
1760
IEICE TRANS. COMMUN., VOL.E101–B, NO.8 AUGUST 2018

INVITED PAPER Special Section on Autonomous Decentralized Systems Technologies and Approaches Innovation through Structure Change of Society and Life

Facilitating Dynamic RT-QoS for Massive-Scale Autonomous
Cyber-Physical Systems∗

David W. McKEE†, Xue OUYANG†, and Jie XU†a), Nonmembers

SUMMARY With the evolution of autonomous distributed systems such
as smart cities, autonomous vehicles, smart control and scheduling systems
there is an increased need for approaches to manage the execution of ser-
vices to deliver real-time performance. As Cloud-hosted services are in-
creasingly used to provide intelligence and analytic functionality to Internet
of Things (IoT) systems, Quality of Service (QoS) techniques must be used
to guarantee the timely service delivery. This paper reviews state-of-the-art
QoS and Cloud techniques for real-time service delivery and data analysis.
A review of straggler mitigation and a classification of real-time QoS tech-
niques is provided. Then a mathematical framework is presented capturing
the relationship between the host execution environment and the executing
service allowing the response-times to predicted throughout execution. The
framework is shown experimentally to reduce the number of QoS violations
by 21% and provides alerts during the first 14ms provide alerts for 94% of
future violations.
key words: cloud, SOA, services, autonomous systems, real-time, straggler,
IoT, IoS, simulation

1. Introduction

With the rapid rise of large-scale autonomous systems as
part of the era of Internet of Things (IoT) [1]; Internet of
Simulation (IoS) [2]; Edge, Cloud and Fog computing; as
well as Big Data with Deep Learning and high performance
computing (HPC) there is desperate need to develop tech-
niques to dynamically manage the execution performance of
intelligent and data processing services. As these intelligent
cyber-physical systems become pervasive through domains
of manufacturing, healthcare, transport, and power manage-
ment [3] the supporting services must provide on-demand
decision support in a timely and dependable fashion [4].
This paper therefore presents a framework to model the tem-
poral execution behaviour of these services and looks at the
impact on data processing for these domains.

As the technologies within each of these domains have

Manuscript received September 7, 2017.
Manuscript revised December 22, 2017.
Manuscript publicized February 22, 2018.
†The authors are with the School of Computing, Faculty of

Engineering, University of Leeds, UK.
∗This work is based on “Massive-Scale Automation in Cyber-

Physical Systems: Vision & Challenges”, by D. McKee et al. which
appeared in Proc. IEEE International Symposium on Autonomous
Decentralized Systems (ISADS 2017), Bangkok, Thailand, March
2017, ©2017 IEEE and on “n-Dimensional QoS Framework for
Real-Time Service-Oriented Architectures”, by D. McKee et al.
which appeared in Proc. IEEE International Symposium on Real-
time Data Processing for Cloud Computing, June 2017, ©2017
IEEE.

a) E-mail: j.xu@leeds.ac.uk
DOI: 10.1587/transcom.2017ADI0001

advanced allowing integration as System of Systems (SoS)
there remain significant limitations and constraints due to the
performance requirements within each domain which are not
guaranteed across the entire spectrum. Therefore in order to
develop techniques to handle the explosion of the big data
streams [5] in a timely fashion new techniques bringing to-
gether real-time stream processing [6], straggler mitigation
[7], and QoS prediction [8] must developed. Furthermore
with the emergence of the IoS paradigm where simulations
are deployed as intelligence services (SIMaaS) [2] interact-
ing with in-the-loop systems — such as hardware, model,
or human — the Service Level Agreement (SLA) and QoS
must provide real-time guarantees. The resulting action or
data may therefore be incorrect or unsafe [9].

In this paper we look at two major areas of service
performance management: Real-Time QoS (RT-QoS) pre-
diction and straggler mitigation. A review of existing ap-
proaches is outlined and a mathematical framework for on-
line QoS is detailed and implemented. This framework takes
into account the underlying host resources such as CPU,
memory, and network bandwidth to model the response-time
behaviour under real world circumstances. The framework
manages the allocation of resources to reduce QoS viola-
tion and provides warnings during potential violations. Ex-
perimental results demonstrate a 94% of violations can be
predicted within the first 14% of their execution time.

The rest of the paper is as follows: in Sect. 2 the motiva-
tion for real-time SoS integration is presented. In Sect. 3 the
state-of-the-art is studied before the framework is presented
in Sect. 4. Experiment results are shown in Sect. 5 before
conclusions are drawn in Sect. 6.

2. Background and Motivation

With the paradigm shift in the computing landscape over the
recent years towards distributed computing, low powered IoT
devices [10], and the availability of cloud computing [11],
as well as the increased usage of simulation in both engi-
neering and intelligent services domains [12] traditionally
isolated domains are beginning to merge and interact brin-
ing numerous challenges. With this the already exponential
growth of data will become evermore rapid whilst needing
to be processed rapidly [3].

This section introduces autonomous cloud-based sys-
tems, smart cities, and connected autonomous vehicles fol-
lowed by a review of QoS approaches and challenges.

