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Abstract

We consider a container routing problem with stochastic time variables in a sea-rail inter-

modal transportation system. The problem is formulated as a binary integer chance-con-

strained programming model including stochastic travel times and stochastic transfer time,

with the objective of minimising the expected total cost. Two chance constraints are pro-

posed to ensure that the container service satisfies ship fulfilment and cargo on-time deliv-

ery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the

binary integer chance-constrained programming model. Two case studies are conducted to

demonstrate the feasibility of the proposed model and to analyse the impact of stochastic

variables and chance-constraints on the optimal solution and total cost.

Introduction

In recent decades, international trade has been growing rapidly throughout the world. At the

same time, the development of intermodal logistics has offered opportunities for freight com-

panies to replan their operations. The Intermodal freight transportation (IFT), defined as the

transportation of cargoes by two or more different modes of transport [1–2], is a relatively

young domain [3]. Generally, there are five key research issues on intermodal transportation

as summarised in [4].

(i) Intermodal transportation policy: to analyse the effect of different policies on intermodal

transportation, such as tax changes, train speed changes, train length changes, service

quality changes and new infrastructure investment.

(ii) Intermodal network design: to address how to construct or improve intermodal transporta-

tion infrastructure in order to satisfy the demands and optimize the objective criteria [5].

(iii) Intermodal service design: to decide on issues such as service frequency and terminal oper-

ation [6].

(iv) Intermodal routing problem: to specify the routes to transport each demand from its origin

to its destination through an intermodal network.

(v) Empty container repositioning: to optimize the reposition plan in order to meet forecast

demand and to minimise repositioning costs.
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This paper focuses on issue (iv), i.e. the intermodal freight routing problem, and more spe-

cifically the intermodal cargo routing problem. As a cargo loading unit usually refers to a stan-

dardized container measured in Twenty-foot Equivalent Units (TEU), we limit our study

scope to the intermodal container routing problem (ICRP) in this paper. The ICRP is

described as the need to specify the container route that minimises the total transportation

cost while satisfying delivery time constraints for each container freight demand. Table 1 lists

the key literature on ICRP in terms of the stochasticity represented. The pioneering work of

Barnhart and Ratliff [7] considered an ICRP which involves trailers and containers in a truck

and rail IFT system. They formulated the ICRP as a shortest path problem minimising the sum

of transportation cost and inventory cost and solved it by the weighted b-matching algorithm.

The literatures that followed can be broadly classified as single-objective ICRP and multi-

objective ICRP. The single-objective ICRP is usually to minimise the total cost, while the

multi-objective ICRP is usually to minimise both transportation cost and travel time [8] or the

weighted sum of the two [9]. For single-objective ICRPs, Ayar and Yaman [10] formulated the

ICRP in a truck-ship intermodal network as a multi-commodity routing problem with a single

objective to minimise the sum of transportation cost and inventory cost, where the transporta-

tion modes and routes were determined for each commodity. Ziliaskopoulos and Wardell [11]

proposed a label correcting algorithm (i.e. scanning an eligible list) to find the least-time paths

from origin nodes to destination nodes in a time-dependent intermodal network, with the

objective to minimise the total travel time. The model was tested on several realistic networks

with 50, 100, 500 and 1000 nodes, respectively. For multi-objective ICRPs, Cho et al. [8] for-

mulated an integer programming model which considered export and import containers

simultaneously. A label setting algorithm was applied to get the Pareto optimal solutions, and

the model was demonstrated in a large-scale ship-railway-air network between Busan and Rot-

terdam. Chang [9] considered a container routing problem for minimising transportation cost

and travel time in a truck-ship-air intermodal network, and formulated a multi-commodity

flow problem with time window constraint, where each commodity represented a single ori-

gin-destination demand. The problem was formulated as a mixed integer nonlinear program-

ming model and a heuristic algorithm, with relaxation and decomposition is proposed to solve

the problem.

In addition to travel time and cost, other factors have been taken into account as objectives

in ICRP, such as travel time variability [12], risk [13] and CO2 emission [14]. The ICRPs were

also combined with other relevant IFT problems, such as empty container reposition [15] and

service network design [16–18]. Meng et al. [15] developed a mixed integer linear program-

ming model for the routing of both laden containers and empty containers. Besides, the model

determined the number of empty containers loaded, unloaded and transhipped at seaports

simultaneously in an inland-maritime network. Crainic et al. [16] established a mixed integer

Table 1. Overview of intermodal container routing problem.

Problems Stochastic travel

time

Stochastic

transfer time

Stochastic

demand

Key literature

Classical

deterministic ICRP

No No No Ayar and Yaman [10]; Barnhart and Ratliff [7]; Chang [9]; Cho et al. [8]; Kim et al.

[18]; Moccia et al. [22]; Ziliaskopoulos and Wardell [11]

Combined ICRP No No No Crainic et al. [16]; Crainic et al. [17]; Meng et al. [15]; Riessen et al. [19]

Stochastic ICRP Yes No No Min [13]

Stochastic Combined

ICRP

Yes No Yes Demir et al. [14]

Stochastic ICRP Yes Yes No This work

https://doi.org/10.1371/journal.pone.0192275.t001
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nonlinear programming model to solve the problems of service design, freight routing and ter-

minal policies with decomposition and column generation principles. An extension of this

work was presented by Crainic et al. [17], who formulated an integer nonlinear programming

to assign multi-commodity freight to a multimodal transportation network taking into consid-

eration the operating cost, delay cost and energy consumption. Kim et al. [18] constructed a

mixed integer programming to determine the transportation flow quantity and transportation

mode on each route in a truck-rail intermodal network in Korea. The objective was to mini-

mise the system cost with the limitation of cargo volumes at seaports and number of vehicles

at each mode. Riessen et al. [19] combined a path based formulation and a minimum flow net-

work formulation to design a service network in Europe taking into consideration both self-

operated service and subcontracted service, with specified routes of freight.

All the above literature considered ICRP under deterministic conditions, where travel

times and transfer times were treated as deterministic and represented an average condition.

In practice, however, container transportation is full of unpredictable and stochastic elements.

