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Multidimensional Inequality and Human Development* 

Suman Seth† and Maria Emma Santos‡ 

 

Abstract 

The measurement of inequality from a human development perspective is fundamental. 

First, we briefly introduce the human development approach and its conceptual basis: the 

capability approach. We then present the primary challenges for multidimensional 

inequality measurement, reflecting two types of distributional changes. One is concerned 

with the dispersions within distributions and the other is concerned with the association 

between distributions. We next present a review of the most prominent measures within a 

unifying framework and review surrounding empirical applications. We observe that 

multidimensional measures have a great potential, but there are challenges to overcome 

for fulfilling such potential. 
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1 Measurement of Inequality within a Human Development Framework  

The human development (HD hereafter) approach became increasingly prevalent in the 
international development agenda with the first Human Development Report (HDR), 

published by the United Nations Development Programme (UNDP) in 1990. In fact, the 

Human Development Index (HDI) has become a metric of important reference. The 

essence of the HD approach is that development must have human beings at the centre of 
attention. Therefore, it is imperative to capture not only the level of HD but also the 

inequality in HD across the population. This chapter is an introduction to the field of 

inequality measurement within a HD perspective, highlighting its scope and challenges. 

The HD approach is linked to many conceptual frameworks that go back to Aristotle, and 
include the basic needs approach, the Social Doctrine of the Catholic Church, human rights 

and sustainable livelihoods. But it has been fundamentally strengthened by Amartya Sen’s 
capability approach (Alkire and Deneulin, 2009), in which development is “the process of 
expanding the real freedoms people enjoy” (Sen, 1999, p.3).1 A key implication is the space 

in which development must be evaluated. 

Evaluating development in the space of resources, let it be income or Rawlsian primary 

goods, is problematic because these are mere means to ends, not ends in themselves. 

Moreover, people have different abilities to convert each specific resource into a certain 

achievement.2 Evaluating development in the space of utilities is also problematic because 

there are adaptive preferences by which people in an objective state of deprivation can 

show high utility levels. Thus, Sen argues that the space of evaluation of development must 

be that of capabilities and functionings, which is inherently multidimensional. 

Functionings are “the various things a person may value doing or being”, which range 

from fundamental ones such as being adequately nourished, to more sophisticated ones 

such as taking part in the life of the community. As long as a person’s functionings can be 

expressed by real numbers, the functionings can be summarised by a functioning vector. 
The set of all functioning vectors available to the person form the person’s capability set or 

capabilities. One particular functioning vector, or a combination of functionings that the 

person actually chooses from the set of capabilities, reflects that person’s achievements. 

Resembling the concept of budget set in the consumer theory, the capability set is the 

collection of all available functionings or the set of opportunities and thus represents the person’s freedom to choose or achieve various functionings (see Sen, 1997, p. 394-95).  

Sen favours using the ‘capability set’ over the chosen or ‘achieved functionings’ as the 

space for evaluating development, because achieved functionings are merely an element of 
the entire capability set. The capability set, in contrast, contains all available functioning 

vectors, even those not chosen. This distinction is relevant because two persons may have 

been observed to choose the same functioning vector, and yet one may have chosen the 

functioning vector in the absence of any better available alternative (i.e. lacks freedom to 
choose from), whereas the other may have chosen the functioning vector despite having 

better available alternatives (i.e. has freedom to choose from).3 Thus, using the capability 

set over achieved functioning captures a person’s freedom to choose from various 

alternative functionings regarded as intrinsically valuable (Sen, 1985).4  

                                                             
1 “Enlarging people’s choices” is about expanding valuable possible beings and doings (Alkire and Deneulin, 

2009, p. 34). 
2 Such abilities are influenced by personal heterogeneities, environmental diversities, variations in social 

climate, differences in relational perspectives and intra-household distribution (Sen, 1997). 
3 A frequent example offered by Sen is that of two persons with low nutritional status, one is due to the lack of 

resources and another because of the decision to fast.  
4 For Sen, functionings are things people value and “have reason to value”, implying that social choices need to 
be made regarding beings and doings that can be considered valuable (Alkire and Deneulin, 2009, ch. 2). 