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

McKEE et al.: FACILITATING DYNAMIC RT-QOS FOR MASSIVE-SCALE AUTONOMOUS CYBER-PHYSICAL SYSTEMS
1761

2.1 Autonomous Cloud-Based Systems

With the recent advances in cooperative robotics towards au-
tonomous systems [13], the combination of cloud computing
with robotics [3], and the development of augmented real-
ity [14] it is anticipated that within the next 10-15 years there
will be ubiquitous and intelligent computing systemsmanag-
ing and augmenting most of the systems we interact with on
a daily basis. These massive-scale cyber-physical systems
will have to trade-off user experience and computational ef-
ficiency and make use of techniques for massive-scale data
processing for autonomous decision making systems.

2.1.1 Smart Cities and Autonomous Vehicles

The first and most prominent domain is that of smart cities
which can be considered as a “cyber-physical System of
Systems (SoS) heavily reliant on intelligent autonomy, dis-
tributed computing, IoT and IoS such that it brings together
technology, governance, and society to manage and monitor
power and communication infrastructure, the environment,
traffic and other aspects of the city for the benefit and well-
being of its inhabitants through ubiquitous sensing and em-
bedded intelligence, and facilitates economic growth through
innovation, connectivity and data aggregation” [3].

In this context services hosted primarily in the cloud
provide decision support and vital software functionality to
the city in the way that drivers support computer operating
systems [15]. Specifically these may include robotics for
repair and maintenance [16], driverless transportation [17]
and power management [18] among others.

In terms of transportation, the current drive to reach
level-5 autonomy with connected autonomous vehicles [19]
cloud-based services will form the basis of a Vehicular
Cloud [20]. In this context these services will provide aug-
mented reality to the vehicles to improve decision making
on-board the vehicles. A particular example would be simul-
taneous localization and mapping (SLAM) which used in
both vehicle autonomous driving systems as well as robotic
arm planning. These systems require image and sensor data
to be rapidly processed and matched against massive data-
sets in a timely manner.

2.2 QoS and Fault-Propagation

Underpinning service-orientation and QoS in particular are
the concepts of dependability [21]. In the domain of Service
Oriented Architecture (SOA) Bruning et al. [22] provide a
taxonomy of faults and their propagation through a system.
A subset of this taxonomy is shown in Fig. 1. With regards
to publishing faults the service descriptions should present
the expected level of QoS which can be used to define a
SLA. Many technologies do not facilitate this in the service
description semantics. Further unless there are mechanisms
to guarantee that the described QoS is accurate there may
be a mismatch between the service implementation and the

advertised description. A fault of this type may result in
a faulty workflow composition that is unable to meet the
specified SLA. During binding if the service description is
incorrect the system may bind to the wrong service. Each of
these may cause the workflow producing an incorrect result.

QoS properties are typically specified using the WSLA
or WS-Agreement standards in XML format where each
property is named, has a type, and has a value typically
expressed numerically using a double. For example if a
performance parameter could be specified as a double with
a response time metric specified as a double representing
seconds.

Additionally most prevalent to individual service QoS,
and specifically the focus of this paper, are the challenges
relating to execution timing due to server crashes and com-
munication failures. This can be extended with additional
detail for the specific description fault whereby the specified
response-time can not be delivered due to resource limita-
tions within either the host server or across the network.
These additions are shown in Fig. 1 with the addition of five
further fault classes spread across the major categories re-
sulting in the final failure of the the QoS deadline not being
adhered to [8]. The objective with dynamic QoS techniques
is therefore to intercept the fault propagation before a failure
is observed. This paper specifically looks at intercepting the

Fig. 1 Top three layers of the SOA fault tree with additional real-time
faults added.

1762
IEICE TRANS. COMMUN., VOL.E101–B, NO.8 AUGUST 2018

highlighted propagation caused by resource availability.

2.3 QoS Challenge: The Straggler Syndrome

Cloud computing [23] has emerged as a means to implement
parallel applications on massive-scale commodity clusters,
in which tasks are executed on multiple server nodes by
systems that automatically provide scheduling, fault toler-
ance, and load balancing. MapReduce [24] framework pi-
oneered this computing model, and systems like Hadoop
YARN [25] and Spark [26] generalized its population. De-
spite the success, there are lots of challenges toward reliable
and predictable service delivery within such systems, espe-
cially with increasing system scale and autonomous features.
One such challenge is the straggler syndrome.

Straggler syndrome is used to define the phenomenon
that occurs when a distributed job - composed of multiple
tasks executing in parallel - incurs significant delay in com-
pletion due to a small subset of its parallelized tasks - known
as stragglers - performing much slower than the other sib-
ling ones [24]. After analyzing the data from a production
cluster of Microsoft Bing, Mantri [29] claims that 80% of
the stragglers have a uniform probability of being delayed
by 150% to 250% compared to the medium task duration,
while 10% take more than 10 times the median duration.