For example, Li et al. [20] described the uncertainty in the planning of transit itinerary and

proposed a two-phase approach to find the best transit itineraries under uncertainty. Meng

et al. [3] reviewed the routing and scheduling problem in container maritime transportation

and concluded there are many uncertainties in container transportation. Travel time is per-

haps the most uncertain factor in intermodal container transportation. For example, in the

railway freight system, due to the lower priority of freight transportation, the travel time of

freight trains is frequently impacted by passenger trains. As a result, it is difficult to ensure the

punctuality of freight trains. While in the maritime system, travel time is also stochastic

because of unexpected weather conditions, for example. In addition, container transfer time

can also be variable due to different employee productivity. Such variabilities in an IFT system

directly affect the chances of achieving good service connections and on-time delivery, and as

such are a major concern for freight companies. Therefore, it is essential to consider the sto-

chasticity of travel time and transfer time in container transportation, especially in a rail-sea

transportation system.

So far, there has been limited research on this issue, as noted in Demir et al. [14], Min [13],

and Dong [21]. Specifically, Demir et al. [14] constructed a mixed integer nonlinear program-

ming model for a green intermodal service network design problem with time uncertainty and

demand uncertainty. A sample average approximation method was applied to solve the prob-

lem and minimise the total cost including transportation cost, transhipment cost, delayed cost

and CO2 emissions-related cost. In Min [13], a chance-constrained goal programming was

constructed to select the best intermodal route in order to minimise cost and risk as well as sat-

isfy on-time delivery requirement. Dong [21] presented a two stage stochastic programming

model to deal with both service capacity planning and container routing, taking into account

uncertain demand. A Progressive Hedging Algorithm (PHA) was employed to solve the

problem.

High efficiency algorithms are crucial for generating a practical container routing plan.

There has been extensive research on exact algorithms, such as branch and bound algorithms,

cutting-plane methods, dynamic programming algorithms [8] and column generation algo-

rithms [16]. However, as the container routing problem in real life is NP-hard, exact algo-

rithms cannot compute the optimal solution efficiently and thus approximate algorithms are

called for. Heuristic algorithms have been developed by Chang, Dong, Meng et al. and Moccia

et al [9, 15, 21–22]. Some of these algorithms are combined with the decomposition technique,

such as Lagrangian relaxation and Progressive hedging algorithm (PHA). In Chang [9],

Lagrangian relaxation was used to separate the initial problem into two sub-problems which

were solved by different exact algorithms. A Progressive hedging algorithm (PHA) was
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employed by Dong [21] to decompose large scale problems. Besides, there are also other

approximation algorithms such as Sample Average Approximation [14] and comprehensive

evaluation methods [12]. For example, Yang et al. [12] presented an intermodal network opti-

mization model based on goal programming to evaluate the objective value of 36 alternative

routes from China to India considering transportation cost, transit time and travel time vari-

ability. The model was tested on a real intermodal network with two Chinese origins and four

Indian destinations.

In intermodal container transportation, the transportation time consists of travel time by

different modes and transfer time between different modes, which can both affect the proba-

bility of on-time delivery and the feasibility of container route plan. Thus the complexity of

robust container route plan lies in taking into account stochastic travel time and stochastic

transfer time simultaneously. However, most literatures only consider one of them.

In response to the complexity, this paper presents a chance constrained programming to deal

with the container routing problem with respect to laden export container cargo and stochastic

time parameters in an intermodal sea-rail network. The aim is to select the best routes for each

container demand transported from its origin to its destination by rail and sea. The travel time

and transfer time are treated as random variables. The proposed methodology will be demon-

strated by one small-scale case and one practical sized case respectively, where both the determin-

istic situation and the stochastic situation are considered. The effects of stochastic time parameters

on the optimal solution, and the relationships between cost and stochasticity, are also discussed.

The contribution of this paper is threefold: (1) formulating a chance-constrained programming

problem for the ICRP with stochastic travel times and stochastic transfer time; (2) proposing a

hybrid heuristic algorithm to solve the problem; and (3) examining the effects of stochastic vari-

ables on different types of system costs and on cargo delivery punctuality.

The rest of this paper is organised as follows. Section Problem statement introduces the con-

tainer routing problem with stochastic time variables. Section A dual chance-constrained ICRP
with stochastic time variables formulates the binary integer chance-constrained programming

model for the ICRP with stochasticity. Section A hybrid heuristic solution algorithm describes

the proposed hybrid solution method, while Section Numerical example presents a numerical

example to illustrate the workings of the model and conducts sensitivity tests on the model

parameters. Finally, Section Conclusion summaries the findings and highlights future research

directions.

Problem statement

Intermodal container routing in a sea-rail network is complicated by three characteristics.

First, Compared with other bulk freight transportation, containerized traffic is often more

time-sensitive: goods in the container may be perishable or consumer goods with a short life

cycle. Hence the delivery time of each demand is an important consideration in the routing

problem. This requires simultaneous minimization of travel cost and on-time arrival with a

predetermined punctuality. Second, in a sea-rail intermodal system, the transportation services

usually follow fixed schedules and are less flexible than road services. Thus, the punctuality of

services becomes extremely important. Unexpected delay on railway or at transfer sea ports

may lead to missing scheduled sea sailings which depart according to fixed schedules. Third,

Because of the transhipment between trains and ships, the component costs of intermodal con-

tainer transportation include not only the transportation costs, but also inventory and transfer

costs. The container routing problem addressed in this research is to select the minimal-cost

routes considering stochastic travel time variables for total container demand originating from

multiple inland railway stations and destining to a single foreign seaport in a sea-rail network.

Stochastic intermodal container routing
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To illustrate the problem, we first consider the case from a single origin to a single destina-

tion. Fig 1 illustrates a sea-rail network with a single origin A, two rail loading locations B and

C, two hubs D and E where container cargoes can transfer between different modes, and one

destination F.

An export container cargo from A to F (or AF for short) can take the following twelve possi-

ble routes.