Fleurbaey (2004) contends that the space of functionings does allow measuring freedoms. 

One may evaluate freedoms, he suggests, by putting substantially higher relative weight 
on basic functionings for human flourishing, and by combining this with knowledge of the 

existing legislation of the place where the individual lives. For example, poor educational 

achievements, low income, and unsatisfactory social relations inevitably reflect the lack of 

freedom to choose.  

In this way, we are soon into the practical challenges faced when shaping a measure of HD, 

let it be on the level of HD, inequality or poverty. One first practical challenge relates to a 

long-standing discussion on whether there should be a list of ‘central capabilities’, and 

thus, of implied functionings (as required by Fleurbaey). Some capabilities, according to 
Sen, may be considered basic. Yet, Sen claims that no particular list should be prescribed, 

because any list needs to be defined according to the purpose of the evaluation, must 

emerge from deliberative engagement, and must necessarily be contingent to time and 
space (Sen, 2004). In contrast, Martha Nussbaum argues that a list of central human 

capabilities is fundamental to avoid issues of omission and power by which people may 

learn not to want or value certain functionings (Alkire and Deneulin, 2009).5 At this point 

it is worth noting that capabilities refer to different dimensions of well-being (also 

sometimes called domains), and within them, there may be one or more indicators that 

proxy the capabilities. Choosing dimensions and indicators to be considered in a measure 

is a key step. Interestingly, Alkire (2008) points that in practice one finds a striking degree 

of commonality between different lists of central human capabilities or dimensions that 

have been suggested. 

A second practical challenge, closely related to the first one, is the selection of relative 

weights. Non-included dimensions receive a zero weight. In turn, weighting the included 

dimensions and indicators also has important implications as it determines their trade-
offs (Decancq and Lugo 2012a). Sen in fact advices using a range of weights on which there 

is at least some agreement. It is also considered a good practice to perform robustness 

analysis to (reasonable) changes in the weighting structure (Alkire et al., 2015). However, 

explicit weights are not the only determinant of trade-offs across dimensions, so are 
normalization procedures and the aggregation function across dimensions (Decancq and 

Lugo, 2012a). All these are non-trivial normative decisions in the evaluation of 

multidimensional well-being, inequality or poverty, that require a sound justification and 

transparency. Analysis and discussion on these matters can be found elsewhere.6  

This chapter is organised as follows. Section 2 sets the basis for unidimensional inequality 

measurement, building on which Section 3 moves to the associated multidimensional 

framework and presents related challenges. Section 4 discusses axiomatic properties and 

provides a succinct review of the most prominent multidimensional indices. Section 5 

reviews empirical applications these indices. Section 6 concludes.7 

2 Inequality within Single Dimensional Framework 

For a while, let us suppose that human development can be assessed by only a single 
dimension, which may be either earned incomes or educational attainments. Suppose, 

there are 𝑛 (≥ 2) persons in a hypothetical society. For simplicity of presentation, we 

assume that each of the 𝑛 persons has an achievement. We denote the achievement of 

person 𝑖 by 𝑥𝑖 ∈ ℝ++ for all 𝑖 = 1,… , 𝑛, where ℝ++ is the set of strictly positive real 

                                                             
5 Nussbaum’s (2000) ten central capabilities are: (1) life, (2) bodily health, (3) bodily integrity,(4) sense, 

imagination and though, (5) emotions, (6) practical reason, (7) affiliation, (8) other species, (9) play, (10) control over one’s environment. 
6 Alkire (2008); Alkire et al (2015, ch.6); Decancq and Lugo (2012a). 
7 Chakravarty and Lugo (2016) and Zoli (2009) offer related discussions. 



numbers, i.e. strictly positive achievements.8 The collection of all 𝑛 persons’ achievements 
in the society can be represented by an achievement vector 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ ℝ++𝑛 . An 

achievement vector may be referred to as a distribution of achievements. A higher value of 
achievement reflects higher level of well-being. We denote the average of all achievements 

in distribution 𝐱 by 𝜇(𝐱) = (𝑥1 +⋯+ 𝑥𝑛)/𝑛.  