The QoS breakdown and the late timing failure [21]
are the most explicit consequence if the rapidness of service
response cannot be guaranteed [33]. Google measures from
its Cloud service and report that, the slowest 5% responses
is responsible for half of the total 99%-percentile latency,
and the probability of longer duration increases in the face
of system scale growth [34]. Straggler problem is against
the purpose of parallel computing, which is to speed up job
execution performce and ensure timing attributes of QoS can
be fulfilled.

3. Existing Techniques

Given the challenges with regards to handling service faults
in terms of QoS and also stragglers and their cascading im-
pact of service and system performance this section details
some of the prevalent existing contributions and techniques.
Firstly a brief summary of the straggler mitigation tech-
niques is presented and then in a classification and review of
RT-QoS approaches is presented in Sect. 3.2.

3.1 Straggler Mitigation Approaches

Various straggler detection and mitigation approaches are
developed over the last years, such as simple cloning [30],
blacklisting [35] and speculation [27]. Among them, specu-
lative execution is the dominant method type. It functions in
a three-phase manner: firstly, identifies task stragglers, then
launches redundant task copy for an identified straggler, and
finally adopts whichever result that comes out first.

Representative speculative based variations include
LATE [28],Mantri [29], Dolly [30], Adaptive Speculator [7],
SkewTune [31], CREST [32], etc. Each of the related work
has its own characteristic in terms of suitable target environ-
ments or straggler types. Table 1 illustrates the comparison
details.

The Speculative Execution Metrics in Table 1 indicates
how a specific method identifies stragglers. For example, the
LATE [28] speculator will identify the task with the Longest
Approximate Time to End as the straggler. In other words,
LATE cares about the estimated finish time of parallel tasks.
For most methods, to estimate the duration of tasks forms
the foundation for straggler mitigation.

ECT t
ji = t +

1 − PSt
ji

PSt
ji

(t − t0) (1)

Current parallel jobs normally uses Progress Score (PS) of a
task and corresponding elapsed time (t−t0) when calculating
the estimated completion using Eq. (1) [7], [28], where PS is
given in systems such as Hadoop and YARN (PSt

i j is the PS
for the ith task in parallel job j at time stamp t). But they ig-
nore the influence brought by resource availability and node
heterogeneity, which should provide additional knowledge
for a more accurate prediction of task completion time.

3.2 RT-QoS Approaches

Having reviewed over 80 existing approaches for RT-QoS,
they can be categorised into the following groups with 84%
neatly fitting the categories (also shown in Fig. 2):

1. Correlation These approaches primarily use Pearson’s
Correlation Coefficient and build on work Zheng et al.
[36] where they predict QoS based on user experience.
A user-servicematric is used to identify themost similar
users using collaborative filtering. These approaches do

Table 1 Various straggler mitigation approaches.

Comparison [27] [28] [29] [30] [7] [31] [32]
Speculative Execution Metrics Progress Score Finish Time trem and tnew Simple Cloning Finish Time trem and tpar Progress Rate
Server Node Heterogeneity % " " " " " "

Adaptive Straggler Threshold % % " % " % %

Dynamic Node Performance % % " % " " %

Cap on Speculation Number % " % " " " %

Data Skew Type of Straggler % % % % % " %

McKEE et al.: FACILITATING DYNAMIC RT-QOS FOR MASSIVE-SCALE AUTONOMOUS CYBER-PHYSICAL SYSTEMS
1763

Fig. 2 Classification of existing major RT-QoS techniques.

not however support recalculation of the QoS definition
and do not provide the mathematics to support time
guarantees. 10% of approaches were correlation based.

2. Optimisation This is the second category where the
QoS definition is evolved to provide amore accurate and
representative definition. The majority of these tech-
niques use genetic algorithms and often focus on ser-
vice selection and initial definition specification rather
than online adaptation. Work by the likes of Canfora
et al. [37] does look at optimising the parametrisation
of a QoS definition. 16% of reviewed approaches were
some form of optimisation it is not applied to real-time
QoS as the evolution requires numerous generations to
reach even a reasonable definition and there is no guar-
antee that a satisfactory solution will be found within a
specified timeframe.

3. Fuzzy-logic These approaches are currently not heavily
adopted but have growing interest in many disciplines
of computing. Within this topic they currently account
for only 3% of approaches but do provide a very flexible
approach and therefore can consider a wide range of sit-
uations and influencing factors. The work specifically
be Benbernou et al. [38] looks at rating performance
as either good or bad alongside high, medium, or low
resource utilisation.

4. Cost 13% of approaches look specifically at the cost
of running a service and many of the other approaches
consider cost as a parameter in their definition. The
most prominent work is by Kaur et al. [39] which looks
at the trade-off between performance, power or energy,
resource utilisation, and infrastructure pricing.

5. Tolerance and Probability These approaches look at
tolerating, often using probabilistic methods, a level of
service unreliability. These take into account the like-
lihood of timely service delivery and propose methods

to cope with it rather than solve the problem. 22% of
reviewed approaches fall in this category and they can
roughly be split into redundancy and probe-based tech-
niques. In the former case work such as Liu et al. [40]
use n-versioning and n-copy based on a the probability
of untimely service delivery. In the later case probes
are used to monitor the response-times of services over
time and a probabilistic model is built using that data.