A� !Train B� !Train D� !Shipð1=2=3Þ F

A � !Train C � !Train D� !Shipð1=2=3Þ F

A � !Train B � !Train E� !Shipð4=5=6Þ F

A � !Train C � !Train E� !Shipð4=5=6Þ F

For each container demand, there is a scheduled departure time at the origin railway sta-

tion, and a promised delivery time at the destination port. Early departure is forbidden while

late delivery is allowed but incurs penalty. For demand AF, assuming the optimal route is

A� !Train C� !Train E� !
Ship4

F

Fig 1. An illustration of a rail-sea intermodal freight transportation network.

https://doi.org/10.1371/journal.pone.0192275.g001
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Let TAF
d denote the train departure time at origin A, tAC and tCE respectively the travel time

on rail links AC and CE, tE the transfer time at port E, and TEF
4

the scheduled departure time of

ship 4 from port E. In deterministic circumstance, the constraint below should be satisfied to

ensure that the container demand AF can catch the ship.

TAF
d þ tAC þ tCE þ tE � TEF

4
ð1Þ

Such constraint could be violated when the train travel times and transfer time are uncer-

tain. In this paper, the travel time by train/ship and the transfer time at hubs are defined as

random variables which follow normal distribution and uniform distribution, respectively.

Assuming all the ships depart on time according to fixed schedules, the two chance constraints

in Eqs (2)–(3) based on stochastic time variables are considered for cargo demand AF.

Eq (2) sets out that the required probability that cargo AF can board the ship before the

scheduled departure is higher than a given confidence level α. Eq (3) requires a confidence

level by which the cargo AF arrives at the destination port by the promised delivery time no

lower than β, where TAF
p is the promised delivery time.

PrfTAF
d þ tAC þ tCE þ tE � TEF

4
g � a ð2Þ

PrfTAF
d þ tAC þ tCE þ tE þ tEF

4
� TAF

p g � b ð3Þ

Based on the above constraints, a chance constrained programming of ICRP is formulated,

which takes into account stochastic travel times on the railway and at sea, as well as stochastic

transfer time at hubs. We present the model formulation in Section A dual chance-constrained
ICRP with stochastic time variables below and a solution algorithm based on Monte-Carlo sim-

ulation in combination with a neural network in Section A hybrid heuristic solution algorithm.

A dual chance-constrained ICRP with stochastic time variables

In stochastic optimization, there are broadly three types of stochastic programming methods:

expected value models, chance constrained programming, and dependent chance program-

ming [23]. The chance constrained programming was first proposed in Charnes and Cooper

[24] to solve optimization problems under various uncertain circumstances and to ensure that

the decisions meet certain constraints with certain levels. The model has been applied widely

in different subject areas, such as in biology [25], finance [26] and transportation [27].

In this paper, we formulate our stochastic ICRP problem as a chance-constrained optimisa-

tion model, in the sea-rail intermodal network. The sea-rail intermodal network is modelled as

a directed graph G = (N, A). The set N of nodes represents the railway stations, transfer hubs

and seaports, while the set A of arcs denotes railway arcs and ship arcs. Before proposing the

chance constrained programming model for the container routing problem with stochastic

parameters, we define the notations to be used as shown in Table 2.

Notations

Table 2. Notations.

Index and sets

N the set of nodes, including railway stations, transfer hubs and seaports

A the set of arcs, including railway arcs and ship arcs

O the set of origin stations

(Continued)
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Table 2. (Continued)

H the set of transfer hubs, where the cargo is transferred from trains to ships

D the set of destination ports

S the set of ships scheduled from the transfer hubs to the destination ports

i, j two nodes except destination ports, i, j 2 N\D
a a railway link, a 2 A
o an origin station, o 2 O
h an intermodal transfer hub, h 2 H
d a destination port, d 2 D
s a ship service, s 2 S
k a candidate railway route, k 2 Rod. Rod is the set of k shortest routes (based on travel distance) for cargo from

origin o to destination d (od for short)

Input parameters

qod the transportation volume of the cargo od (TEUs)

Tod
d the departure time for the cargo od (hours)

Tod
p the promised arrival time for the cargo od (hours)

Thd
s the scheduled departure time of ship s from h to d (days)

ca the unit cost of transportation on railway link a (US$/TEU)

chds the unit cost of transportation by ship s between seaports h and d (US$/TEU)

ch the unit cost of transfer at h (US$/TEU)

cI the unit cost of inventory (US$/TEU/day)

c1
p the late-delivery penalty cost (US$/TEU/day)

c2
p the unfulfilled demand penalty cost (US$/TEU)

ba the capacity of railway link a (TEUs)

bhds the capacity of ship s from h to d (TEUs)

bh the capacity of transfer at h (TEUs)

Auxiliary variables

qa the transportation volume on railway link a (TEUs)

qhds the transportation volume on ship s from h to d (TEUs)

thds the transportation time from hub h to destination port d by ship s (days)

ta the transportation time on railway link a (hours)

th the transfer time at hub h (hours)

todk the transportation time of the railway route k for cargo od (hours)

Decision variables

xodk a binary variable, equal to 1 if route k is selected as the optimal route for the cargo od in railway network; 0

otherwise

yodh a binary variable, equal to 1 if the hub h is selected as the transfer from cargo od; 0 otherwise

zodhs a binary variable, equal to 1 if the cargo od is transported by ship s from h to port d; 0 otherwise

Indicator variables

d
od
a;k

a binary variable equal to 1 if the link a is on the railway route k of the cargo od in the railway network; 0

otherwise

ηod a binary variable equal to 1 if the cargo od catches the succeeding ship service, i.e.

Tod
d þ

X

k2Rod
xodk t

od
k þ

X

h2H
yodh th �

X

h2H

X

s2S
zodhs T

hd
s � 0; 0 otherwise

γod a sign function of the difference between the promised delivery time and actual delivery time for cargo od, i.e.

god ¼ sgn
�X

h2H

X

s2S
zodhs ðT

hd
s þ thds Þ � Tod

p

�
, where

sgnðxÞ ¼

� 1; x < 0

0; x ¼ 0

1; x > 0

8
>><

>>:

https://doi.org/10.1371/journal.pone.0192275.t002
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A chance-constrained optimisation formulation

Our problem is formulated based on the following assumptions:

Assumption 1: The cargo demands are represented in TEU.

