S

∗ in the phase space simplex S3 [33] and tra-
jectories flowing according A → C → B → A [8], see
Figs. 1 and 2.
The characteristics of the coexistence fixed point S

∗

(center) and the neutrally stable orbits surrounding it,
mean that demographic fluctuations unavoidably perturb
the dynamics predicted by (6) when N < ∞. In fact,
it has been shown that in a finite population, the CLV
dynamics is characterized by stochastic trajectories that
follow the deterministic orbits of (6) for a short tran-
sient whilst performing a random walk between them
until the boundary of the phase space S3 is reached,
see Fig. 2. The internal noise thus leads to the extinc-
tion of two species after a characteristic time that de-
pends on N , while the individuals of the third species
survive [8]. Hence, the survival probability of species
i ∈ {A,B,C} is the probability that it reaches its absorb-
ing state, with individuals of the species i taking over,
or “fixating” [6, 7], the entire population [87]. There
has been a great interest in analyzing the influence of
the population size N on the species survival probabili-
ties and mean extinction time (MET). In particular, the
time-dependent extinction probability of two species was
studied in Refs. [8, 47], where the MET text was shown
to scale with the population size:

text ∼ N. (9)

The survival probability, or fixation probability [6, 7],
when N is not too small is independent of the initial con-
dition [9][84] and, with the population initially at S∗ (7),
is defined by
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φi = lim
t→∞

Probability{Ni(t) = N}. (10)

When the reaction rates are equal, ki = k, all species have
the same survival probability φi = 1/3, independently of
N . Quite interestingly however, when the reaction rates
ki are not all equal, the survival probability φi depends
non-trivially on the population size N [9, 36]. In fact,
in sufficiently large but finite populations, the authors of
Ref. [9] showed that the survival probabilities in the CLV
model generally follow the so-called “law of the weakest”
(LOW).

1. Survival probabilities in large populations and in the

absence of external noise: the law of the weakest

The LOW says that the species i that has the highest
probability of being the surviving one in a sufficiently
large population is the one with the lowest reproduction-
predation rate, the “weakest species”:

φi > φj if ki < kj for i 6= j ∈ {A,B,C}. (11)

The LOW becomes a “zero-one” law in the limit of very
large populations (typically for N > 1000). It thus pre-
dicts that the weakest species has a probability one to
survive at the expense of the others that go extinct (sur-
vival probability → 0). Hence, when N is very large but
finite the survival probability of species i ∈ {A,B,C} in
the CLV is [9]

φA = 1, if kA < kB , kC

φB = 1, if kB < kA, kC (12)

φC = 1, if kC < kA, kB .

In Ref. [9], the LOW was derived by studying the effect of
demographic fluctuations on the “outermost” determinis-
tic orbits set by (8). If two species have the same reaction
rates that is less than the other, say kB = kC < kA, the
zero-one version of the LOW predicts that φA → 0 and
φB = φC = 1/2 (i.e. B and C have probability 1/2 to
survive, A almost certainly goes extinct).

2. Survival probabilities in small populations in the absence

of external noise: the law of stay out

In addition to the LOW (11,12), a very different sce-
nario emerges in small populations where the so-called
“law of stay out” (LOSO) arises. This says that the
most likely species to survive is the one predating on the
species with the highest reproduction-predation rate (the
“strongest species”) [9]:

φA > φB , φC if kB > kA, kC

φB > φA, φB if kC > kA, kB (13)

φC > φA, φB if kA > kB , kC .

B
C

A

(a) k̃C = 1

k̃A = 1 k̃B = 1

B

C A

(b) k̃C = 1

k̃A = 1 k̃B = 1

FIG. 1: Laws of the weakest and stay out in the simplex S3

spanned by k̃i (no environmental noise). Under both “laws”,
S3 is divided into three regions in which the most likely species
to survive is labeled. The two most likely species to survive
on the dividing lines are those adjacent to the lines (all species
are as likely to survive at the point where all the dividing lines
meet). (a) Law of the weakest (typically when N & 1000):
When N ≫ 1, the most likely surviving species in each region
has an asymptotic probability 1 to survive while the others
go extinct. (b) Law of stay out (3 ≤ N . 20): No species is

guaranteed to survive; φi = k̃i when N = 3, see text.

Contrary to Eq. (12), the LOSO is a non-strict law:
for a given set of ki’s, it says which species is the most
likely to be the surviving one, but it does not assign a
survival probability one to any of the species. When the
population size is N = 3, the LOSO explicitly yields

φA = k̃B , φB = k̃C and φC = k̃A [9]. Here, we have

introduced the rescaled reaction rates k̃i ≡ ki/(kA+kB+
kC) in terms of which we can conveniently visualize the
LOW and LOSO in S3, see Fig. 1.

3. Survival probabilities in the classical CLV: the law of the

weakest and the law of stay out

In Ref. [9] a detailed analysis of the species survival
probabilities has been carried out, and it has been found
that the survival probabilities follow the LOSO when
3 ≤ N . 20, while they are predominantly determined
by the LOW when N > 100 (with asymptotic zero-one
behavior typically when N & 104). Intermediate scenar-
ios interpolating between the LOSO and LOW have been
reported when 20 . N . 100. For the model considered
here in a static environment in which A is the strongest
species, the LOW predicts φA → 0 when N ≫ 1 while,
according to the LOSO, species C is the most likely to
survive (φC > φA, φB) in small populations.
The survival behavior of the CLV is known to be pecu-

liar: in the LOW the weakest species prevails by favoring
the spread of the predator of its own predator. The LOW
and LOSO are thus specific to the cyclic competition of
three species and no longer hold when the number of
species exceeds three, see e.g. Refs. [79, 80]. On the other
hand, versions of the LOW have been found in other
three-species systems, such as in the two-dimensional
CLV (1) with mutation [40]. Below, we study the in-
fluence of environmental randomness on the survival be-
havior of the CLV.
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B A

C(a)

B A

C(b)

FIG. 2: Stochastic orbits (thin dark gray) of the CLVDN
with ν = 0 (i.e. the system only experiences one environ-
ment), k = 3 and ∆ = 2.7: Orbits surrounding (a) S∗

− (circle)
in the state ξ = −1, and S

∗
+ (circle) in the state ξ = +1 in

(b). The thick solid lines indicate the “outermost orbit” in
each state ξ = ±1 [9] (see Sec. IV(c)) : It passes at a distance
1/N from the absorbing edge AB in (a) and from either of
the absorbing edges AC and BC (b). The coexistence state
S

∗ is shown as a reference (triangle).