6. Containment A further 10% of techniques fall into
the category of using virtual machines or containers to
manage the resources allocated and consumed by a ser-
vice. These techniques lend themselves to Cloud hosted
services which run on virtualised infrastructure. How-
ever they remain susceptible to interference on the host
server with the possibility of stragglers. As such, situ-
ations requiring real-time performance still require the
host servers to be running real-time operating systems
[41].

7. Middleware Again looking at the underlying compute
and communication infrastructure are approaches that
requiremore fine grained control of the host systems. In
this realm are some of the most prominent and earliest
techniques for real-time SOA that all build on the Data
Distribution Service (DDS) standard using the Pub-
lish/Subscribe pattern for communication [42] These
11% of approaches facilitate at least 21 standard param-
eters and if the entire system is managed exclusively by
the technique can provide real-time formal guarantees
of timely service delivery.

4. n-Dimensional QoS Framework

This section details the QoS framework that captures the
relationship between response-times and the resource utili-
sation and availability in order to predict the time to finish
for a service throughout its execution.

4.1 Mathematical Formalisms

Table 2 details the notation and constituent mathematical
parts of the framework. This framework extends our previous
mathematical work [8].

First we consider only micro-services s, and define the
set dr , of available resources as a discrete range δ. We can
therefore calculate the resource availability on the host as:

α(h(sn), sn)r,t = 1 −
Host utilisation︷ ︸︸ ︷
(U (h(sn))r,t −

µsutilisation︷ ︸︸ ︷
U (sn)r,t) (2)

And convert this into matrix coordinates:

j = {r ∈ R : bA(h, sn)r × |dr |c} (3)

The model can then be defined as multi-dimensional space
for each resource type and the dimension of time or execution
progress. The model is populated by taking the resource

1764
IEICE TRANS. COMMUN., VOL.E101–B, NO.8 AUGUST 2018

Table 2 QoS framework notation.
Symbol Definition
α The observed resource availability on the host
D The Micro-Service or Service Deadline
dr Discrete set of resource values
f Observation and monitoring frequency.
F Forecast of the resources required until execution completes.
H Set of all Hosts
h Host machine
j The model coordinate values for each resource dimension.
k The number of observation points.
Ω Set of all observations for a given Micro-Service instance.
ω A resource observation.
p Execution Progress
R Set of all Resource Types
r A resource type with a capacity and measure of performance

RTT Response-Time
s Micro-Service

T T F Time-to-Finish for Micro-Service execution.
U The utilisation model.

Algorithm 1: Estimating Execution Progress

begin Estimate progress
pt emp = ∞

foreach resource r in R do
if I .Sum == 0 then Initial Case

h = MIN (h, H.Max)
F[j, r] = MIN (Uprovided, h × RTT)

end
temp = FLOOR((k ×Ω[r].Sum) ÷ F[j, r]) ÷ k
pt emp = MIN (pt emp, temp)

end
p = MAX (p, pt emp)

end

observations ω throughout execution and calculating the
total resources consumed over time U:

{∀r,∀ω ∈ Ω(sn) : [[ωr]]0..1}
[[·]]i p
−−−−→ {ur ∈ U (s)j } (4)

A forecast F, is then available of the resource required to
finish from a given execution progress point p.

The predictive model then during future service run-
times takes the observed availability α, calculates the in-
dex j, to get the relevant forecast F for the given progress
p. The progress is estimated from the observed cumulative
consumed resources Ω and the forecast model:

p(s)t =max
{

p(s)t−1,min
{

1
k

⌊
k ·

∑t
x=0[[Ω(s)j,r,x]]0..1

F (s)j,r

⌋}}
(5)

And the time-to-finish T T F is estimated as being T T F =(
1 − p

k

)
RTT(sn)j .

The pscore can then be fed into the speculative exe-
cution prediction progress (PS) in Eq. (1) or the estimated
T T F can be used in place of the estimated completion time
(ECT).

Fig. 3 Cloud architecture with RT-QoS agents.

Algorithm 2: Estimating the time-to-finish
if Ij > 0 then Standard Model

RTT = M[j]
end
else if I .Sum == 0 then Initial Case

h = MIN (h, H.Max)
U = MIN (Uprovided, h × RTT)
RTT =U ÷ j

end
else Sparse Model

begin Calculate D−1 from jof all points in the matrix
foreach i do

D[i] = 1 ÷ ABS(i − j)
end

end
begin Calculate RTT

num = 0
denom = 0
foreach i , j do

num+ = I [j] ×M[i] × D[i]
denom+ = I [i] × D[i]

end
RTT = num ÷ denom

end
end
T T F = (p ÷ k) × RTT

4.2 System Architecture

The above mathematical formalisms can be represented al-
gorithmically and deployed in the cloud architecture shown
in Fig. 3 where agents send resource observations and up-
to-date T T F predictions back to the execution monitor.
This approach minimises communication to only alerts and
observed execution data once execution has finished.

The framework operates in two phases with an online
and update phase. In the former case the resource utilisation
and availability is monitored to provide an updated time-to-
finish prediction periodically over the execution duration.