Assumption 2: All containers depart from their origins on time.

Assumption 3: A container missing its succeeding ship service is treated as an unfulfilled

demand and incurs a fixed penalty cost.

Assumption 4: The railway transportation cost on arcs per container is proportional to the arc

length.

Assumption 5: The travel time ta on a railway link a follows a normal distribution [28], i.e.

ta * N(μa, σa) with μa the mean travel time and sa ¼ fs0
a the standard deviation on link a,

where s0
a ¼ 1 hour and f is a multiplier. The sea travel time thds by ship s also follows a nor-

mal distribution, i.e. thds � Nðms; ssÞ with μs the mean and ss ¼ f s0
s standard deviation,

where s0
s ¼ 1 day and f is a multiplier [29].

Assumption 6: The transfer time at a hub h follows a uniform distribution [30], i.e. th *U(mh, nh),
wheremh and nh denote the minimum and maximum values of the distribution respectively.

Assumption 1 and Assumption 2 are common to model the characteristic of container

demand in the literature on ICRP. Assumption 3 ensures that the container missing ship service

is modelled, which leads to a penalty cost as a part of operation cost. Assumption 4 is in line

with railway transportation practice that unit transportation cost is fixed and proportion to

travel distance. For railway transportation, there are two types of delay. One is that trains are

affected directly by some reasons, such as bad weather, staff operation mistakes, dispatching

mistakes and infrastructure reconstruction. The other one is that trains are affected by other

delayed trains. Both the two delays can result in stochastic travel time. For maritime transporta-

tion, the total cruise time consists of port service time and travel time between ports, which can

be highly variable due to congestion, handling operation and adverse weather. Therefore,

Assumption 5 describes the travel times by rail and sea as random variables following different

normal distribution. Assumption 6 describes the transfer time as a random variable following a

uniform distribution to model uncertainty at hubs, e.g., congestion, disruption and handling.

The objective function is the expected value of total cost which contains five elements:

transportation cost, transfer cost, inventory cost, late delivery penalty cost and non-fulfilment

penalty cost. For each unit of demand between origin o and destination d, these costs are rep-

resented as follows.

(i) Transportation cost:

X

k2Rod

X

a2A

cax
od
k d

od
a;k þ

X

h2H

X

s2S

chds z
od
hs ; o 2 O; d 2 D ð4Þ

In Eq (4), the first term represents the rail transportation cost while the second term is the

maritime transportation cost.

(ii) Transfer cost:

X

h2H

chy
od
h ; o 2 O; d 2 D ð5Þ

Based on the characteristics of intermodal container transportation, the container cargoes

Stochastic intermodal container routing

PLOS ONE | https://doi.org/10.1371/journal.pone.0192275 February 13, 2018 8 / 22

https://doi.org/10.1371/journal.pone.0192275


need to be transferred between different modes at transfer hubs. Thus, the transfer cost in Eq

(5) is incurred by moving all container demands from rail terminals to seaports as well as load-

ing and unloading operation.

(iii) Inventory cost:

ZodcI

 
X

h2H

X

s2S

zodhs T
hd
s � Tod

d �
X

k2Rod

xodk t
od
k �

X

h2H

yodh th

þminðgod; 0Þ

 
X

h2H

X

s2S

zodhs
�
Thd
s þ thds

�
� Tod

p

!!

; o 2 O; d 2 D

ð6Þ

Inventory cost is incurred by containers waiting to be transferred or picked up. In the model, we only

consider the inventory cost in transfer hubs (as in the first term) and destination ports (as in the second

term).

(iv) Late delivery penalty cost:

Zodc1

pmaxðgod; 0Þ

 
X

h2H

X

s2S

zodhs
�
Thd
s þ thds

�
� Tod

p

!

; o 2 O; d 2 D ð7Þ

Due to the uncertain travel time, the delivery time for each container cargo is stochastic. A

delayed cargo will result in late delivery penalty cost which is proportional to delay time, as

given in Eq (7).

(v) Non-fulfilment penalty cost:

c2

pð1 � ZodÞ; o 2 O; d 2 D ð8Þ

Due to the delay caused by stochastic travel time and stochastic transfer time, some cargoes

would fail to arrive at transfer hubs for transhipment. These unsatisfied demands will cause

the non-fulfilment penalty cost as shown in Eq (8).

The total cost Cod for each unit of demand is then the sum of these six elements:

Cod ¼
X

a2A

cax
od
k d

od
a;k þ

X

h2H

X

s2S

chds z
od
hs

þ
X

h2H

chy
od
h

þ ZodcI

 
X

h2H

X

s2S

zodhs T
hd
s � Tod

d �
X

k2Rod

xodk t
od
k �

X

h2H

yodh th

!

þ ZodcImin
�

god; 0
�
 
X

h2H

X

s2S

zodhs
�
Thd
s þ thds

�
� Tod

p

!

þ Zodc1
pmax

�
god; 0

�
 
X

h2H

X

s2S

zodhs
�
Thd
s þ thds

�
� Tod

p

!

þ c2
pð1 � ZodÞ

ð9Þ

Our stochastic ICRP is then to minimise the total expected cost:

min
X

o2O;d2D

qodE½Cod� ð10Þ

subject to the following constraints:
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(a) Flow conservation constraint:

X

o2O;d2D

qod
X

k2Rod

xodk d
od
a;k ¼ qa; a 2 A ð11Þ

X

o2O

qodzodhs ¼ qhds ; h 2 H; d 2 D; s 2 S ð12Þ

Constraints (11) and (12) respectively ensure flow conversation on railway arcs and ship

arcs.

(b) Capacity constraints:

X

o2O;d2D

qod
X

k2Rod

xodk d
od
a;k � ba; a 2 A ð13Þ

X

o2O

qodzodhs � bhds ; h 2 H; d 2 D; s 2 S ð14Þ

X

o2O;d2D

qodyodh � bh; h 2 H ð15Þ

Constraints (13)-(14) respectively ensure that the flows on railway arc a and ship s are

within the transportation capacity, while constraint (15) makes sure the flow at the hub h is

within the transfer capacity.