III. CLVDN & PIECEWISE DETERMINISTIC
MARKOV PROCESS

In the presence of dichotomous noise, ∆ > 0, the
rate kA randomly switches according to (3) with (2) and
〈kA〉 = k > kB , kC . The CLVDN dynamics is thus gov-
erned by the ME (4), which is difficult to solve. How-
ever, when N ≫ 1, demographic fluctuations are negligi-
ble and the dynamics obeys the set of differential equa-
tions da/dt = WAB −WCA, db/dt = WBC −WAB , and
dc/dt = WCA − WBC , where WAB = (k + ∆ξ)ab de-
pends on the DN, ξ of amplitude ∆ (2). These cou-
pled differential equations define a multivariate piece-
wise deterministic Markov process (PDMP), see, e.g.,
Refs. [62, 67, 68, 70, 81, 82]. Hence, when the envi-
ronmental state is ξ = ±1, the reaction rates of species
A,B,C are k+∆ξ, kB , kC , and for the average time 1/ν
that separates two environmental switches (ξ → −ξ), the
CLVDN evolves according to the corresponding ODEs

da

dt
= a[(k +∆ξ)b− kCc] ,

db

dt
= b[kBc− (k +∆ξ)a]

dc

dt
= c(kCa− kBb), (14)

with k + ∆ = k+ when ξ = +1 and k − ∆ = k− when
ξ = −1. Each environmental state ξ = ±1 is thus char-
acterized by its own coexistence fixed point

S
∗
± = (a∗±, b

∗
±, c

∗
±) =

1

k± + kB + kC
(kB , kC , k

±), (15)

with a∗− > a∗ > a∗+, b
∗
− > b∗ > b∗+ and c∗− < c∗ < c∗+,

and by its own conserved quantity

R± = akBbkC ck
±

(for ξ = ±1), (16)

which define the two sets of closed orbits surrounding S
∗
±

in each environmental state, see Fig. 2.
Hence, when the environment switches from ξ = −1

to ξ = +1, the coexistence fixed point around which the

0 10 20 30 40 50 60 70 80

Time

0

200

400

600

800

1000
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u
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S
iz
e

FIG. 3: Solid: Time series of NC(t) in the CLVDN in a
population of size N = 1000 (single simulation realization).
Dashed: PDMP sample path for c(t)N , with c(t) obtained
from (14). Vertical dotted black lines indicate the points
in time when the environment switches. Light gray indi-
cates the evolution in the environmental state ξ = +1 and
dark gray corresponds to ξ = −1. Other parameters are:
kA = 2, kB = kC = 1,∆ = 1.2 and ν = 0.05.

orbits form and the CLVDN dynamics takes place moves
from S

∗
− to S

∗
+, towards higher density of C and lower

densities of A and B, as shown in Figs. 2 and 3. When a
switch occurs the dynamical flow settles on a new set of
orbits that can be closer to the boundaries of the phase
space, the amplitude and period of the oscillations change
and the densities can suddenly be close to values 0 or 1,
as shown in Fig. 2 where we can see that c∗+ > c∗−.
The PDMP description (14) of the CLVDN dynamics is

legitimate in an infinitely large population, and provides
a reasonably good approximation of the transient behav-
ior in large but finite populations, see Fig. 3. As in the
classical CLV (∆ = 0), whenever N < ∞ demographic
fluctuations cause deviations from the PDMP trajecto-
ries and the CLVDN flows in S3 thus consist of random
walks between the two sets of orbits until an absorbing
state is reached corresponding to the extinction of two
species and the take over by the surviving species.

IV. SURVIVAL BEHAVIOR IN THE CLVDN

Determining the survival probability of each species
in the presence of random switching is an intriguing
puzzle. In particular, it is not clear if/how the exter-
nal noise affects the law of the weakest. We are thus
particularly interested in the following question: Given
(kA, kB , kC) = (k+∆ξ(t), kB , kC), do the φi’s satisfy the
LOW relations (11) or (12) in a large population when
∆ > 0? If that is the case, we say that the “LOW is fol-
lowed” also under external noise. Otherwise, we say that
the “LOW is not valid” under external noise. Below, we
shall see that different scenarios emerge below and above
the environmental critical intensity defined as

∆∗ ≡ k − kmin, (17)

where kmin = min{kB , kC}. Since here the LOW predicts
φA → 0 when N ≫ 1, the LOW is no longer valid as soon
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as the survival probability of species A does not vanish
in a large population.

To gain an understanding of the survival behavior of
the CLVDN, in Figs. 4-6 we report extensive computer
simulation results for the system (1)-(3) with kB = kC =
1 and k > 1. In the examples of this section, the critical
intensity is therefore ∆∗ = k − 1 > 0, with k− > 1 when
∆ < ∆∗ and k− < 1 when ∆ > ∆∗, while k+ > 1 for
all values of ∆. Hence, when ∆ < ∆∗ species B and C
are the weakest in both environments, but when ∆ > ∆∗

species B and C are the weakest in one environment and
A is in the other.