In the online phase the execution progress is estimated
using Algorithm 1 where the observed resource utilisation
Ω is compared against the forecast F in each resource di-
mension. With the calculated availability coordinates j

McKEE et al.: FACILITATING DYNAMIC RT-QOS FOR MASSIVE-SCALE AUTONOMOUS CYBER-PHYSICAL SYSTEMS
1765

this used to estimate the T T F in Algorithm 2. This
uses the euclidean distance D−1 within the matrix model
between resource configurations in the following form:

Algorithm 3: Deadline miss alert
begin Initial deadline check

if T T F > D then
begin Re-configuration Check

jt arget = NULL
foreach i >= j do

T T F t emp =
ESTIMATE_TTF(i, p, Ω, [U, RTT, h])

if T T F t emp <= D then
jt arget = i
BREAK LOOP

end
end

end
if jt arget = NULL then

ALERT(NULL)
end
else Report the required configuration

ALERT(jt arget)
end

end
end

RTT =
∑(I ·M·D−1)∑(I ·D−1) . Then if the T T F is greater than the

required deadline D an alert is provided with the resource
configuration that would be required to meet the deadline,
as shown in Algorithm 3. The alert is then passed onto the
speculation manager which creates appropriate replicas [7].

5. Experimental Results

In this section the metrics of QoS violation (Mean Per-
centage Violation (MPV)), over allocation Mean Percent-
age Waste (MPW), and absolute error (Mean Percentage
Error (MPE)) are used whereby the defined QoS is com-
pared against the actual response-time. Most swill provide
mathematical or textual data processing functions such as
a word-count or mathematical functions such as calculating
derivatives, products, summations etc. Therefore for the pur-
poses of this paper the experiments were conducted using 20
services solving Euler mathematical problems and repeated
100 times. Figure 5(a) shows the average observed response-
times of the services with an overall average of 65 ms with a
standard deviation of 26 ms.

Observations were taken with frequency f = 13ms in
a configuration with the resource fidelity |dr | = 4 and 23ms
with |dr | = 20 providing an average of between 5 and 3

Fig. 4 QoS calculation time.

Fig. 5 Response-times, predictions, and error rate.

1766
IEICE TRANS. COMMUN., VOL.E101–B, NO.8 AUGUST 2018

Table 3 Combined difference in QoS violation and waste between exist-
ing and proposed approaches.

observations per service execution respectively as shown in
Fig. 4(a). Figure 4(b) depicts the execution time of the online
algorithm to predict theT T F . Most notably during the first
10 execution instances the calculation time is significantly
slower as the approach must account for a sparse/empty data
matrix.

Figure 5(b) depicts error-rates across all the service
types where the resulting MPV is by less than 2%, repre-
senting a deadline miss of only 1 ms and occurring in less
than 10% of service instances and the overallocation (MPW)
is approaching 35%. With this configuration, with a resource
fidelity of |dr | = 9 alerts were provided within the first 14ms
and alerts were raised for 94% of violations.

When comparing this against the existing techniques
described earlier we see that the proposed method improves
on each of the existing techniques. As can be seen in Table 3
the proposed method sees 21% less violations than either the
real-time middleware (iLand method [43]) or fuzzy-logic
techniques and overallocates by 10% less than either the
probabilistic/historical or correlation based methods.

6. Conclusion

This paper has presented the need for a robust and automated
technique for ensuring reliable and timely service delivery to
support intelligent services for smart cities and autonomous
vehicles. A background discussion around the challenges of
providing such services across the heterogeneous compute
platforms has been provided. Specifically the challenges of
straggler mitigation and service Quality of Service (QoS)
have been reviewed and an analysis of the most significant
approaches has been provided and a classification for real-
time QoS has been provided.

Then a multi-dimensional framework for real-time QoS
has been detailed mathematically and algorithmically. It
has been shown experimentally to reduce the number of
QoS violations by 21% and reduce resource overallocation
by 10%. Furthermore 94% of QoS violations were pre-
emptively identified and alerts generated.

There is further work to evaluate the proposed QoS
framework at larger scale across a range of compute plat-

forms, including IoT devices, taking into account further
dimensions such as network latency. Additionally combin-
ing the automated straggler mitigation techniques with this
framework has the potential to provide a powerful framework
for supporting real-time big data processing in a dependable
fashion.

Acknowledgements

This work has been supported by Jaguar Land Rover, UK-
EPSRC grant EP/K014226/1 and other grants including the
China National Key Research and Development Program
(No. 2016YFB1000101 and 20016YFB1000103).

References

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
things (iot): A vision, architectural elements, and future directions,”
Future Generation Computer Systems, vol.29, no.7, pp.1645–1660,
2013.

[2] D. McKee, S.J. Clement, X. Ouyang, J. Xu, R. Romanoy, and J.
Davies, “The Internet of simulation, a specialisation of the internet
of things with simulation and workflow as a service (SIM/WFaaS),”
2017 IEEE Symposium on Service-Oriented System Engineering
(SOSE), IEEE, 2017.