(c) Ship fulfilment chance constraint:

todk ¼
X

a2A

d
od
a;kta; o 2 O; d 2 D; k 2 R

od ð16Þ

PrfTod
d þ

X

k2Rod

xodk t
od
k þ

X

h2H

yodh th �
X

h2H

X

s2S

zodhs T
hd
s g � a; o 2 O; d 2 D ð17Þ

Constraints (16)-(17) ensure that the cargo od transported by preceding railway services

can catch the ensuing ship services with a possibility of at least α. If the cargo od missed the

ensuing ship service, it will be viewed as an unfulfilled demand leading to a non-fulfilment

penalty cost.

(d) On-time delivery chance constraint:

Prf
X

h2H

X

s2S

zodhs ðT
hd
s þ thds Þ � Tod

p g � b; o 2 O; d 2 D ð18Þ

Constraint (18) ensures that the cargo od can arrive at the destination seaport before the

promised delivery time with a possibility of at least β. Late arrival is allowed but leads to a pen-

alty cost which is proportional to late delivery time.
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(e) Relationship between the decision variables and the uniqueness of the decisions:
X

s2S

zodhs ¼ yodh ; o 2 O; d 2 D; h 2 H ð19Þ

X

k2Rod

xodk ¼ 1; o 2 O; d 2 D ð20Þ

X

h2H

X

s2S

zodhs ¼ 1; o 2 O; d 2 D ð21Þ

X

h2H

yodh ¼ 1; o 2 O; d 2 D ð22Þ

Constraint (19) ensure the coincidence of transfer hub selection and ship selection: a cargo

transferring at hub h can only use those ships departing from hub h. Constraints (20)-(22)

ensure that only one railway route, one hub and one ship can be chosen to transport each con-

tainer demand.

Eqs (9)–(22) formulate a chance-constrained stochastic binary integer programming problem

for the rail-sea ICRP. We will now move to the next section and explain our solution methods.

A hybrid heuristic solution algorithm

Generally, a large-scale stochastic binary integer programming problem such as the one pro-

posed above is NP-hard. There have been many studies dedicated to developing efficient solu-

tion methods for such problems, for example Liu [23], Pagnoncelli et al. [31], Hvattum and

Løkketangen [32], Yang et al. [33], Cao et al. [34], and Wang et al [35].

In this paper, we adopt the hybrid heuristic algorithm proposed by Liu [23] to solve our

proposed chance-constrained stochastic rail-sea ICRP. The algorithm is composed of three

parts: (1) a k-shortest path algorithm for identifying the candidate routes in the railway net-

work; (2) a stochastic simulation model (i.e. Monte-Carlo simulation) for approximating the

uncertainty functions and training a neural network; and (3) a genetic algorithm for searching

for the optimal solution.

The procedure of the algorithm is described as follows.

Step 1: The k-shortest path algorithm is employed to generate the set Rod of candidate routes

among all feasible routes in advance. In order to avoid searching feasible routes repeatedly, a set

of k shortest paths for each cargo is first calculated using the algorithm proposed by Yen [36].

Step 2: The Monte-Carlo simulation is first employed to generate the random input variables

and joint distributions and to compute the expected value of objective function and the

probability of chance constraints. Such data is used as training data to calibrate the coeffi-

cients of the neural network. The trained neural network is then employed to approximate

the uncertainty functions with a high computation speed and thus improve the computa-

tional efficiency of the solution algorithm.

Step 3: Combined with the trained neural network, a genetic algorithm is used to solve the

chance-constrained programming model. This combined Monte-Carlo, neural network

and genetic algorithm forms the basis of the hybrid heuristic algorithm [23].

We now proceed to describe in Section Random variables simulation the stochastic simula-

tion of random model variables, and in Section Hybrid algorithm the full hybrid solution algo-

rithm for our proposed ICRP model.
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Random variables simulation

A Monte-Carlo method is used to simulate the random variables. Specifically, in our model,

there are three types of random variables: travel time on railway arcs, travel time on ship arcs

and transfer time at hubs. From these random variables, we define the following three func-

tions which are the expected value of objective function and the two chance probabilities used

in the chance constraints:

U1 : xodk ; y
od
h ; z

od
hs � !E½Fðxodk ; y

od
h ; z

od
hs Þ� ð23Þ

U2 : xodk ; y
od
h ; z

od
hs � !PrfTod

d þ
X

k2Rod

xodk t
od
k þ

X

h2H

yodh th �
X

h2H

X

s2S

zodhs T
hd
s g ð24Þ

U3 : zodhs � !Prf
X

h2H

X

s2S

zodhs ðT
hd
s þ thds Þ � Tod

p g ð25Þ

Given the values of xodk , yodh and zodhs , the Monte-Carlo simulation is used to estimate the

above three functions with stochastic travel and transfer times. Define M as a positive integer

for the Monte-Carlo simulation and Fðxodk ; y
od
h ; z

od
hs Þ as the objective function value. For each

m = 1, 2, . . ., M, a sample of todk , th and thds is randomly generated according to their probability

distributions and substituted in Eq (23) to get the value of Fðxodk ; y
od
h ; z

od
hs Þ, denoted as Fm.

According to the strong law of large numbers,
XM

m¼1
Fm=M� !U1 as M!1. Therefore,

when M is large enough, U1 can be estimated by
XM

m¼1
Fm=M. Similarly, for Eqs (24) and (25),

U2 and U3 are approximated by N random samples. For each particular n = 1, 2, . . ., N, let

h1,n = 1 if Tod
d þ

X

k2Rod
xodk t

od
k þ

X

h2H
yodh th �

X

h2H

X

s2S
zodhs T

hd
s and 0 otherwise, and h2,n =

1 if
X

h2H

X

s2S
zodhs ðT

hd
s þ thds Þ � Tod

p and 0 otherwise, then with a large integer N, U2 and U3

can be estimated by
XN

n¼1
h1;n=N� !U2 and

XN

n¼1
h2;n=N� !U3, respectively.

Considering the time-consuming process of stochastic simulation, a neural network is then

trained and employed to approximate the uncertain functions as noted in next section.

