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Abstract. We extend the nuclear Density Functional Theory (DFT) by including
proton-neutron mixing and contact isospin-symmetry-breaking (ISB) terms up to
next-to-leading order (NLO). Within this formalism, we perform systematic study of
the nuclear mirror and triple displacement energies, or equivalently of the Isobaric
Multiplet Mass Equation (IMME) coe�cients. By comparing results with those
obtained within the existing Green Function Monte Carlo (GFMC) calculations, we
address the fundamental question of the physical origin of the ISB e�ects. This we
achieve by analyzing separate contributions to IMME coe�cients coming from the
electromagnetic and nuclear ISB terms. We show that the ISB DFT and GFMC
results agree reasonably well, and that they describe experimental data with a
comparable quality. Since the separate electromagnetic and nuclear ISB contributions
also agree, we conclude that the beyond-mean-�eld electromagnetic e�ects may not
play a dominant role in describing the ISB e�ects in �nite nuclei.
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Similarity between the neutron-neutron, proton-proton, and proton-neutron nuclear
interactions was well recognized already in the third decade of the last century. This
property motivated Heisenberg [1] and Wigner [2] to introduce the concept of isospin
symmetry, which abandons notions of protons and neutrons and replaces them by that
of a nucleon, that is, a particle having two independent states in an abstract space called
isotopic-spin space or, in short, the isospace.

The isospin symmetry is not an exact symmetry of nature. At the fundamental
level, it is violated by the di�erence in masses of the constituent up and down quarks
and the di�erence in their electric charges. At the many-body level, where nucleons
are treated as structureless point-like particles interacting via the e�ective forces, the
major source of the isospin symmetry breaking (ISB) is the Coulomb �eld. The strong-
force ISB components are much weaker than the symmetry conserving, isoscalar ones.
Nevertheless, they are �rmly established from the two-body scattering data, which
indicate that the neutron-neutron interaction is ∼1% stronger than the proton-proton
one, and that the neutron-proton interaction is ∼2.5% stronger than the average of the
former two [3].

Following the classi�cation introduced by Henley and Miller [4, 5], components of
the nuclear force can be divided into four classes that have di�erent structures with
respect to the isospin symmetry. Apart from the dominant class-I isoscalar (isospin-
invariant) forces, the classi�cation introduces three di�erent classes of the ISB forces,
namely, class-II isotensor forces, which break the isospin symmetry but are invariant
under a rotation by π with respect to the y−axis in the isospace; class-III isovector
forces that break the isospin symmetry but are symmetric under interchange of nucleonic
indices in the isospace, and class-IV forces, which break the isospin symmetry and,
in addition, they mix the total isospin. This classi�cation is commonly used in the
framework of potential models based on boson-exchange formalism, like CD-Bonn [3] or
AV18 [6, 7]. It is also a convenient point of reference for the e�ective �eld theory [8, 9, 10].

The isospin symmetry is widely used in theoretical modelling of atomic nuclei. The
reason is that the isospin impurity, a measure of the ISB e�ect in nuclear wave function,
is small � in heavy N = Z systems of the order of a few percent [11]. Hence, the isotopic-
spin quantum number T is almost perfectly conserved, and thus it can be used to classify
nuclear many-body states and to work out selection rules for nuclear reactions.

Although they stem from small components of nuclear wave functions, the ISB
e�ects manifest themselves very clearly in the binding energies (BE < 0) of isobaric
multiplets. This can be visualized by analyzing the mirror (MDE) and triplet (TDE)
displacement energies: MDE = BE (A, T, Tz = −T )−BE (A, T, Tz = +T ) and TDE =

BE (A, T, Tz = −1)+BE (A, T, Tz = +1)−2BE (A, T, Tz = 0), respectively, where A is
the mass number, and T and Tz =

1
2
(N −Z) are the total isospin and its z component.

The MDE and TDE binding-energy indicators were subject to intensive studies within
the shell-model approaches, see Refs. [12, 13, 14] and references quoted therein. This
has led to a shell-model identi�cation and quanti�cation of the e�ects related to the ISB
class-III and II forces, respectively, for di�erent valence spaces. The class-III terms have
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also been studied within the nuclear Density Functional Theory (DFT) approach [15, 16].
In our recent work [17], we introduced contact class-II and III terms simultaneously.