[3] D. McKee, S.J. Clement, J. Almutairi, and J. Xu, “Massive-scale
automation in cyber-physical systems: Vision & challenges,” 2017
IEEE 13th International Symposium on Autonomous Decentralized
System (ISADS), June 2017.

[4] D.W. McKee, D. Webster, and J. Xu, “Enabling decision support
for the delivery of real-time services,” 2015 IEEE 15th Int. Symp.
High-Assurance Syst. Eng., IEEE, Jan. 2015.

[5] P. Zikopoulos, C. Eaton, et al., UnderstandingBigData: Analytics for
Enterprise ClassHadoop and StreamingData,McGraw-Hill Osborne
Media, 2011.

[6] P.Garraghan, S. Perks, X.Ouyang, D.McKee, and I.S.Moreno, “Tol-
erating transient late-timing faults in cloud-based real-time stream
processing,” 2016 IEEE 19th International Symposium onReal-Time
Distributed Computing (ISORC), July 2016.

[7] X. Ouyang, P. Garraghan, B. Primas, D. Mckee, P. Townend, and
J. Xu, “Adaptive speculation for efficient internetware application
execution in clouds,” ACM Trans. Internet Technol., vol.18, no.2,
2018.

[8] D. McKee, S. Clement, J. Xu, and D. Battersby, “n-dimensional QoS
framework for real-time service-oriented architectures,” RTDPCC
2017: 2nd International Symposium on Real-time Data Processing
for Cloud Computing, IEEE Computer Society Press, June 2017.

[9] M. Dooner, J. Wang, and A. Mouzakitis, “Development of a simu-
lation model of a windshield wiper system for hardware in the loop
simulation,” Autom. Comput. (ICAC), 2013 19th Int. Conf., 2013.

[10] R. Buyya and A.V. Dastjerdi, Internet of Things: Principles and
Paradigms, Elsevier Science & Technology, 2016.

[11] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Special Publication
800-145, 2011.

[12] J.-R. Martinez-Salio and J.-M. Lopez, “Future of LVC simulation:
Evolving towards the MSaaS concept,” Interservice/Industry Train-
ing, Simulation, and Education Conference (I/ITSEC), 2014.

[13] R. Doriya, S. Mishra, and S. Gupta, “A brief survey and analysis of
multi-robot communication and coordination,” Proc. Communica-
tion Automation Int. Conf. Computing, pp.1014–1021, May 2015.

[14] W. Barfield, Fundamentals of Wearable Computers and Augmented
Reality, CRC Press, 2015.

[15] S. Clement, D.W. McKee, and J. Xu, “Service-oriented reference

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/sose.2017.12
http://dx.doi.org/10.1109/sose.2017.12
http://dx.doi.org/10.1109/sose.2017.12
http://dx.doi.org/10.1109/sose.2017.12
http://dx.doi.org/10.1109/sose.2017.12
http://dx.doi.org/10.1109/isads.2017.56
http://dx.doi.org/10.1109/isads.2017.56
http://dx.doi.org/10.1109/isads.2017.56
http://dx.doi.org/10.1109/isads.2017.56
http://dx.doi.org/10.1109/hase.2015.18
http://dx.doi.org/10.1109/hase.2015.18
http://dx.doi.org/10.1109/hase.2015.18
http://dx.doi.org/10.1109/isorc.2016.24
http://dx.doi.org/10.1109/isorc.2016.24
http://dx.doi.org/10.1109/isorc.2016.24
http://dx.doi.org/10.1109/isorc.2016.24
http://dx.doi.org/10.1145/3093896
http://dx.doi.org/10.1145/3093896
http://dx.doi.org/10.1145/3093896
http://dx.doi.org/10.1145/3093896
http://dx.doi.org/10.1109/ithings-greencom-cpscom-smartdata.2017.34
http://dx.doi.org/10.1109/ithings-greencom-cpscom-smartdata.2017.34
http://dx.doi.org/10.1109/ithings-greencom-cpscom-smartdata.2017.34
http://dx.doi.org/10.1109/ithings-greencom-cpscom-smartdata.2017.34
https://ieeexplore.ieee.org/document/6662047/
https://ieeexplore.ieee.org/document/6662047/
https://ieeexplore.ieee.org/document/6662047/
http://dx.doi.org/10.1016/b978-0-12-805395-9.00001-0
http://dx.doi.org/10.1016/b978-0-12-805395-9.00001-0
http://dx.doi.org/10.6028/nist.sp.800-145
http://dx.doi.org/10.6028/nist.sp.800-145
http://dx.doi.org/10.6028/nist.sp.800-145
http://dx.doi.org/10.1109/ccaa.2015.7148524
http://dx.doi.org/10.1109/ccaa.2015.7148524
http://dx.doi.org/10.1109/ccaa.2015.7148524
http://dx.doi.org/10.1201/b18703
http://dx.doi.org/10.1201/b18703
http://dx.doi.org/10.1109/sose.2017.29

McKEE et al.: FACILITATING DYNAMIC RT-QOS FOR MASSIVE-SCALE AUTONOMOUS CYBER-PHYSICAL SYSTEMS
1767

architecture for smart cities,” IEEE International Symposium on
Service-Oriented System Engineering, IEEE, 2017.