Hybrid algorithm

As a global search method, the genetic algorithm has a high efficiency in solving complex opti-

mization problems. Therefore in this paper, Monte-Carlo simulation, neural network and

genetic algorithm are integrated to develop a hybrid heuristic algorithm for solving the

chance-constrained programming, where a genetic algorithm is used to obtain the optimal

container route plan, and the Monte-Carlo simulation and neural network are used to check

the feasibility of solutions and calculate the objective value by simulating the stochasticity. The

details about hybrid heuristic algorithm are described in Algorithm 1.

Algorithm 1 Hybrid Heuristic Algorithm
Step 1: Initialization

Step 1.1: Generate k initial feasible railway routes by
Yen’s [36] algorithm for each container demand according the
given container demand information and give the initial railway
route set Rod.

Step 1.2: Generate I samples of decision variables as
input data for training a neural network, denoted as xi, yi, zi
(i = 1, 2, . . ., 3000).
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Step 2: Train a neural network
Step 2.1: For each sample xi, yi, zi, estimate the values

of uncertain functions U1, U2 and U3 as output data according to
the distribution of random variables by Monte-Carlo simulation,
denoted as ui,1, ui,2 and ui,3, respectively.

Step 2.2: Use the input-output data T = {xi,yi,zi,ui,1,
ui,2,ui,3|i = 1,. . .,3000} and gradient descent backpropagation
algorithm to train a neural network by calibrating the values of
network weights and obtain a trained neural network N which can
then approximate the uncertain functions ui,1, ui,2, ui,3 by input-
ting xi, yi, zi.
Step 3: Initialize relevant parameters (initial n = 1) and deter-

mine p chromosomes (i.e. p initial feasible solutions of container
routes) to form initial population S (i.e. solution set) according
to the T. Let (x�,y�,z�) is the best solution, E[F(x�,y�,z�)] is the
best objective value.
Step 4: Let F(x,y,z) is the objective function. Favg, Fmax denote

the average fitness value and the optimal fitness value in the cur-
rent generation. c is a constant. Calculate the objective values E
[F(x,y,z)] of all chromosomes in S by the trained neural network N
and the fitness function [37]

F�ðx; y; zÞ ¼ ðc� 1ÞFavg
Fmax� Favg

Fðx; y; zÞ þ Fmax � cFavg
Fmax � Favg

Favg.

Step 5: Select the chromosomes by spinning the roulette wheel
and update the p chromosomes (x,y,z) by crossover and mutation
operations and in which the feasibility of offspring is checked
by the trained neural network N, then n  n + 1.
Step 6: According T and F�(x�,y�,z�), search the best solution

(xn,yn,zn) in current population Sn.
If E[F(xn,yn,zn)]<E[F(x�,y�,z�)], then (x�,y�,z�) (xn,yn,

zn). Record and update the best solution (x�,y�,z�), the best objec-
tive value E[F(x�,y�,z�)] and the best fitness value F�(x�,y�,z�).
Step 7: If n > 100, output the optimal solution (x�,y�,z�) and

optimal objective value E[F(x�,y�,z�)]; otherwise, go to Step 4.

The heuristic hybrid algorithm is also illustrated as a flowchart in Fig 2. After inputting

parameters and the trained neural network, a satisfied solution can be obtained in a short com-

putation time.

Numerical example

In this section, we present a small example to demonstrate the chance constrained model and

illustrate the effect of stochastic time variables on optimal solutions and the performance of

the solutions.

The following indices are used to evaluate the performance of the solutions.

(i) Inventory cost: the unit inventory cost multiplied by the stocking time at transfer hubs and

destinations.

(ii) Late delivery cost: the unit delay cost multiplied by the difference of promised delivery

time and actual delivery time.
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(iii) Non-fulfilment penalty cost: the unit non-fulfilment penalty cost multiplied by the number

of containers missing their ship service.

(iv) Total cost: the sum of total cost of all container demand base on the trained neural

network.

(v) Punctuality: the percentage of on-time delivery.

Numerical test

Case 1: A small-scale intermodal network. Consider a small-scale intermodal network

with 5 railway stations, 2 transfer hubs and 1 destination seaport as shown in Fig 3. The cargo

demand and the sea-rail network specifications are listed in Tables 3–6. All cargos are assumed

to depart on time at zero hour. In addition, the travel times on all railway links and by all ships

follow the same standard deviation σa and σs respectively. The cost parameters are set as fol-

lows. The late delivery cost c1
p and non-fulfilment cost c2

p are assumed to be 50 (US$/TEU/day)

and 150 (US$/TEU) respectively. The unit inventory cost is set 0.8 (US$/TEU/day) according

to the Regulations on Collection of Port Charges of the People’s Republic of China (MOT,

2001). In addition, we set the default confidence levels α and β as 0.9 and 0.6 respectively.

The heuristic hybrid algorithm is coded in MATLAB R2010a, whose key parameters are

provided in S1 Appendix. The program is performed on a desktop PC with a core i5 3.00GHz

processor and 8GB RAM.

Fig 2. The flowchart of hybrid heuristic algorithm.

https://doi.org/10.1371/journal.pone.0192275.g002
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The case with deterministic travel time and transfer time is tested first. The optimal route

for each cargo od demand is given as follows, leading to a total system cost of $101910:

AH : A � !D � ! F � ! ðShip 1Þ � !H

BH : B � ! E � ! F � ! ðShip 2Þ � !H

CH : C � ! E � !G � ! ðShip 5Þ � !H:

A stochastic case is then tested, where the multiplier f equals 1. The standard deviations of

all rail link travel times are set equally as sa ¼ fs0
a ¼ 1hour; 8a 2 A, the standard deviations of

all ship sea travel time equally as ss ¼ fs0
s ¼ 1day; 8s 2 S, while the range of transfer time

Fig 3. The small-scale intermodal network.

https://doi.org/10.1371/journal.pone.0192275.g003

Table 3. Demand information in the small-scale case.