Within this approach, which we call ISB DFT, to treat class-II forces one has to employ
the proton-neutron mixing [18, 19]. This allows for controlling the isospin degree of
freedom by the isocranking method, which can be considered as an approximated isospin
projection [18]. To determine TDE, such a projection is indispensable, because in the
conventional proton-neutron-unmixed DFT, states |T = 0, Tz = 0⟩ and |T = 1, Tz = 0⟩

are mixed, whereas only the latter one de�nes the TDE. The energy of the unmixed
state |T = 1, Tz = 0⟩ is obtained by isorotating state |T = 1, Tz = ±1⟩ that represents
isospin-aligned valence particles. The ISB DFT approach allowed us to reproduce all
experimental values of MDEs and TDEs for A ≥ 10.

The goal of the present Letter is twofold: First, we extend the formalism of Ref. [17]
from the leading-order (LO) zero-range class II and III interactions to the analogous
next-to-leading-order (NLO) terms. We show that the agreement with data improves,
correcting for the de�ciencies of the LO ISB DFT approach identi�ed in [17]. Second, we
compare our DFT results with those obtained [20, 21] using an ab initio Green Function
Monte Carlo (GFMC) approach. This allows us to draw important conclusions about
the role of di�erent components in the ISB sector of interactions that de�ne properties
of �nite nuclei.

The NLO (gradient) ISB DFT terms read,

V̂ II
1 (i, j) =

1

2
tII1

(

δ (rij)k
2 + k

′2δ (rij)
)

T̂ (ij), (1)

V̂ II
2 (i, j) = tII2 k

′δ (rij)kT̂
(ij), (2)

V̂ III
1 (i, j) =

1

2
tIII1

(

δ (rij)k
2 + k

′2δ (rij)
)

T̂ (ij)
z , (3)

V̂ III
2 (i, j) = tIII2 k

′δ (rij)kT̂
(ij)
z , (4)

where rij = ri − rj, k = 1
2i
(∇i −∇j) and k

′ = − 1
2i
(∇i −∇j) are the standard

relative-momentum operators acting to the right and left, respectively, and T̂ (ij) =

3τ̂
(i)
3 τ̂

(j)
3 − ˆ⃗τ

(i)
◦ ˆ⃗τ

(j)
and T̂

(ij)
z = τ̂

(i)
3 + τ̂

(j)
3 are the isotensor and isovector operators.

Similarly as at LO [17], the spin-exchange terms are redundant and could be omitted.
The NLO extension brings to the formalism four additional adjustable low-energy
coupling constants (LECs): tII1 , t

II
2 , t

III
1 , and tIII2 .

The NLO terms were implemented in the code hfodd (v2.85r) [22, 23]. First, we
readjusted the LO LECs of Ref. [17] to the available data on MDEs and TDEs in a
wider range of the A ≥ 6 isospin doublets and triplets [24, 25]. We also included in the
�t the recently measured mass of 44V [26]. Similarly as before, we excluded from the �t
several outliers: (i) the A = 9 and A = 16 points, which depend on the Tz = −T masses
corresponding to negative proton separation energies and (ii) the A = 69 and A = 73

points, which depend on masses derived from systematics [24]. This de�ned our dataset
used for �tting, which �nally consisted of 32 MDEs for isospin doublets, and 26 MDEs
and 26 TDEs for isospin triplets.
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We performed the adjustments using the methodology outlined in detail in
Refs. [27, 17].‡ We reiterate that the �tting of class II and class III parameters could
be done independetly to TDEs and MDEs, respectively. We used the SVT isospin-
conserving Skyrme functional [28, 29], which is free from unwanted self-interaction
contributions [30]. Such a �t gave tII0 = 3.7±0.4 and tIII0 = −7.3±0.3MeV fm3. This ISB
functional is dubbed SVISB

T; LO. Small di�erences with respect to the values obtained in
Ref. [17] are due to a slightly di�erent dataset used now.

Table 1. The root-mean-square deviations (RMSDs) between the DFT and
experimental values of MDEs and TDEs (in keV).

no ISB ISB at LO ISB at NLO
MDE T = 1

2
547 152 111

MDE T = 1 1035 330 180
TDE 166 94 65

Next, we adjusted all six (LO plus NLO) ISB DFT LECs to the same dataset,
which gave us the ISB functional SVISB

T;NLO de�ned by the values: tII0 = −16±3 and tIII0 =

11±2MeV fm3, and tII1 = 22±3, tIII1 = −14±4, tII2 = 1±1, and tIII2 = −7.8±0.8MeV fm5.
The root-mean-square deviations (RMSDs) between calculated and experimental values
of MDEs and TDEs are collected in Table 1, and all obtained results are plotted in
Fig. 1.