Inequality in any single dimension is mainly understood through either Pigou-Dalton- 

progressive (regressive) transfer. A Pigou-Dalton progressive (regressive) transfer takes 
place whenever one distribution is obtained from another distribution through a rank 

preserving transfer of achievement from a person with higher (lower) achievement to a 

person with lower (higher) achievement, while keeping the mean achievement 
unchanged. Consider two distributions: 𝐱 = (1,2,8,9) and 𝐲 = (2,2,8,8). Note that 𝜇(𝐱) =𝜇(𝐲) = 5. Note that 𝐲 can be obtained from 𝐱 by transferring achievement of one unit from 

the person with nine units to the person with one unit. In this case, 𝐲 is stated to be 

obtained from 𝐱 by a progressive transfer. Technically, for any 𝐱, 𝐲 ∈ ℝ++𝑛 , 𝐲 is stated to be 
obtained from 𝐱 by a Pigou-Dalton progressive transfer if there are two persons 𝑖1 and 𝑖2 
such that 𝑥𝑖1 > 𝑥𝑖2 , 𝑦𝑖1 = 𝑥𝑖1 − 𝛿 and 𝑦𝑖2 = 𝑥𝑖2 + 𝛿 for any 𝛿 > 0 yet 𝑦𝑖1 > 𝑦𝑖2, and 𝑦𝑖 = 𝑥𝑖 
for all 𝑖 ≠ 𝑖1, 𝑖2. Conversely, distribution 𝐱, can be obtained from distribution 𝐲 by a 

regressive transfer. Technically, for any 𝐱, 𝐲 ∈ ℝ++𝑛 , 𝐱 is stated to be obtained from 𝐲 by a 
Pigou-Dalton regressive transfer if there are two persons 𝑖1 and 𝑖2 such that 𝑦𝑖1 > 𝑦𝑖2, 𝑥𝑖1 = 𝑦𝑖1 + 𝛿 and 𝑥𝑖2 = 𝑦𝑖2 − 𝛿 for any 0 < 𝛿 < 𝑦𝑖2, and 𝑥𝑖 = 𝑦𝑖 for all 𝑖 ≠ 𝑖1, 𝑖2. 

Whenever a distribution is obtained from another distribution by a sequence of Pigou-
Dalton progressive (regressive) transfers, then inequality in the former distribution is 

lower (higher) than that in the latter distribution. 

Pigou-Dalton progressive transfer(s) can be technically expressed using T-

transformation(s). A T-transformation matrix (𝐓) is a weighted average of an identify 
matrix 𝐄 and a non-identity permutation matrix 𝐏, such that 𝐓 = 𝜆𝐄 + (1 − 𝜆)𝐏 where 0 <𝜆 < 1.9 A permutation matrix is a non-negative square matrix with each row and each 

column having exactly one element equal to one and the rest being equal to zero. The 

following combination of 𝐄, 𝐏 and 𝜆 provides the T-transformation matrix for obtaining 𝐲 = (2,2,8,8) from 𝐱 = (1,2,8,9): 
𝐄 = [1 00 1 0 00 00 00 0 1 00 1] ; 𝐏 = [

0 00 1 0 10 00 01 0 1 00 0]  and 𝜆 = 0.875. 
Thus, 

𝐓 = [0.875 00 1 0 0.1250 00 00.125 0 1 00 0.875]  and so 𝐲 = 𝐱𝐓. 
Distribution 𝐲 in this case is obtained from distribution 𝐱 by post-multiplying 𝐱 by a T-

transformation matrix. Whenever a distribution is obtained from another distribution by a 
sequence of Pigou-Dalton transfers, then the former distribution can be equivalently 

obtained from the latter by a finite number of T-transformations. 