Container demand Origin Destination Freight volume qod (TEUs) Delivery time

Tod
p (hours)

AH A H 68 370

BH B H 68 360

CH C H 68 350

https://doi.org/10.1371/journal.pone.0192275.t003
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variability at both seaports equally as (nh – mh)/2 = 3 hour, 8h 2H. The optimal solution is

then given as follows, with a total system cost of $102260:

AH : A � !D � !G � ! ðShip 6Þ � !H

BH : B � !D � ! F � ! ðShip 2Þ � !H

CH : C � ! E � !G � ! ðShip 5Þ � !H

Comparing the results of stochastic case and deterministic case, the stochastic travel time

and transfer time result in a different optimal container route plan from that under the

Table 4. Railway information in the small-scale case.

Arc Mean rail

travel time μa (hours)

Capacity ba (TEUs) Unit cost ca (US$/TEU)

(A, D) 7.5 100 120

(B, D) 8.4 130 130

(B, E) 8.4 130 130

(C, E) 7.5 130 120

(D, E) 7.5 130 120

(D, F) 7.5 130 120

(D, G) 10.6 130 157

(E, F) 10.6 130 157

(E, G) 7.5 130 120

https://doi.org/10.1371/journal.pone.0192275.t004

Table 5. Maritime information in the small-scale case.

Candidate ship Mean sea travel time μs (days) Departure time Thd
s (day) Capacity bhd

s (TEUs) Unit cost chd
s (US$/TEU)

Ship 1 12 1 130 190

Ship 2 11 2 140 195

Ship 3 8 3 130 205

Ship 4 10 2 130 200

Ship 5 12 1 130 190

Ship 6 7 4 140 205

https://doi.org/10.1371/journal.pone.0192275.t005

Table 6. Transfer hub information in the small-scale case.

Transfer hub Mean transfer time th (hours) Capacity bh (TEUs) Unit cost ch (US$/TEU)

F 5 200 50

G 6 200 50

https://doi.org/10.1371/journal.pone.0192275.t006

Table 7. The cost of deterministic and stochastic parameters in the small-scale case.

Case Inventory cost (US$) Late delivery cost (US$) Non-fulfilment cost (US$) Total cost(US$) Punctuality

Deterministic case 397 0 0 101910 100%

Stochastic case 667 100 1432 102260 97%

https://doi.org/10.1371/journal.pone.0192275.t007
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deterministic scenario. As compared with the deterministic case, with stochasticity, the

demand from origin A to destination H now transfers at seaport G and takes onto a ship (ship

6) that departs later, while the demand from B to H also follows a different route.

Fig 4. The practical sized intermodal network.

https://doi.org/10.1371/journal.pone.0192275.g004

Table 8. Container demand details of the practical sized case.

Container demand Origin Destination Freight volume qod (TEUs) Departure time Tod
d (day) Delivery time

Tod
p (hours)

1 Xian Singapore 3200 0.5 372

2 Luoyang Singapore 2800 2.5 420

3 Zhengzhou Singapore 2500 1.5 396

4 Taiyuan Singapore 2000 5.5 468

5 Jinan Singapore 2400 4.5 408

6 Xuzhou Singapore 2600 4.5 420

https://doi.org/10.1371/journal.pone.0192275.t008
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Table 7 lists the inventory cost, late delivery cost, non-fulfilment cost, total cost and punctu-

ality for the two cases. It can be seen that the stochasticity leads to increased inventory cost,

late delivery cost, non-fulfilment cost, and total cost.

Case 2: A practical sized intermodal network. We now implement the model and algo-

rithm on a realistic sea-rail intermodal network from China to Singapore with 25 railway sta-

tions, 2 transfer hubs and 1 destination seaport as shown in Fig 4, where six ship service routes

(i.e. CSE, CISC, AEU3, AEM5, AIS, MEX2) are under operation from Tianjin and Qingdao to

Singapore. It is assumed that six container demands need to be transported from China to Sin-

gapore, whose details are listed in Table 8. The transportation costs are calculated based on tar-

iff rates provided by shipping companies and railway companies. In addition, other cost

parameters are the same with those of the small-scale intermodal network.

The case with deterministic time parameters is tested first. Then the case with stochastic

time parameters is conducted, where confidence levels α and β are 0.9 and 0.6. Besides, the

standard deviations of all railway links and all ship travel time are set as σa = 1 hour, 8a 2 A
and σs = 1 day, 8s 2 S, while the range of transfer time variability at both seaports equally as

(nh – mh)/2 = 3 hour, 8h 2H. Table 9 and 10 illustrate the results of the deterministic case and

stochastic case.

As the results presented in Table 10 show, the optimal route is strongly affected by the sto-

chastic travel time and transfer time. For the container demand from Zhengzhou to Singa-

pore, the railway route, transfer hub and ship route all change in order to reduce high

penalty cost and satisfy on-time delivery request. With respect to the relevant costs, the

inventory cost, late delivery cost and non-fulfilment cost all increase due to the delay caused

by stochasticity. In addition, the punctuality also falls from 100% to 73%, leading to a lower

service level.

Table 9. The optimal routes in the practical sized case.

Container

demand

Optimal route

Deterministic case 1 Xian!Houma!Taiyuan!Shijiazhuang!Bazhou!Tianjin!(ship CISC)!Singapore
2 Luoyang!Zhengzhou!Xinxiang!Heze!Tanzhou!Linyi!Jiaozhou!Qingdao!(ship AIS)!Singapore
3 Zhengzhou!Xinxiang!Heze!Yanzhou!Jinan!Jiaozhou!Qingdao!(ship AIS)!Singapore
4 Taiyuan!Shijiazhuang!Bazhou!Tianjin!(Ship AEU3)!Singapore
5 Jinan!Jiaozhou!Qingdao!(ship AEM5)!Singapore
6 Xuzhou!Yanzhou!Jinan!Dezhou!Cangzhou!Tianjin!(ship AEU3)!Singapore

Stochastic case 1 Xian!Houma!Taiyuan!Shijiazhuang!Bazhou!Tianjin!(ship CSE)!Singapore
2 Luoyang!Yueshan!Xinxiang!Anyang!Handan!Shijiazhuang!Bazhou!Tianjin!(ship AEU3)!Singapore
3 Zhengzhou!Xinxiang!Anyang!Handan!Shijiazhuang!Hengshui!Dezhou!Cangzhou!Tianjin!(ship CISC)!Singapore
4 Tiayuan!Shijiazhuang!Hengshui!Suning!Bazhou!Tianjin!(ship CISC)!Singapore
5 Jinan!Jiaozhou!Qingdao!(ship AIS)!Singapore
6 Xuzhou!Yanzhou!Linyi!Jiaozhou!Qingdao!(ship AIS)!Singapore

https://doi.org/10.1371/journal.pone.0192275.t009

Table 10. The cost of deterministic and stochastic cases in the practical sized case.