The NLO terms clearly improve the agreement with data. As hinted on in [17], their
surface character allows for better reproduction of the mass dependence of both MDEs
and TDEs. We see that every next order brings about a factor of 2 of improvement,
which is a characteristic feature of a converging e�ective theory [31]. We also note that
values of the LO LECs adjusted at NLO di�er very much from those adjusted at LO.
This is also fully consistent with the rules of the e�ective theory, and points to the fact
that speci�c values of the LECs are order dependent and thus do not carry too much of
a physical information.

To �nd out whether the improvement of the RMSD, Table 1, is not only a result of
the increased number of adjustable parameters (from 1 to 3 parameters for each class),
we determined the Bayesian Information Criterion (BIC) [32],

BIC = 2n · ln(RMSD/keV) + p · ln(n), (5)

where n is the number of data points used for �tting and p is the number of adjustable
parameters. This formula for calculating BIC is valid under the same assumptions
that are commonly made when de�ning the least-squared �tting approach (independent
distribution of the model errors according to the normal distribution and maximization
of the log likelihood with respect to the true variance). Then, the di�erence of BICs

‡ In this Letter, we corrected a numerical error of estimating statistical uncertainties that was present
in Ref. [17].
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Figure 1. (Color online) MDEs in the T =
1
2 (a) and T = 1 (b) mirror nuclei, and

TDEs (c) in isospin triplets, calculated using the SVISB
T;LO (dashed line) and SVISB

T;NLO

(circles) functionals, in comparison with experimental data (squares) [24, 25]. Open
symbols denote outliers excluded from the �t, see text.

between the LO and NLO models reads:

BICLO − BICNLO = 2n · ln

(

RMSDLO

RMSDNLO

)

− 2 ln(n). (6)

As it turns out, for class III and II this di�erence equals 53 and 13, respectively, which
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strongly favours the NLO model, as it is the one with much lower value of BIC [33].
To sum up, by increasing the number of parameters when going from LO to NLO, our
approach leads to a more accurate model that describes the physics better, rather than
to a model that over�ts the data.

We can now address the question of what is the nature of the introduced ISB terms
of the functional, namely, whether they model the strong-force-rooted e�ects, Coulomb
correlations beyond mean �eld, or both. In this Letter, we address this question by
performing a systematic study of the Isobaric Multiplet Mass Equation (IMME) [34, 35],
BE(A, T, Tz) = a+ bTz + cT 2

z , and by comparing the DFT results with those obtained
within the GFMC approach [20, 21].

The quadratic dependence of binding energies on Tz, which is assumed in IMME,
is motivated by the expansion of the two-body Coulomb force into isoscalar, isovector,
and isotensor terms [36], which also motivates the following IMME variant §,

BE(A, T, I, Tz) = a
(0)
A,T,I − a

(1)
A,T,ITz +

1
2
a
(2)
A,T,I{3T

2
z − T (T + 1)}, (7)

where for the IMME coe�cients a
(n)
A,T,I we used the traditional notation that includes

the angular-momentum quantum number I.
Of course, for triplets (T = 1), nuclear masses can always be trivially described by

a parabolic dependence on Tz, so then the information carried by the IMME coe�cients
is exactly the same as that contained in the displacement energies discussed above, with
MDE = 2Ta

(1)
A,T,I = −2Tb and TDE = 3T 2a

(2)
A,T,I = 2T 2c. For higher multiplets (T > 1),

there is an active ongoing debate if higher-order terms, proportional to T 3
z or T 4

z , are
required, see Refs. [37, 38] for brief recent reviews.

We investigate the intrinsic structure of the IMME coe�cients by decomposing
them into contributions coming from the electromagnetic and contact ISB parts of
the functional. We compare the DFT results with those obtained using the GFMC
method, split into the electromagnetic and nuclear ISB parts, see Refs. [20, 7, 21].
In this way, we try to bridge the gap between our phenomenological ISB terms with
LECs �tted to many-body data and the AV18 [6] ISB forces with LECs adjusted to
two-body scattering data. The GFMC calculations involve high-precision potential
AV18, which takes into account the ISB e�ects due to the one-photon and higher-
order electromagnetic e�ects, isovector kinetic energy, and class-II and class-III strong
�nite-range regularized interactions. On the other hand, our DFT modelling captures
all ISB e�ects (beyond the mean-�eld Coulomb) either in two (LO) or six (NLO) LECs
corresponding to contact class-II and class-III forces.