Our simulations have been carried out using the Gille-
spie algorithm [83], which mirrors exactly the CLVDN
dynamics prescribed by the ME (4). The survival prob-
abilities and METs were calculated over 10, 000 runs for
each value of N , ν, ∆ and kA(ξ). Without loss of gen-
erality [84], we started our simulations at the CLV coex-
istence fixed point S

∗ = (1, 1, k)/(k + 2) (7). We have
considered sufficiently large systems (N ∼ 103) to be
in the regime where the LOW holds in the absence of
environmental noise, with (kA, kB , kC) = (k, 1, 1), and

predicts (φA, φB , φC)
N≫1
−−−→ (0, 1/2, 1/2).

Simulation results of Figs. 4(a,b), 5(a,b), 6(a,b) con-
firm that the MET in the CLVDN scales with the pop-
ulation size N in all regimes. (We verified that the
MET conditioned on the extinction on a given species
also scales with N). This can be explained as in the
CLV [8, 9, 47]: extinction in the CLVDN results from
a random walk between the nested orbits in the phase
space S3 driven by demographic noise, see Fig. 2. Yet,
in the CLVDN there are two types of orbits around S

∗
±:

the erratic trajectories depend on the environment and
change with ∆ and k. However, it still generally takes
a number of infinitesimal steps of order N2 occurring at
time increment dt = 1/N to reach the edge of S3 starting
from the interior of the phase space. As a consequence,
as in the classical CLV [8, 9, 22, 47], the MET scales with
N , i.e. text ∼ N , as we have verified for N = 100− 1000
in Figs 4(b), 5(b), 6(b). In practice, we have defined the
MET to be the time that it takes for the one species to
go extinct when the trajectory reaches the corresponding
absorbing boundary.

Since the MET scales with the population size, and as
the average time between two random switches is 1/ν, the
average number of switches of the reproduction-predation
rate kA prior to extinction is of order Nν. This suggests
that our analysis should be carried out by discussing
three different regimes: (a) the slow switching regime
where Nν ≪ 1 (DN with long correlation time); (b) the
fast switching regime where Nν ≫ 1 (DN with short cor-
relation time); (c) and the intermediate switching regime
where Nν ∼ O(1) and the external noise has a finite
correlation time (greater than zero).
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FIG. 4: MET and φi of the model (1)-(3) in the slow-
switching regime. (a) Heatmap of the MET as function of
k/(k + 2) and ∆/k for (N, ν) = (1000, 10−4): text increases
when ∆ is raised from 0 to ∆∗ = k−1 and decreases after. (b)
MET vs N for k = 3, Nν = 0.1 (10−4 ≤ ν ≤ 10−3) and dif-
ferent values of ∆: MET scales (approximately) linearly with
the population size and is largest when ∆ = k − 1 (see text).
(c) φi, i ∈ {A,B,C} vs. ∆/k with (N, ν) = (1000, 10−4) and
(N, ν) = (2000, 5×10−5), see key to symbols. Grayscale code:
species A is in gray, B in light gray, and C in black. As an
eyeguide, there is a vertical line at ∆∗/k.

A. Slow-switching regime Nν ≪ 1

In this regime, text ≪ 1/ν, and the external noise has
a long correlation time 1/ν ≫ N ≫ 1. Hence, only
very few or no switches occur prior to extinction. This
means that in this regime the population is as likely to
be locked into either of the environmental states ξ = ±1
(since 〈ξ〉 = 0) until one species takes over and the others
go extinct after a time of order text ∼ N . This can be
used to determine the survival probabilities:

• When ∆ < ∆∗ and N is sufficiently large, the LOW
is followed because k± > 1: B and C are the “weak-
est” species and therefore the most likely to survive
in a large population, i.e. φB ≈ φC > φA [9]. When
N ≫ 1, the LOW takes its zero-one form (12) and
thus B or C is certain to be the sole species to sur-
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vive whereas A goes extinct: (φA, φB , φC)
N≫1
−−−→

(0, 1/2, 1/2), as shown in Fig. 4(c).

• When ∆ > ∆∗, the LOW is not valid because k− <
1 and k+ > 1: When ξ = −1, kA = k− < 1 and A
is the weakest species, whereas when ξ = +1, kA =
k+ > 1 and A is the strongest species. Since the
population is as likely to be locked in either state
ξ = ±1, in half of the realizations species A is the
most likely to survive and in the others it is the least
likely to survive. When N ≫ 1, in the former case
species A is certain to be the sole surviving species
whereas in the latter situation it is guaranteed to
go extinct while species B and C have the same
probability to survive. Hence, when N ≫ 1 we find

(φA, φB , φC)
N≫1
−−−→ (1/2, 1/4, 1/4), which is in good

agreement with the results of Fig. 4(c). So even
though the LOW is valid in either environmental
state, the fact that a realization is effectively locked
in the state it starts in leads the LOW to not being
valid overall.

• When ∆ = ∆∗ = k−1, we have k− = kB = kC = 1
and k+ > 1. Hence, all species are as likely to
survive when ξ = −1, while A is the strongest
species and therefore the least likely to survive
when ξ = +1. When N ≫ 1, this means that
species A is certain to go extinct in the environmen-
tal state ξ = +1. Taking into account that the sys-
tem is equally likely to stay in either state ξ = ±1,

we find (φA, φB , φC)
N≫1
−−−→ (1/6, 5/12, 5/12), as

confirmed by Fig. 4(c).