Case Inventory cost (US$) Late delivery cost (US$) Non-fulfilment cost (US$) Total cost(US$) Punctuality

Deterministic case 3.8×104 0 0 1.4×107 100%

Stochastic case 6.1×104 1.5×106 2.3×104 1.5×107 73%

https://doi.org/10.1371/journal.pone.0192275.t010
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Sensitivity analysis

To study the influence of stochastic variables and model parameters, the tests under different

standard deviations of travel time and different confidence level for the small-scale intermodal

network are conducted.

The impact of travel time variability. In this section, we investigate the impact of rail

link and sea link travel times on the optimal solutions of our stochastic ICRP for the small-

scale case. The optimal solutions and the performance of them under different multiplier f (i.e.

different travel time variabilities σa and σs) are calculated and shown in Table 11.

As shown in Table 11, the late delivery cost and total cost go up obviously with the growth

of value f, while the punctuality presents an opposite trend that the higher the value f, the

lower the punctuality. This implies higher travel time variability not only has an effect on

route plans but results in more operation cost and lower service level. In addition, inventory

cost rises to 1087 US dollars with some fluctuation, while the non-fulfilment cost changes

irregularly.

The impact of chance confidence levels. Our proposed stochastic ICRP model includes

two confidence levels: the on-time probability α for the chosen ship service, and the other

probability β for on-time delivery at the final destination. In this section, we investigate the

effects of these two probabilities on the optimal solutions. For the first probability α, the small-

scale case with different values of α is tested. We found, due to high penalty cost of non-fulfil-

ment fixed for this case study, the route plan with high possibility of fulfilment is always

favoured as the optimal one. Therefore changes in the fulfilment confidence level α do not

Table 11. The optimal route plans with different multiplier f in the small-scale case.

Scenario Multiplier f Inventory cost (US$) Late delivery cost (US$) Non-fulfilment cost (US$) Total

cost (US$)

Punctuality Optimal routes

1 0

(deterministic

case)

397 0 0 101910 100% AH:A!D!F!(Ship 1)!H
BH:B!E!F!(Ship 2)!H
CH:C!E!G!(Ship 5)!H

2 1 667 100 1432 102260 97% AH:A!D!G!(Ship 6)

!H
BH:B!D!F!(Ship 2)!H
CH:C!E!G!(Ship 5)!H

3 2 723 1297 0 103190 88% AH:A!D!F!(Ship 2)!H
BH:B!E!G!(Ship 6)!H
CH:C!E!F!(Ship 2)!H

4 3 1123 1331 0 105710 90% AH:A!D!G!(Ship 6)

!H
BH:B!D!F!(Ship 3)!H
CH:C!E!G!(Ship 6)!H

5 4 979 4166 52 108550 81% AH:A!D!F!(Ship 3)!H
BH:B!D!G!(Ship 6)!H
CH:C!E!G!(Ship 4)!H

6 5 1046 7121 0 111070 76% AH:A!D!G!(Ship 6)

!H
BH:B!D!F!(Ship 3)!H
CH:C!E!G!(Ship 4)!H

7 6 1087 10192 160 114800 72% AH:A!D!F!(Ship 3)!H
BH:B!D!G!(Ship 4)!H
CH:C!E!G!(Ship 6)!H

https://doi.org/10.1371/journal.pone.0192275.t011
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yield significantly different results. However, the on-time delivery confidence levels β are

shown to have a significant impact on the optimal solutions.

Fig 5 shows the total costs of optimal solutions under different values of β and different val-

ues of f (i.e. different travel time variabilities σa, σs). The fulfilment probability α in this test is

0.9. It can be seen that, as the value f grows, the total cost also increases under the same confi-

dence level β, which is consistent with what we discussed in Table 11. This indicates that, with

the increase of travel time variabilities, higher operation cost is required to remain the service

level, i.e. the possibility for on-time delivery.

Similarly, with the increase of β, the total cost goes up under the same value f. This implies

that, with high confidence level β, the minimum-cost solution can not satisfy the request of

on-time delivery probability. Consequently, it leads the change of optimal routes and higher

operation costs in order to achieve higher punctuality.

Conclusion

In this paper, the intermodal container routing problem (ICRP) with stochastic time variables is

formulated as a binary integer chance-constrained programming model to minimise total cost

in a sea-rail transportation network. A hybrid heuristic algorithm incorporating Monte-Carlo,

neural network and genetic algorithm is proposed to solve the problem under pre-determined

confidence levels of chance constraints. A numerical example is presented to demonstrate the

validity of the proposed model in solving ICRP. Sensitivity tests are conducted to examine the

influence of model variables on the total cost and optimal routes for each demand.

The results confirm that transportation stochasticity can lead to different optimal routing

plans compared to the deterministic case. In addition, the stochastic travel time and transfer

time not only increase inventory cost and total cost, but also incur the late delivery cost and

non-fulfilment cost. The costs increase with increasing travel time variability. With higher on-

time delivery probability, the number of feasible solutions reduces. This implies that higher

operation costs would be required to meet higher service requirements.

Fig 5. The total cost with different confidence level β and multiplier f.

https://doi.org/10.1371/journal.pone.0192275.g005
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For further research, as in Meng et al.[38], the demand could also be stochastic. Therefore

we can further include the variation of demands in the container routing problem. Meanwhile,

as stochastic demand and stochastic travel time can both affect the container route choices and

the total operation cost, which conversely affects the performance of the intermodal network,

it is therefore meaningful to integrate the container routing choice in the intermodal network

design process.

Supporting information

S1 Appendix. Parameter setting for the numerical example.
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