[16] I. Gatsoulis et al., “Learning the repair urgency for a decision sup-
port system for tunnel maintenance,” ECAI 2016: 22nd European
Conference on Artificial Intelligence, G. Kaminka, M. Fox, P. Bou-
quet, et al., eds., Frontiers in Artificial Intelligence and Applications,
no.285, pp.1769–1774, IOS Press, Amsterdam, Netherlands, Aug.
2016.

[17] Z. Xiong, H. Sheng, W. Rong, and D.E. Cooper, “Intelligent trans-
portation systems for smart cities: A progress review,” Science China
Information Sciences, vol.55, no.12, pp.2908–2914, Nov. 2012.

[18] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “In-
ternet of things for smart cities,” IEEE Internet Things J., vol.1, no.1,
pp.22–32, 2014.

[19] U.P. House of Lords, “Connected and autonomous vehicles: The
future?,” 2017.

[20] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds,” 2014 IEEE
World Forum on Internet of Things (WF-IoT), IEEE, 2014.

[21] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable and Secure Computing, vol.1, no.1, pp.11–33,
2004.

[22] S. Bruning, S. Weissleder, and M. Malek, “A fault taxonomy for
service-oriented architecture,” 10th IEEE High Assurance Systems
Engineering Symposium (HASE’07), pp.367–368, IEEE, 2007.

[23] R. Buyya, C.S. Yeo, and S. Venugopal, “Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as comput-
ing utilities,” High Performance Computing and Communications,
2008. HPCC’08. 10th IEEE International Conference on, pp.5–13,
IEEE, 2008.

[24] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol.51, no.1, pp.107–113, 2008.

[25] V.K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A.C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, and H. Shah, “Apache
hadoop YARN: Yet another resource negotiator,” Proc. 4th annual
Symposium on Cloud Computing, p.5, ACM, 2013.

[26] M. Zaharia et al., “Spark: Cluster computing with working sets,”
HotCloud, vol.10, no.10-10, p.95, 2010.

[27] T. White, Hadoop: The Definitive Guide, O’Reilly Media, 2012.
[28] M. Zaharia et al., “Improving MapReduce performance in heteroge-

neous environments,” OSDI, p.7, 2008.
[29] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce

clusters using Mantri,” OSDI, p.24, 2010.
[30] G. Ananthanarayanan et al., “Effective straggler mitigation: Attack

of the clones,” NSDI, pp.185–198, 2013.
[31] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune: Miti-

gating skew in mapreduce applications,” Proc. 2012 ACM SIGMOD
International Conference on Management of Data, pp.25–36, ACM,
2012.

[32] L. Lei, T.Wo, and C. Hu, “CREST: Towards fast speculation of strag-
gler tasks in mapreduce,” e-Business Engineering (ICEBE), 2011
IEEE 8th International Conference on, pp.311–316, IEEE, 2011.

[33] X. Ouyang et al., “Reducing late-timing failure at scale: Straggler
root-cause analysis in cloud datacenters,” Fast Abstracts in the 46th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN, 2016.

[34] J. Dean andL.A. Barroso, “The tail at scale,” Commun.ACM, vol.56,
no.2, pp.74–80, 2013.

[35] U. Kumar and J. Kumar, “A comprehensive review of straggler han-
dling algorithms for mapreduce framework,” International Journal
of Grid and Distributed Computing, vol.7, no.4, pp.139–148, 2014.

[36] Z. Zheng, H. Ma, M.R. Lyu, and I. King, “QoS-aware Web ser-
vice recommendation by collaborative filtering,” IEEE Trans. Serv.
Comput., vol.4, no.2, pp.140–152, April 2011.

[37] G. Canfora, M.D. Penta, R. Esposito, andM.L. Villani, “An approach

for QoS-aware service composition based on genetic algorithms,”
Proc. 2005 conference on Genetic and evolutionary computation
- GECCO’05, pp.1069–1075, ACM Press, New York, New York,
USA, 2005.

[38] S. Benbernou et al., “Managing QoS acceptability for service selec-
tion: A Probabilistic description logics based approach,” Proc. 28th
International Workshop on Description Logics, 2015.

[39] T. Kaur, D. Kaur, and A. Aggarwal, “Cost model for software as a
service,” 2014 5th International Conference - Confluence The Next
Generation Information Technology Summit (Confluence), pp.736–
741, IEEE, Sept. 2014.

[40] L. Liu, D. Russell, D. Webster, Z. Luo, C. Venters, J. Xu,
and J.K. Davies, “Delivering sustainable capability on evolu-
tionary service-oriented architecture,” 2009 IEEE Int. Symp.
Object/Component/Service-Oriented Real-Time Distrib. Comput.,
pp.12–19, March 2009.

[41] K.J. Lin, M. Panahi, Y. Zhang, J. Zhang, and S.-H. Chang, “Build-
ing accountability middleware to support dependable SOA,” IEEE
Internet Comput., vol.13, no.2, pp.16–25, March 2009.