Furthermore, in Fig. 4(c) the results for different val-
ues of (N, ν) are identical when Nν is kept constant. One
can proceed similarly if the rates are all different, say k >

kB > kC and finds that (φA, φB , φC)
N≫1
−−−→ (0, 0, 1) when

∆ < ∆∗ = k − kC , and (φA, φB , φC)
N≫1
−−−→ (1/2, 0, 1/2)

when ∆ > ∆∗. These results indicate a transition oc-
curring at ∆ = ∆∗, and that external noise alters the
survival probabilities when ∆ > ∆∗: if the external noise
is sufficiently strong, ∆ > ∆∗, no species is guaranteed
to survive and the LOW is no longer valid.
The results of the survival probabilities can qualita-

tively explain the MET dependence on ∆ and k by not-
ing that when ∆ > 0 and k increase, S∗

+ moves toward
the absorbing boundaries of species B and C while S

∗
−

moves toward the absorbing boundary of species A, see
Fig. 2. When ∆ < ∆∗ and N ≫ 1, the system attains
either the absorbing state of species B or C which takes
longer from the orbits surrounding S

∗
− than from those

around S
∗
+. Hence, when ∆ < ∆∗, the MET increases

as ∆ increases (with k fixed) because S∗
− moves closer to

the center of S3. However, when ∆ < ∆∗ is kept fixed,
text decreases when k increases and approaches the edges
of S3. When ∆ > ∆∗ and N ≫ 1, there is a finite prob-
ability to reach any of the three absorbing states and
this takes approximately the same time from any of the
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FIG. 5: MET and φi of the model (1)-(3) as in Fig. 4 but in
the fast-switching regime. (a) Heatmap of MET as function
of k/(k+2) and ∆/k for (N, ν) = (1000, 100). (b) MET vs N
for k = 3, Nν = 0.1 (100 ≤ ν ≤ 1000) and different values of
∆: MET scales (approximately) linearly with the population
size and is almost independent of ∆. (c) φi, i ∈ {A,B,C} vs.
∆/k with (N, ν) = (1000, 100) and (N, ν) = (2000, 50), see
key to symbols. Same grayscale code and vertical line as in
Fig. 4(c).

orbits surrounding S
∗
± which decreases as k and ∆ in-

crease (since S∗
± approach the boundaries of S3). Hence,

the MET decreases when k and ∆ increase and ∆ > ∆∗.
The MET is maximal when (∆, k) = (k − 1, 1), and it is
minimal when ∆ → k ≫ 1.

B. Fast-switching regime Nν ≫ 1

In this regime, the environment varies rapidly with
respect to the time scale of the population evolution.
Hence, kA(ξ) switches many times (∼ Nν ≫ 1 times, on
average) before extinction occurs, and thus self-averages:
kA(ξ) → kA(〈ξ〉) = k [70, 77, 78]. In this regime, the
CLVDN is approximately identical to the CLV with re-
action rates (kA, kB , kC) = (k, 1, 1) and therefore

• The LOW holds (when N > 20 [9], see also below)
for all values of ∆: species A is the strongest and
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therefore the least likely to survive, and we have

(φA, φB , φC)
N≫1
−−−→ (0, 1/2, 1/2) when N ≫ 1, see

Eq. (12) and Fig. 5(c).

• Figs. 5(a,b) show that, in this regime, the MET is
independent of ∆ due to the self-averaging, but it
decays when k increases and S

∗ moves closer to the
B and C absorbing boundaries, see Fig. 2(c). The
MET text ∼ N is maximal when k ≈ 1, and all
species coexist with densities oscillating about the
same values in the transient prior to extinction.

Again, we notice that in Fig. 5(c) the results for differ-
ent values of (N, ν) are identical when Nν is kept con-
stant. In Fig. 5(c) we notice that φC is slightly greater
than φB for all values of ∆. This small effect stems
from the influence of the LOSO (13) which says that in
small population (without external noise), the species C
is more likely to survive than species A and B since here
k > kB , kC (∆∗ > 0) and ξ → 〈ξ〉 = 0 self averages.
One can proceed similarly if the rates are all different,

say k > kB > kC , in which case, according to the zero-

one LOW (12), we have (φA, φB , φC)
N≫1
−−−→ (0, 0, 1).

C. Intermediate-switching regime Nν ∼ O(1)

In this regime, the population composition and the en-
vironment vary on comparable time scales. On average,
there are therefore a finite number of switches occurring
prior to extinction, and the environmental noise does not
self-average. We therefore expect a markedly different
survival behavior in this regime, where the external noise
has a finite positive correlation time, than in the other
regimes. For large but finite N , in Fig. 6(c), we find the
following:

• When ∆ < ∆∗, A is the strongest species and thus
the least likely to survive according to the LOW,
with φA ≈ 0, whereas φB ≈ φC ≈ 1/2 when ∆ ≈ 0.
However, φC increases and φB decreases when ∆ is
raised from 0 to ∆∗.

• When ∆ > ∆∗, both φB and φC decrease when ∆
is raised, while φA increases with ∆. Hence, when
∆ ≈ k, species A is the most likely to be the surviv-
ing one whereas species B is the most likely to go
extinct: φA > φC > φB . Therefore, under strong
external noise, the species that is the strongest
without environmental randomness (species A) is
the most likely to prevail. In this case, the LOW
is not valid since these results are in stark contrast
with the predictions of the LOW for the CLV with
reaction rates (kA, kB , kC) = (k, 1, 1) and k > 1.

• Surprisingly, the survival probability φC exhibits
an intriguing non-monotonic dependence on ∆ and
species C is most likely to be the surviving one
when ∆ ≈ ∆∗, which we explain below. The results
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FIG. 6: MET and φi of the model (1)-(3) as in Fig. 4 in
the intermediate-switching regime. (a) Heatmap of MET as
function of k/(k + 2) and ∆/k for (N, ν) = (1000, 0.05). (b)
MET vs N for k = 3, Nν = 50 (0.5 ≤ ν ≤ 0.05) and dif-
ferent values of ∆: MET scales approximately linearly with
the population size and decreases as ∆ increases (see text).
(c) φi, i ∈ {A,B,C} vs. ∆/k with (N, ν) = (1000, 0.05) and
N = (2000, 0.025), see key to symbols. Same grayscale code
and vertical line are as in Fig. 4.

for different values of (N, ν) are identical when Nν
is kept constant.