The lowest level of inequality or the situation of perfect equality is accomplished 
whenever everybody receives the same level of achievement. Technically, the situation of 

                                                             
8 Empirical applications of certain inequality measures require special treatment of negative or zero 

achievement values.  
9 We define T-transformation here in a strict sense by restricting 𝜆 to lie between 0 and 1. Whenever, 𝜆 = 1, a 

T-transformation matrix coincides with an identity matrix, resulting in no change in the distribution. 

Whenever, 𝜆 = 0, a T-transformation matrix coincides with a permutation matrix, where elements within an 

achievement vector merely swap places. 



perfect equality in 𝐱 is reached whenever every person receives an achievement equal to 𝜇(𝐱); we denote the equally distributed distribution corresponding to 𝐱 as �̅�, where �̅�𝑖 =𝜇(𝐱) for all 𝑖 = 1,… , 𝑛. A sequence of T-transformations may lead to the situation of 

perfect equality. For example, a sequential application of the following two T-

transformation matrices leads to �̅� = (5,5,5,5) from 𝐱 = (1,2,8,9), i.e., �̅� = 𝐱𝐓1𝐓2: 

𝐓1 = [0.5 00 1 0 0.50 00 00.5 0 1 00 0.5]  and 𝐓2 = [
1 00 0.5 0 00.5 00 0.50 0 0.5 00 1] . 10 

We introduce the related concept of bistochastic matrix (denoted by 𝐁) that we will use in 

subsequent sections. A bistochastic matrix is a non-negative square matrix whose each 

row and each column sums to one. T-transformation matrices themselves as well as a 
product of T-transformation matrices are bistochastic matrices. Permutation matrices 

(which include identity matrices) are also bistochastic matrices. Post-multiplying a 

distribution by a non-permutation bistochastic matrix does not change the mean of the 
distribution, but makes the distribution more equal.  However, not all bistochastic 

matrices, especially those with 𝑛 ≥ 3 dimensions, can be expressed as a product of T-

transformation matrices. An example of a bistochastic matrix that is neither a T-

transformation matrix nor a product of T-transformation matrices is: 𝐁 = [0.5 0.5 00.5 0 0.50 0.5 0.5] . 11 
This difference becomes important in the multidimensional context. 

Can the understanding of inequality within the single dimensional context be extended 

straightforwardly to understanding inequality involving multiple dimensions? Does 

increase or decrease in inequality within each of the many dimensions leads to increase or 

decrease in overall inequality? We critically answer these questions in the next section. 

3 Inequality Involving Multiple Dimensions 

We introduce some additional notation that are specific to the multidimensional 

framework. Suppose, in addition to 𝑛 (≥ 2) persons in the society, inequality is assessed 

by 𝑑 (≥ 2) dimensions. Similar to the single dimensional framework we denote the 
achievement of person 𝑖 in dimension 𝑗 by 𝑥𝑖𝑗 ∈ ℝ++  for all 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑑 , 

where a higher value of 𝑥𝑖𝑗 denotes higher achievement within dimension 𝑗. The collection of all persons’ achievements in a society can be represented by an 𝑛 × 𝑑-dimensional 

achievement matrix 𝐗 as: 

Dimensions 𝐗 = [𝑥11 ⋯ 𝑥1𝑑⋮ ⋱ ⋮𝑥𝑛1 ⋯ 𝑥𝑛𝑑] P
e

o
p

le
 

We denote each row 𝑖  of 𝐗  by a 𝑑 -dimensional vector 𝐱𝑖⋅ summarising person 𝑖 ’s 
achievements in all 𝑑  dimensions; whereas we denote each column 𝑗 of 𝐗 by an 𝑛-

dimensional vector 𝐱⋅𝑗  summarising the achievements for all 𝑛 persons in dimension 𝑗. A 

column vector of achievements is referred to as a marginal distribution of achievements 

and an achievement matrix, which contains all marginal distributions, is referred to as a 
joint distribution of achievements. For definitional purposes, we will denote the set of all 

possible matrices of size 𝑛 × 𝑑 by 𝒳𝑛 ∈ ℝ+𝑛×𝑑 and all possible achievement matrices by 

                                                             
10 These two T-transformation matrices are not the unique set of matrices for obtaining �̅� from 𝐱. 
11 See Marshall and Olkin (1979), Page 23. 