[42] W. Tsai, Y.-H. Lee, Z. Cao, Y. Chen, and B. Xiao, “RTSOA: Real-
time service-oriented architecture,” Service-Oriented System En-
gineering, 2006. SOSE’06. Second IEEE International Workshop,
pp.49–56, IEEE, 2006.

[43] I. Estévez-Ayres, P. Basanta-Val, and M. García-Valls, “Composing
and scheduling service-oriented applications in time-triggered dis-
tributed real-time Java environments,” Concurr. Comput. Pract. Exp.,
vol.26, no.1, pp.152–193, Jan. 2014.

David McKee is a Research Fellow in
the School of Computing, University of Leeds.
He has industrial experience in large-scale au-
tomated systems and is particularly interested
in the fields of distributed fault tolerant real-
time systems with their effects on Industry 4.0
and the Internet of Simulation (IoS). He has
been involved with IEEE HASE, SOSE, ISORC,
etc. and leads developments on several research
projects and publications.

XueOuyang is a Ph.D. student in the School
of Computing, University of Leeds. She re-
ceived her B.Eng. degree in Network Engineer-
ing and M.Eng. degree in Software Engineering
from National University of Defense Technol-
ogy, China. Her research interest lies in improv-
ing performance and efficiency for parallel jobs
within large-scale distributed systems.

Jie Xu is Chair of Computing at the Uni-
versity of Leeds and Director of the UK EPSRC
WRG e-Science Centre. He has industrial expe-
rience in building largescale networked systems
and has worked in the field of dependable dis-
tributed computing for over 30 years. He is a
Steering/Executive Committee member of IEEE
SRDS, ISORC, HASE, SOSE, etc. and a co-
founder of IC2E. He has led or co-led many re-
search projects to the value of over $30M, and
published over 300 research papers.

http://dx.doi.org/10.1109/sose.2017.29
http://dx.doi.org/10.1109/sose.2017.29
http://dx.doi.org/10.1109/sose.2017.29
http://dx.doi.org/10.1007/s11432-012-4725-1
http://dx.doi.org/10.1007/s11432-012-4725-1
http://dx.doi.org/10.1007/s11432-012-4725-1
http://dx.doi.org/10.1109/jiot.2014.2306328
http://dx.doi.org/10.1109/jiot.2014.2306328
http://dx.doi.org/10.1109/jiot.2014.2306328
http://dx.doi.org/10.1109/wf-iot.2014.6803166
http://dx.doi.org/10.1109/wf-iot.2014.6803166
http://dx.doi.org/10.1109/wf-iot.2014.6803166
http://dx.doi.org/10.1109/tdsc.2004.2
http://dx.doi.org/10.1109/tdsc.2004.2
http://dx.doi.org/10.1109/tdsc.2004.2
http://dx.doi.org/10.1109/tdsc.2004.2
http://dx.doi.org/10.1109/hase.2007.46
http://dx.doi.org/10.1109/hase.2007.46
http://dx.doi.org/10.1109/hase.2007.46
http://dx.doi.org/10.1109/hpcc.2008.172
http://dx.doi.org/10.1109/hpcc.2008.172
http://dx.doi.org/10.1109/hpcc.2008.172
http://dx.doi.org/10.1109/hpcc.2008.172
http://dx.doi.org/10.1109/hpcc.2008.172
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1145/2213836.2213840
http://dx.doi.org/10.1109/icebe.2011.37
http://dx.doi.org/10.1109/icebe.2011.37
http://dx.doi.org/10.1109/icebe.2011.37
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.14257/ijgdc.2014.7.4.13
http://dx.doi.org/10.14257/ijgdc.2014.7.4.13
http://dx.doi.org/10.14257/ijgdc.2014.7.4.13
http://dx.doi.org/10.1109/tsc.2010.52
http://dx.doi.org/10.1109/tsc.2010.52
http://dx.doi.org/10.1109/tsc.2010.52
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1145/1068009.1068189
http://dx.doi.org/10.1109/confluence.2014.6949281
http://dx.doi.org/10.1109/confluence.2014.6949281
http://dx.doi.org/10.1109/confluence.2014.6949281
http://dx.doi.org/10.1109/confluence.2014.6949281
http://dx.doi.org/10.1109/isorc.2009.9
http://dx.doi.org/10.1109/isorc.2009.9
http://dx.doi.org/10.1109/isorc.2009.9
http://dx.doi.org/10.1109/isorc.2009.9
http://dx.doi.org/10.1109/isorc.2009.9
http://dx.doi.org/10.1109/mic.2009.28
http://dx.doi.org/10.1109/mic.2009.28
http://dx.doi.org/10.1109/mic.2009.28
http://dx.doi.org/10.1109/sose.2006.27
http://dx.doi.org/10.1109/sose.2006.27
http://dx.doi.org/10.1109/sose.2006.27
http://dx.doi.org/10.1109/sose.2006.27
http://dx.doi.org/10.1002/cpe.2958
http://dx.doi.org/10.1002/cpe.2958
http://dx.doi.org/10.1002/cpe.2958
http://dx.doi.org/10.1002/cpe.2958