• The MET decreases when k increases because S
∗

moves towards the absorbing boundaries of B and
C. Additionally text decreases as ∆ increases, as a
result of the environmental switching changing the
parts of the phase space that are more prone to
extinction, as explained below.

To explain the intriguing behavior of φi reported in
Fig. 6(c), we can adapt the arguments used in Ref. [9] to
discuss the survival probabilities in the CLV. For this, the
authors of Ref. [9] used the so-called “outermost orbit”
obtained from (8) as the deterministic orbit that lies at
a distance 1/N , i.e. one reproduction-predation reaction
away, from the closest edge of S3. In the CLV, extinc-
tion arises once on the outermost orbit when a chance
fluctuation pushes the trajectory along the edge of S3

that drives it toward the absorbing state of the weak-
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FIG. 7: Outermost orbits for N = 1000, (k, kB , kC) = (3, 1, 1)
with ∆ = 0.5 (a), ∆ = 2(b) and ∆ = 2.7(c). The orbits in
the environmental state ξ = +1 (kA = k + ∆) are in gray;
those in the state ξ = −1 (kA = k −∆) are in black. Region
I: area of S3 where the switching of kA leaves the trajectory
within an outermost orbit. Regions II/III show the areas
where where extinction is very likely, see text. In (a) and
(b) the area in Region III (only A survives) is very small and
Region II (C sole surviving species) increases with ∆ up to
∆ ≈ ∆∗. When ∆ > ∆∗, as in (c), the area in Region II/III
decreases/increases when ∆ is increased.

est species, yielding the LOW (12). Within a piecewise
deterministic Markov process picture, we can adapt this
argument to the CLVDN dynamics by considering two
types of outermost orbits obtained fromR±, see Eq. (16):
the orbit that surrounds S

∗
− (formed by the points sat-

isfying R−(t) = R−(0)) and is associated with the envi-
ronmental state ξ = −1, and that is at a distance 1/N
from the BC and CA edges of S3 when ∆ < ∆∗, or the
AB edge of S3 when ∆ > ∆∗, as shown in Figs. 2(a)
(see also Fig. 7). The other outermost orbit (formed by
the points satisfying R+(t) = R+(0)) surrounds S∗

+ and
is associated with the environmental state ξ = +1, as
shown in Fig. 2(b); it is at a distance 1/N from the CA
and BC edges of S3. When ∆ < ∆∗, these two types
of outermost orbits overlap greatly, see Fig. 7(a,b) where
they are approximately equal except when the density of
C is small, whereas there is only a partial overlap when
∆ > ∆∗ as shown in Fig. 7(c). These considerations help
shed light on the ∆-dependence of the fixation probabil-
ities.

In fact, when N ≫ 1, a typical CLVDN trajectory in
S3 performs a random walk around S

∗
± by approximately

moving along the nested deterministic orbits and moving
from one to another, see Figs. 2 and 3. When the en-
vironment switches, the orbit on which the trajectory is
instantly changes, as does the coexistence fixed point.
This results in a trajectory on an orbit that is either
closer or further to the absorbing boundary of S3. As in
the CLV [9], if after a switch the trajectory lands outside
the outermost orbit of the actual environmental state,
internal fluctuations are likely to drive it to extinction
into the closest absorbing state (if no other switches oc-
cur prior to extinction). This picture can be rationalized
by considering the Regions I-III shown in Fig 7: Region
II denotes the area within the ξ = −1 outermost orbit
that lies outside the ξ = +1 outermost orbit. Region III
is defined similarly for the part of within the ξ = +1 out-
ermost orbit, while Region I is the area contained within
both outermost orbits. The dynamics in each of these
regions is the following:

• When there is a switch ξ = −1 → ξ = +1, the
trajectories lying within Region II are outside the
system’s outermost orbit and are very likely to flow
along the AC edge and reach the C absorbing state
(φC = 1).

• Similarly, when a switch from ξ = +1 → ξ = −1
occurs, the trajectories within Region III are out-
side the actual outermost orbit and therefore flow
along the CB and BA edges to attain the A ab-
sorbing state (φA = 1).

• All trajectories within Region I remain within the
outermost orbit independently of the environmen-
tal state and their dynamics is essentially the same
as in the CLV and dominated by internal noise.
The LOW applies within Region I and in the case
of Fig. 6(c) lead to the B or C absorbing state with
probability 1/2 (φB = φC = 1/2).

As a consequence, the area in Region I indicates the
influence of the external noise in departing from the
CLV/LOW scenario, while the areas of Region II and
III are associated with the probability of C and A being
the sole surviving species. When ∆ is small (weak exter-
nal noise), Regions I and II cover respectively a large and
small part of S3 while Region III is negligible, correspond-
ing to φA ≈ 0, see Fig 7(a). Since Region II/I slightly
increases/decreases when ∆ increases, φC increases with
∆ up to ∆ = ∆∗, see Fig 7(b). When ∆ & ∆∗, S∗

± are
well separated and all Regions I-III have a finite area cor-
responding to finite probabilities φi. When ∆ is increased
further, the area of Region III grows and that within Re-
gion I and II shrink, see Fig 7(c). Hence, φA increases
while φB and φC decrease with ∆ when ∆ > ∆∗, and
species A is the most likely to be the surviving one when
the amplitude of the external noise is strong enough (for
∆ & 2.4 in Fig. 6(c)). This analysis explains the fea-
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FIG. 8: Survival probabilities for the CLVDN when kB 6=
kC . The effect on the survival probabilities is the same as in
the case for kB = kC , with differences due to the expected
behavior in the absence of external noise. Parameters are:
kA = 3, N = 1000, ν = 0.05. (a) kB = 1 < kC = 2: B is the
weakest species in the absence of external noise so is initially
the most likely species to survive. The qualitative behavior of
the survival probabilities is the same as for kB = kC , except
the peak of φC has moved to the right. (b) kB = 2 > kC = 1:
C is the weakest species in the absence of external noise, so
starts of as the most likely species to survive.

tures of φi displayed in Fig. 6(c) and in particular, the
non-monotonic ∆-dependence of φC .