The DFT and GFMC results are collected in Tables 2 and 3 together with
experimental data [24, 25]. As shown in the Tables and visualized in Figs. 2(a) and 2(b),
the DFT and GFMC results are of a comparable quality. In the two lightest triplets
(A = 6 and 8), coe�cients a

(1)
A,T,I are slightly better described by the GFMC. This

approach, unlike the DFT, probably takes better into account the continuum e�ects that

§ The minus sign in the second term conforms with the opposite sign in the de�nition of Tz used in
Refs. [20, 21].
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Table 2. Contributions of the electromagnetic (V γ), ISB nuclear (V ISB), and isoscalar
(HT=0) forces to coe�cients a(1)A,T,I , see Eq. (7), calculated using the GFMC [21] and
ISB DFT at LO and NLO. Theoretical uncertainties of the DFT results are related to
the uncertainties of the adjusted LECs. All values are in keV.

a
(1)
A,T,I Model V γ V ISB HT=0 Total EXP

GFMC 1056(1) 62(0) 68(3) 1184(4)

a
(1)
6,1,0 SVISB

T;LO 1278 320 11 1609(15) 1174
SVISB

T;NLO 1277 118 12 1407(24)
GFMC 1478(2) 106(1) 27(10) 1611(10)

a
(1)

7, 1
2
, 3
2

SVISB
T;LO 1539 472 13 2024(25) 1644

SVISB
T;NLO 1537 66 14 1617(48)

GFMC 1675(1) 102(1) 43(6) 1813(6)

a
(1)
8,1,2 SVISB

T;LO 1730 368 18 2116(17) 1770
SVISB

T;NLO 1726 189 21 1936(21)
GFMC 2155(7) 110(1) � 2170(8)

a
(1)
10,1,0 SVISB

T;LO 2154 354 25 2533(16) 2329
SVISB

T;NLO 2146 296 31 2474(13)
SVISB

T;LO 2432 505 26 2964(26)
a
(1)

11, 1
2
, 3
2

2764
SVISB

T;NLO 2424 260 33 2717(33)

SVISB
T;LO 2589 419 31 3040(19)

a
(1)
12,1,1 2767

SVISB
T;NLO 2584 257 35 2876(21)

SVISB
T;LO 2736 345 39 3120(21)

a
(1)

13, 1
2
, 1
2

3003
SVISB

T;NLO 2736 244 38 3018(33)

SVISB
T;LO 3006 489 34 3529(22)

a
(1)
14,1,0 3276

SVISB
T;NLO 3002 185 38 3225(34)

may be present here due the proximity of the proton-emission threshold. Indeed, in 6Be
(Sp=590keV) and 8B (Sp=136keV), relatively large Thomas-Ehrman shifts [39, 40, 41]
are seen in the spectra [25].

In the same two lightest triplets, coe�cients a(2)A,T,I are better described by the ISB

DFT. It should be said, however, that the experimental value of a
(2)
8,1,2 is somewhat

uncertain, as it relays on a model-dependent evaluation of the isospin mixing in a near-
degenerate doublet of I = 2+ states at 16.626 and 16.922MeV in 8Be. In this work,
following the analysis of Ref. [21], we adopted the value of 16.8MeV for the excitation
energy of the so called empirical T=1 state and, consequently, 128 keV for the value of
a
(2)
8,1,2. Taking instead the value of 16.724MeV, which results from a simple two-level

mixing model, would lead to a
(2)
8,1,2=0.179 keV.

It is striking that, except for A=6, both models predict almost the same
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Table 3. Same as in Table 2 but for coe�cients a(2)A,T,I .

a
(2)
A,T,I Model V γ V ISB HT=0 Total EXP

GFMC 153(1) 112(2) 5(4) 270(5)

a
(2)
6,1,0 SVISB

T;LO 171 132 7 309(17) 223
SVISB

T;NLO 165 43 17 225(16)
GFMC 136(1) −3(2) 10(5) 139(5)

a
(2)
8,1,2 SVISB

T;LO 146 27 8 181(12) 127
SVISB

T;NLO 142 5 15 161(18)
GFMC 178(1) 119(18) � 297(19)

a
(2)
10,1,0 SVISB

T;LO 156 94 10 260(13) 242
SVISB

T;NLO 146 76 26 248(9)

a
(2)
12,1,1 SVISB

T;LO 135 19 7 160(6) 162
SVISB

T;NLO 134 15 12 161(10)

a
(2)
14,1,0 SVISB

T;LO 146 68 -4 211(10) 225
SVISB

T;NLO 142 67 -3 207(7)

contributions to a
(1)
A,T,I coming from the electromagnetic force, see Fig. 2(c). Since the

GFMC approach contains Coulomb correlations beyond mean �eld and DFT does not,
this may hint to the fact that such correlations may not be essential in reproducing the
ISB e�ects in the many-body context.