𝒳 = ⋃ 𝒳𝑛𝑛 . Like in the single dimensional framework, we let 𝜇𝑗(𝐗) = 𝜇(𝐱⋅𝑗) denote the 

average of all achievements in dimension 𝑗. The average achievements across all 𝑑 

dimensions are summarised by vector 𝛍(𝐗) = (𝜇1(𝐗), … , 𝜇𝑑(𝐗)). We also define the 

additional vector notation. For 𝐚, 𝐛 ∈ ℝ+𝑑 , 𝐚 ≥ 𝐛 implies that 𝑎𝑗 ≥ 𝑏𝑗 for all 𝑗 and 𝐚 > 𝐛 

implies that 𝑎𝑗 ≥ 𝑏𝑗 for all 𝑗 and 𝑎𝑗 > 𝑏𝑗 for some 𝑗. 
Let us now see if the concept of Pigou-Dalton progressive transfer in the single-
dimensional framework can be extended to the multidimensional framework. We have 

already discussed in Section 3 that Pigou-Dalton progressive transfers can be presented 

using T-transformations. In the multidimensional context, similarly Pigou-Dalton 

progressive transfer(s) may take place uniformly across all dimensions. For two joint 

distributions 𝐗, 𝐘 ∈ 𝒳𝑛 , 𝐘  is obtained from 𝐗  by a uniform Pigou-Dalton progressive 

transfer (UPDT) whenever 𝐘  is obtained from 𝐗  by pre-multiplying 𝐗  by a T-

transformation matrix 𝐓, i.e., 𝐘 = 𝐓𝐗.12 The UPDT majorization requires inequality to be 

lower if a distribution is obtained from another distribution by a UPDT or a sequence of 

UPDTs. In the following example, 𝐘1 is obtained from 𝐗1 by pre-multiplying 𝐗1 by 𝐓. 

𝐘1 = [22 3388 99] ; 𝐗1 = [
12 2389 910] and 𝐓 = [

0.875 00 1 0 0.1250 00 00.125 0 1 00 0.875]. 
Note that the same T-transformation has been applied uniformly to both marginal 

distributions; i.e., 𝐲⋅𝑗1 = 𝐓𝐱⋅𝑗1  for 𝑗 = 1,2. Clearly, 𝜇𝑗(𝐘1) = 𝜇𝑗(𝐗1) for 𝑗 = 1,2.  

We have already discussed that the T-transformations and the product of T-

transformations can be seen as bistochastic transformations, but not all bistochastic 

matrices can be presented as products of T-transformation matrices. That means that the 
transformation of some achievements matrices into others can never be obtained by UPD. 

A concept referred to as uniform majorization has thus been introduced in the literature 

(Kolm 1977). For any two distributions 𝐗, 𝐘 ∈ 𝒳𝑛, 𝐘 is stated to be obtained from 𝐗 by 

uniform bistochastic transformation (UBT) whenever 𝐘  is obtained from 𝐗  by pre-
multiplying 𝐗 by a bistochastic matrix 𝐁; i.e., 𝐘 = 𝐁𝐗. Uniform majorization requires 

inequality to be lower if a distribution is obtained from another distribution by a UBT. As 

all T-transformation matrices are bistochastic matrices, 𝐘1 can be obtained from 𝐗1 by 

UM. Again, note that the same transformation has been applied uniformly to both 

dimensions, i.e., 𝐲⋅𝑗1 = 𝐁𝐱⋅𝑗1  and also 𝜇𝑗(𝐘1) = 𝜇𝑗(𝐗1) for 𝑗 = 1,2. 