This can also explain the monotonic decrease of the
MET for fixed k: as ∆ increases, the fraction of the phase
space contained in Regions II and III increases, so a larger
amount of the phase space is more prone to extinction,
reducing the expected time to extinction.

When kB 6= kC , the results are similar: Fig. 8 shows
the results for (a) kB < kC and (b) kB > kC . In the
first case B is the most likely species to survive without
external noise (EN), and as the intensity ∆ of the EN is
increased φB decreases, while φA increases after ∆ = ∆∗

and φC increases then decreases. The only difference with
Fig. 6(c) is that φC reaches its peak slightly after ∆ =
∆∗. When kB > kC , species C is the surviving one with
probability 1 in the absence of EN, so φC ≈ 1 when ∆ ≈ 0
and then φC is reduced as the EN intensity ∆ increases,
with most of the variation occurring after ∆ = ∆∗, when
φA increases (φB ≈ 0 for all values of ∆). Thus the non-
monotonic dependence of φC on ∆ is a robust non-trivial
joint effect of internal and environmental noise.

D. CLVDN survival probabilities in small
populations

In the CLV, the survival probabilities obey the law
of stay out (LOSO), see Eqs. (13) and Fig. 1, in small
systems, typically for 3 ≤ N . 20 [9]. It has also been
found that the LOSO quantitatively influences φi in pop-
ulations of greater size [9]. Here, we study the CLVDN
survival probabilities in small populations in order to un-
derstand how external noise alters the LOSO. In partic-
ular, given (kA, kB , kC) = (k + ∆ξ(t), kB , kC), we ask
whether the φi’s satisfy the LOSO relations (13) in a
small population when ∆ > 0. When it is the case, we
say that the LOSO is followed, otherwise the LOSO is
not valid when ∆ > 0.
To address this question, we first consider a population

of size N = 3. Proceeding as described in Appendix B,
we find

φA =
(γ + ν) kB

γ2 −∆2 − ν2
, φB =

(γ + ν) kC
γ2 −∆2 − ν2

, (18)

φC =
k(γ + ν)−∆2

γ2 −∆2 − ν2
, (19)

where γ = k + kB + kC + ν. Clearly, in the absence of
external noise (∆ = 0) one recovers the LOSO (13) ac-
cording to which φC > φA, φB when, as in this section,
k > kB , kC . However, it is clear from (19) that when
∆ > 0, it is only when (γ + ν)(k −max(kB , kC)) > ∆2,
that φC > φA, φB . Hence, even when N = 3, the
LOSO is followed only at sufficiently low ∆ and/or at
high enough ν, but is generally not valid. The results
(18),(19) indicate that determining which of A,B or C
is the species to be the most likely to survive in small
systems of size 3 ≤ N . 20 depends non trivially on
(∆, ν) and on k’s. Hence, the LOSO is generally not
valid for small systems in the presence of environmen-
tal noise, and there is no simple general “law” to predict
which species is most likely to survive in small popu-
lations when ∆ > 0. An exception arises in the fast-
switching regime, Nν ≫ 1, when the noise self-averages
and one recovers the LOSO (13) for 3 ≤ N . 20. It has
also to be noticed that for such small systems, the initial
condition becomes relevant. What is more important for
our purpose here, is that we have confirmed that, as for
the CLV, coherent large-system scenarios emerge also in
the CLVDN when N & 100. Hence, small-size effects
are marginal in systems of size N ≥ 1000 that we have
considered in sections IVA, IVB and IVC.

V. CLVDN SURVIVAL BEHAVIOR: SUMMARY
OF THE DEPENDENCE ON N, ν AND ∆

We now summarize the CLVDN survival behavior as
a function of the population size N , which controls the
demographic noise, and of the external noise parameters
ν and ∆. We have always found that the (unconditional)
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FIG. 9: Summary of the CLVDN survival probabilities when
k > kB , kC in N − ν diagrams showing φi when ∆ < ∆∗

(a) and ∆ > ∆∗ (b). The upward/downward arrows in-
dicate whether φi increases/decreases when ∆ is increased.
The lines N = ν and Nν = 1 indicatively separate the
slow/intermediate/fast switching regimes. The shaded re-
gions indicate the regime of small populations. (c) Heatmap
of the absolute value of φC |∆=∆∗ − φC |∆=0 for k = 3, kB =
kC = 1 as function of ν and N . The gray area to the left
of the line indicating Nν = 1 shows the slow switching re-
gion, where φC |∆=∆∗ < φC |∆=0, while the white region to
the right of the N = ν line shows the fast switching regime
φC |∆=∆∗ ≈ φC |∆=0. Between these two lines is the interme-
diate switching regime, where φC |∆=∆∗ > φC |∆=0 and the
magnitude of φC |∆=∆∗ − φC |∆=0 that increases with N .

mean extinction time scales linearly with the population
size, i.e. text ∼ N , independently of the initial condition
(when it is well separated from the absorbing bound-
aries), see Figs. 4(a,b), 5(a,b), 6(a,b). While we always
find text = O(N), as explained in Sec. IV, the MET is
shortened when the intensity ∆ of the external noise in-
creases.
The species survival probabilities depend greatly on

(N,∆, ν) and on the average number of switches, of

order Nν, occurring prior to extinction. Except un-
der fast switching, when the external noise self-averages
and the law of the weakest holds, non-LOW scenarios
emerge both below and above the critical EN intensity
∆∗ = k− kmin. In fact, when k > kB , kC and N ≫ 1, we
find

• When ∆ < ∆∗: Species A is almost certain to go
extinct for all values of ∆ < ∆∗. The LOW holds
only in slow switching regime where Nν ≪ 1. In
the intermediate-switching regime, Nν ∼ O(1), φB

decreases and φC grows when ∆ increases and no
species is guaranteed to survive according to a non-
LOW scenario, see Fig. 9(a).