Except for the A=10 triplet, the nuclear ISB contributions in GFMC are also
consistent with contact ISB contributions in DFT. Note, however, that in this case the
GFMC (DFT) underestimates (overestimates) the a(1)10,1,0 coe�cient by a similar amount.
It is likely, that the di�erences re�ect a too weak (too strong) nuclear (contact) ISB
forces in the GFMC (DFT) calculations. This consistency supports the interpretation
that the contact ISB DFT terms in fact describes mostly the nuclear ISB e�ects. Note in
addition that at LO, the ISB DFT contributions to the isovector coe�cients are almost
three times larger than the GFMC values. This underlines the importance of the NLO
class-III corrections introduced in this work, which seem to be indispensable for a proper
treatment of the ISB e�ects in the isovector channel.

The NLO ISB DFT terms are equally important for description of the isotensor
channel. Indeed, the isotensor coe�cients a

(2)
A,T,I are exceptionally well reproduced

at NLO, even better than in the GFMC calculations, see Fig. 2(b). The individual
contributions due to electromagnetic and nuclear/contact in GFMC/DFT ISB e�ects,
see Fig. 2(d), are comparable in both models.

In the DFT calculations, the staggering in a
(2)
A,T,I , Fig. 2(d), comes entirely from

the contact class-II force. The details depend, however, on the order of approximation.
At LO (NLO), the staggering is due to the class-II time-odd (time-even) mean �elds,
see Figs. 3. In the GFMC calculations, both the electromagnetic and strong class-II
forces contribute to the staggering, but the latter contribution prevails. We also note
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Figure 2. (Color online) IMME coe�cients a
(1)
A,T,I (a) and a

(2)
A,T,I (b), see Eq. (7),

and contributions to the IMME coe�cients δa
(1)
A,T,I (c) and δa

(2)
A,T,I (d) due to

electromagnetic (full symbols), nuclear ISB (open diamonds), and contact ISB (open
circles) forces. For every A, quantum numbers T and I are listed in Tables 2 and 3.

here that in the nuclear shell model, the staggering is explained in terms of the J = 0

neutron-proton pairing, see Ref. [13].
Recently, Ormand et al. [10] performed shell-model-based ab initio study of the

isotensor IMME coe�cients c in the pf -shell isospin triplets (A = 42, 46, 50, and
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Figure 4. (Color online) Isotensor coe�cients c calculated within the ISB DFT and
shell-model-based ab initio approach at 3rd order [10].

54). Their results systematically overestimate the experimental values, irrespective
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of which high-precision potential, CD-Bonn [3], AV18 [6], or N3LO [9], was used in
the calculations, see Fig. 4. Conversely, our ISB DFT calculations at LO and NLO
systematically underestimate the experimental data, but at NLO the level of agreement
greatly improves. The DFT and shell-model-based ab initio methods predict very
di�erent contributions to c due to the Coulomb and contact/nuclear ISB forces. At
present it is impossible, however, to draw deeper conclusions, because the results of
Ref. [10] do not seem yet to converge with respect to the order of calculation, and
because those for the A = 4n triplets are not yet available. The DFT results presented
in this Letter may thus serve as a baseline for future comparisons of both approaches
in heavy nuclei.

The ISB character of the strong interaction manifests itself not only in the values
of MDE and TDE. One can expect it to be important in describing β decays, di�erences
of energies of levels of nuclei in isospin multiplets (mirror and triplet energy di�erences,
MED and TED), giant and Gamow-Teller resonances, etc. The ISB DFT seems to be a
perfect tool to study all these observables. Currently our group is working on the e�ects
of the short-range ISB terms of class III on the β decays in mirror nuclei and on MEDs
in rotational bands. The results will be published in forthcoming publications.

In summary, we performed systematic study of mirror and triplet displacement
energies, or equivalently, isovector and isotensor IMME coe�cients, using the extended
DFT approach that includes proton-neutron mixing and contact ISB terms at LO and
NLO. In light nuclei, we compared the obtained IMME coe�cients with the results of
existing GFMC calculations. We focused on comparing partial contributions due to
electromagnetic and nuclear ISB terms.

We showed that the NLO terms greatly improve the agreement of the DFT results
with data, and that the DFT and GFMC calculations reproduce empirical IMME
coe�cients comparably well. But most importantly, we showed that the Coulomb
contributions to the IMME coe�cients are similar in both approaches, which implies
that the Coulomb correlations beyond mean �eld may not be crucial in reproducing the
ISB e�ects in the many-body context.
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