In the previous example, each marginal distribution in 𝐘1 has become more equal than the 

respective distribution in 𝐗1. Within each marginal distribution, the poorest person is 
better off at the cost of the richest person being worse off, while leaving the mean 

achievement unchanged. Should we consider distribution 𝐘1 to be more equal than 

distribution 𝐗1? The answer should be ‘yes’ because the poorest person is unambiguously 

better off (𝐲1⋅1 > 𝐱1⋅1 ) and the richest person is unambiguously worse off (𝐲4⋅1 < 𝐱4⋅1 ). 

Inequality is certainly lower in 𝐘1 than in 𝐗1. 

Can we thus state that multidimensional inequality would be lower whenever one joint 
distribution is obtained from another by UBT (or UPDT)? The answer is not 

straightforward. Let us consider another example motivated by Dardanoni (1996), where 𝐘2 is obtained from 𝐗2, such that 𝐘2 = 𝐁𝐗2: 

𝐘2 = [22 2277 77] ; 𝐗2 = [
22 2259 95] and 𝐁 = [

10 0100 00
00 000.50.5 0.50.5]. 

                                                             
12 In the single-dimensional context, the distribution across persons is a row vector; in the multidimensional 

context each marginal distribution across persons is a column vector. 



In this case, the achievements of the two richest persons were averaged, while the 

achievements of the two poorest persons remained unchanged. Clearly, 𝜇𝑗(𝐘2) = 𝜇𝑗(𝐗2) 
for 𝑗 = 1,2. Suppose, each person’s human development is obtained by aggregating her 

achievements using an aggregation function: 𝑓(𝑥𝑖12 , 𝑥𝑖22 ) = (𝑥𝑖12 𝑥𝑖22 )0.5, which is a standard 

concave Cobb-Douglas function. The human development levels for the two poorest 

persons remain unchanged, i.e., 𝑓(𝑦𝑖12 , 𝑦𝑖22 ) = 𝑓(𝑥𝑖12 , 𝑥𝑖22 ) for 𝑖 = 1,2. However, the human 

development levels are certainly higher for the two richest persons, i.e., 𝑓(𝑦𝑖12 , 𝑦𝑖22 ) >𝑓(𝑥𝑖12 , 𝑥𝑖22 ) for 𝑖 = 3,4. What we see is that a reduction in inequality within both marginal 

distributions uniformly in 𝐘2 has made the two richest persons better off but has left the 

two poorest persons behind.  

Can it thus be claimed that inequality is lower in 𝐘2 than in 𝐗2? There are two major 

issues with such comparisons. One is that the transfer is restricted to occur uniformly 
across all dimensions, which may not be reasonable in practice. Second, transfers do not 

necessarily take place between a richer person and a poorer person, which is the main 

essence of the Pigou-Dalton transfer in the single-dimensional context (Lasso de la Vega et 

al, 2010). For UPDT and UBT, transfers may take place between two persons where one 
has higher achievements in some dimensions while lower achievements in other 

dimensions than the other person. 

Through a novel approach, Bosmans et al. (2015) provide an explanation for the 

comparison between 𝐘2 and 𝐗2 by decomposing the overall multidimensional inequality 
into an inequity component and an inefficiency component. Inequity within a joint 

distribution exists as long as all persons do not have the mean achievement within each 

dimension. Inefficiency within a joint distribution exists so far as the well-being level of at 

least one person can be improved through redistribution without worsening the well-

being levels of any other person. The redistribution between 𝐘2 and 𝐗2  have indeed 

increased inequity in well-being by leaving the two poorest behind (similar point was 

raised by Duclos at al. 2011, p.229). However, the well-being levels of the two richest 
persons have increased without worsening anyone else’s well-being level, improving 

efficiency. The improvement in efficiency may have outweighed the deterioration in 

inequity, leading to a net improvement in inequality. Bosmans et al. (2015) thus conclude that ‘uniform majorization is more successful at capturing the efficiency aspect of multidimensional inequality than at capturing the equity aspect’ (p. 99). 
Fleurbaey and Trannoy (2003) have proposed another extension of the Pigou-Dalton 

progressive transfer in the multidimensional context referred to as Pigou-Dalton Bundle 

Transfer (PBT). The transfer is rank preserving and takes place only between a rich person 
and an unambiguously poorer person. A person ℎ is unambiguously richer than another 

person 𝑘 whenever 𝐱ℎ⋅ > 𝐱𝑘⋅. In 𝐗2, for example, the first two persons are unambiguously 

poorer than the last two persons. The PBT majorization requires inequality to be lower if a 

distribution is obtained from another distribution by a PBT or a sequence of PBTs. 