• When ∆ > ∆∗: Under slow switching, no species
is guaranteed to survive and φA → 1/2 when the
intensity of the EN is high (∆ → k). Under
intermediate-switching, φA increases while φB and
φC decrease when ∆ increases according to a non-
LOW scenario. Hence, species A is the most likely
to be the surviving one under external noise of high
intensity (∆ ≈ k) and switching rate ν ∼ O(1/N),
see Figs. 6(b), 8 and Fig. 9(b).

• When ∆ = ∆∗: the main influence of the external
noise occurs in the intermediate-switching regime,
as illustrated Fig. 9(c) where φC is much greater
than in the CLV when Nν ∼ O(1). This figure
also shows that φC |∆=∆∗ < φC |∆=0 in the slow
switching regime (left-hand light gray area), and
φC |∆=∆∗ ≈ φC |∆=0 in the fast switching regime
(right-hand white area).

While we have focused on k > kB , kC , the above results
also hold for k = kB = kC when ∆∗ = 0, in which case
the scenarios summarized in Fig. 9(b) for ∆ > ∆∗ arise.
In populations of small size, 3 ≤ N . 20, the survival
probabilities depend in an intricate way of (N,∆, ν) and
generally do not follow neither the LOSO nor the LOW.

VI. CONCLUSION

We have investigated the joint effect of environmen-
tal randomness and demographic fluctuations on the sur-
vival (or, equivalently, fixation) behavior of the paradig-
matic cyclic Lotka-Volterra model in which each of three
species, A,B and C, is in turn the predator and the prey
of another species. When the population is large but fi-
nite, and the environment is static (no external noise),
the survival probabilities have been shown to obey the
so-called “law of the weakest” [8, 9, 36, 37]: the “weakest
species” (with the lowest reproduction-predation rate) is
the most likely to be the surviving one, with a survival
probability that asymptotically approaches one. The
other species go extinct in a time scaling with the popu-
lation size.
While the law of the weakest generally does not hold

when more than three species interact, variants of this
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law have been found in a number of three-species systems
exhibiting cyclic competition. Here, we have assessed
the robustness of the law of the weakest against a sim-
ple form of environmental randomness in the cyclic Lotka
Volterra model. For this, we have modeled environmen-
tal variability by considering the random switching of
the reproduction-predation of the strongest species in a
static environment, A, between two values corresponding
to more and less favorable environmental conditions. We
have analyzed how the joint effect of environmental and
demographic noise affects the survival probabilities, and
how the presence of external noise alters the law of the
weakest that predicts the certain extinction of species A
in a static environment.

We have found that in a large population, under ex-
ternal noise of sufficient intensity and for a dichotomous
noise whose switching rate is not too high, the law of
the weakest is violated and no zero-one law holds, hence
no species is guaranteed to survive. In fact, new sur-
vival scenarios emerge under sufficiently strong external
noise and/or when the rate of switching is not too high.
When the environment switches very slowly, the popula-
tion is likely to stay in its initial (randomly distributed)
environmental state and, above an external noise inten-
sity threshold, species A is either the weakest (where
the LOW predicts that it survives with probability 1)
or the strongest (where the LOW predicts that it goes
extinct). This results in its finite probability (about 1/2)
of being the surviving species, which is different to the
LOW when the intensity of the external noise vanishes
(∆ = 0), even though it is followed in each environment.
A complex survival scenario emerges when the environ-
ment and the population evolve on similar time scales:
the survival probability of the predator (species C) of
species A typically exhibits a non-monotonic dependence
on the external noise intensity, while the survival prob-
ability of A increases with the strength of the environ-
mental noise, and A is the most likely to survive under
strong external noise. These surprising results have been
explained by considering the possible paths to extinction
from the “outermost orbits” characterizing the dynam-
ics described by the underpinning piecewise determinis-
tic Markov process. The survival probabilities follow the
law of the weakest when the random switching occurs
on a much faster time scale than the population relax-
ation, and when both the external noise intensity and the
switching rate are low. In the former case, there are many
switches prior to extinction and their effect averages out,
while in the latter A remains the strongest species in each
environmental state and is thus almost certain to go ex-
tinct. We have also found that the mean extinction time
always scales with the population size, and the general
effect of the external noise is to reduce the subleading
contribution to the mean extinction time.

Our findings demonstrate that even a simple form of
external noise drastically alter the survival probabilities
of a reference system like the cyclic Lotka-Volterra model
and, together with demographic noise, leads to complex

survival scenarios. Here, for the sake of simplicity, we
have concentrated on the cyclic Lotka-Volterra dynam-
ics characterized by neutrally stable deterministic orbits.
However, we expect that a similar analysis would in prin-
ciple also apply to the case where the coexistence of the
species is deterministically stable or leads to heteroclinic
cycles [15]. In these cases also, the path to extinction
occurs along cyclic trajectories close to the absorbing
boundary. However, these paths are difficult to deter-
mine in the absence of a conserved quantity, and, when
coexistence is deterministically stable, the mean extinc-
tion time typically increases exponentially with the sys-
tem size.
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APPENDIX A: SURVIVAL PROBABILITIES IN
THE CLVDN WITH THREE RANDOMLY