Adapting from Lasso de la Vega et al. (2010), for any two distributions 𝐗, 𝐘 ∈ 𝒳𝑛, 𝐘 is 

obtained from 𝐗 by a PBT whenever there are two persons ℎ and 𝑘, such that (i) 𝐱ℎ⋅ > 𝐱𝑘⋅, 
(ii) 𝐲𝑘⋅ = 𝐱𝑘⋅ + 𝛿  and 𝐲ℎ⋅ = 𝐱ℎ⋅ − 𝛿  for some 𝛿 = (𝛿1, … , 𝛿𝑑) > 0, (iii) 𝐲𝑖⋅ = 𝐱𝑖⋅  for all 𝑖 ≠ℎ, 𝑘, and (iv) 𝐲ℎ⋅ ≥ 𝐲𝑘⋅. What do all these conditions mean? Condition (i) requires that 

person ℎ has higher achievement than person 𝑘 in at least one dimension and no less 

achievement in any dimension before transfer. Condition (ii) requires that achievement(s) 

of positive amount in at least one dimension is transferred from person ℎ to person 𝑘. 
Condition (iii) requires that achievements of all other persons are identical in 𝐘 and 𝐗. 

Finally, condition (iv) requires that the post-transfer achievements of person ℎ is not 

lower than that of person 𝑘 in any dimension, ensuring that post-transfer ranks are 

preserved. 



In the following example, 𝐘3 is obtained from 𝐗3 by a PBT: 

𝐘3 = [23 4469 75] ; 𝐗3 = [
14 2669 75] and δ = (1,2). 

The first person in 𝐗3 is poorer than all others in both dimensions. An achievement of one 

unit in dimension 1 (𝛿1 = 1) and an achievement of two units in dimension 2 (𝛿2 = 2) are 

transferred from person 2 to person 1. Importantly, after the transfer (i.e., in 𝐘3) person 1’s achievements in no dimension is larger than that of person 2, yet 𝜇𝑗(𝐘3) = 𝜇𝑗(𝐗3) for 

all 𝑗. Inequality 𝐘3 may surely be claimed to be lower than that in 𝐗3 as required by the 

PBT majorization.13 

So far, we have presented extensions of Pigou-Dalton transfers. However, in the 

multidimensional context, there is a second form of inequality that is concerned with 

association between dimensions. Let us consider the following example involving 𝐘4 and 𝐗4 to clarify the point: 

𝐘4 = [12 10989 32 ] ; 𝐗4 = [
12 2389 910]. 

Note that each marginal distribution in 𝐘4  is identical to the respective marginal 

distribution in 𝐗4 , i.e., 𝐲⋅14 = 𝐱⋅14 = (1,2,8,9)  and 𝐲⋅24 = 𝐲⋅24 = (2,3,7,8)  and certainly 𝜇𝑗(𝐘4) = 𝜇𝑗(𝐗4) for all 𝑗. The main difference between the two joint distributions is 

observed when we look at the marginal distributions together within each joint 

distribution. In 𝐗4, both marginals are perfectly positively associated with each other; 

each poorer person is poorer in both dimensions than each richer person. Contrarily, in 𝐘4, marginals are oppositely ordered or are perfectly negatively associated with each 

other. Which distribution is more equal: 𝐘4 or 𝐗4? 