SWITCHING REACTION RATES

For the sake of simplicity, we have focused on the case
where only one reaction rate, kA, randomly switches.
However, it is realistic to assume that the reaction rates
of all species are subject to environmental variability. In
general, each ki, with i ∈ {A,B,C}, would be affected by
different external factors, leading to a CLVDN (1) with

kA = k +∆AξA; kB = k̄ +∆BξB ; kC = k +∆CξC ,(A1)

where ξi ∈ {−1,+1} and i ∈ {A,B,C} are independent

dichotomous noise variables, such that ξi
νi−→ −ξi, each

with a distinct switching rate νi and intensities 0 < ∆A <
k, 0 < ∆B < k̄, 0 < ∆C < k. Each ξi in (A1) has
the same properties as ξ of Sec. II, e.g., 〈ξi〉 = 0. The
CLVDN with (A1) spans a large-dimensional parameter
space that is difficult to scrutinize.
In this appendix, for the sake of concreteness, we show

that the results obtained so far can be of direct rele-
vance for the general model (1) with noisy rates (A1)
when these fluctuate on markedly different timescales.
Here, we assume νB ≫ νA ≫ νC , with NνA ∼ O(1),
and we set k̄ = k = 1. This corresponds to the situ-
ation where species B and C are subject external fac-
tors changing with high and low frequency, respectively,
while the growth rate of species A changes with factors
varying on the same times scale O(1/N) on which the
population composition changes. Since kB switches fast
(νB ≫ 1/N) and kC switches slowly (νC ≪ 1/N), from
Sec. III, we expect ξB to self-average and thus simply con-
sider that kB = 1, while kC = 1 + ∆C (when ξC = +1)
or kC = 1−∆C (when ξC = −1), each with a probability
1/2. By denoting here k± = k±∆A and ∆∗ = k−1 > 0,
we can thus make contact with the results of Sec. III.C.
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FIG. 10: Survival probabilities for the three species switching
case, with kA = 3, N = 1000, νA = 0.05, νB = 100 and
νC = 10−4, ∆B is kept constant at 0.8 and different values ∆C

are shown with different markers. The vertical line indicates
∆∗/k. When ∆C increases, the peak of φC moves towards
higher values of ∆A, see text.

When ∆A < ∆∗, we have k± > 1 and the survival be-
havior is similar to that of Sec. III.C as shown by Fig. 10
whose similarities with Fig. 6(b) are striking: φC and
φB respectively increases and decreases with ∆A while
φA ≈ 0. Hence, as in Sec. III.C, species C is the most
likely to be the surviving one under external noise of low
intensity while A is the “strongest” species and therefore
the most likely to go extinct. When ∆A > ∆∗, k+ > 1
and k− < 1 which also yields the same qualitative behav-
ior as in Fig. 6(c): φA and φB increase and decreases with
∆A while φC varies non-monotonically with ∆A. For the
same reason explained in Sec. III.C, species A becomes
the most likely to survive under strong external noise. A
noticeable, yet marginal, difference between Figs. 6(c)
and 10 is the fact that the φC is maximum for ∆A & ∆∗

in Fig. 10 instead of ∆A ≈ ∆∗. In Fig. 10 the peak of
φC moves towards higher values of ∆A because A is the
“weakest” species under strong EN in the environmental
states ξA = ξC = −1 when ∆A > ∆∗ +∆C .

APPENDIX B: DERIVATION OF THE CLVDN
SURVIVAL PROBABILITIES WHEN N = 3

In this appendix, we consider the CLVDN in a sys-
tem of size N = 3 and determine the species survival

probabilities. In this system, the fate of the system is
completely determined by the first reaction that takes
place, after which an absorbing boundary is reached and
only one species survives. Starting with one individual
of each species, if A replaces B then C is the sole sur-
viving species. Similarly, if B replaces C then A will
be the survive, and if C replaces A then B will survive.
Hence, when N = 3 the species that survives is com-
pletely determined by the first reproduction-predation re-
action that occurs. Here, we proceed with the derivation
of φA (φB and φC follow analogously): A survives if the
first reproduction-predation reaction is the BC reaction.
Hence the probability that A is the surviving species is

φA = P(BC reaction first) = P(BC) (B1)

+ P(switch then BC) + P(2 switches then BC) + . . . ,

where P(.) stands for “probability of (.)”.

We consider first that initially ξ = +1 and accord-
ing to (B1), with γ = k + kB + kC + ν and α =
ν2/(γ2 − ∆2), we have P(A survives| start with ξ =

+1) = kB

γ+∆ + ν
γ+∆

kB

γ−∆ + ν2

(γ+∆)(γ−∆)
kB

γ+∆ + . . . =
∑∞

n=0 α
n
(

1
γ+∆ + ν

γ2−∆2

)
kB = (γ−∆+ν)kB

γ2−∆2−ν2 .

The case of the initial state ξ = −1 is treated sim-
ilarly and yields P(A survives| start with ξ = −1) =
(γ+∆+ν)kB

γ2−∆2−ν2 . Since, the population is initially as likely

to be in either of the environmental states, we have

φA =
1

2
P(A survives| start in ξ = +1)

+
1

2
P(A survives| start in ξ = −1) =

(γ + ν) kB
γ2 −∆2 − ν2

.

Proceeding similarly for φB and φC , we obtain (19).
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Täuber, J. Phys. A: Math. Theor. 51, 063001 (2018)

[19] T. Reichenbach, M. Mobilia, and E. Frey, Nature (Lon-
don) 448, 1046 (2007).

[20] T. Reichenbach, M. Mobilia, and E. Frey, Phys. Rev.
Lett. 99, 238105 (2007).

[21] T. Reichenbach, M. Mobilia, and E. Frey, J. Theor. Biol.
254, 368 (2008).

[22] Q. He, M. Mobilia, and U. C. Täuber, Phys. Rev. E 82,
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