In their pioneering paper, Atkinson and Bourguignon (1982) introduced a second form of 

multidimensional inequality, requiring multidimensional social evaluations to be sensitive 

to correlation, or more precisely association, between dimensions. In the context of two 

dimensions, they obtained different conditions on how bivariate joint distributions could 
be ranked, whenever these distributions have same marginals but different inter-

dependence as presented in the example involving 𝐘4 and 𝐗4 . Decancq (2012) has 

extended the Atkinson-Bourguignon framework to situations involving three or more 

dimensions. 

In the literature of multidimensional measurement, certain approaches have been 

proposed to capture sensitivity to change in the inter-dependence between multiple 

dimensions. One prominent approach is the Correlation Increasing Transfer coined by Tsui 
(1999) motivated by Boland and Proschan (1988). The concept is also referred as 

Correlation Increasing Switch (Bourguignon and Chakravarty 2003), and Association 

Increasing Transfer (Seth 2013). We explain the concept using an example with 𝐙5, 𝐘5, and 𝐗5 involving three dimensions. 

𝐙5 = [12 𝟑𝟒 2389 89 69] ; 𝐘5 = [
12 𝟒𝟑 2389 𝟖𝟗 𝟔𝟗] ; 𝐗5 = [

12 43 2389 𝟗𝟖 𝟗𝟔] 
                                                             
13 We have not taken preferences of persons into consideration. For discussions on how transfers such as PBT 

and UM may become incompatible when one allows individual preferences to differ, see Fleurbaey and 

Trannoy (2003). 



If we compare the joint distributions, then clearly their marginals are identical: 𝐳⋅15 = 𝐲⋅15 =𝐱⋅15 = (1,2,8,9), 𝐳⋅25 = 𝐲⋅25 = 𝐱⋅25 = (3,4,8,9), and 𝐳⋅35 = 𝐲⋅35 = 𝐲⋅35  = (2,3,6,9). In 𝐗5, marginals 

are not perfectly positively associated. For example, the fourth person has higher 
achievement than the third person in the first dimension but lower achievements in other 

dimensions. Their achievements are swapped to obtain 𝐘5 so that the fourth person has 

higher achievements in all three dimensions than the third person. Clearly, the association 

between dimensions is higher in 𝐘5. Next, the achievements between the first two persons 

in 𝐘5 are further swapped to obtain 𝐙5, increasing the association further. All three 

dimensions in 𝐙5 are perfectly positively associated. 

Formally, for any two distributions 𝐗, 𝐘 ∈ 𝒳𝑛, 𝐘 is obtained from 𝐗 by an association 

increasing transfer (AIT) if there are two persons ℎ and 𝑘, such that (i) 𝐲ℎ𝑗 = min{𝐱ℎ𝑗, 𝐱𝑘𝑗} 
and 𝐲𝑘𝑗 = max{𝐱ℎ𝑗, 𝐱𝑘𝑗} for all 𝑗, (ii) 𝐲𝑖⋅ = 𝐱𝑖⋅ for all 𝑖 ≠ ℎ, 𝑘, and (iii) 𝐘 is not a permutation 

of 𝐗.14 The third condition in the definition is important as it prevents the transfer from 

taking place in dimensions where both persons have equal achievements. If 𝐘 is obtained 

from 𝐗 by an association increasing transfer, then, conversely, 𝐗 is obtained from 𝐘 by an 

association decreasing transfer (ADT).  

An association increasing majorization requires that inequality should increase when one 

distribution is obtained from another by an AIT or a sequence of AITs. A converse 

association increasing majorization requires that inequality should fall when one 

distribution is obtained from another by an AIT or a sequence of AITs. 

Should multidimensional inequality increase or decrease due to an association increasing 

transfer? Tsui (1999), among others, requires inequality to increase (or at least not to 

decrease) whenever there is an AIT. Implicitly, this requirement assumes dimensions to 

be substitutes (Atkinson and Bourguignon, 1982; Bourguignon and Chakravarty, 2003). If 
a good health outcome can substitute low income or low educational level, it is preferred 

that high achievements are spread out across the population. However, if attributes are 

complements – say, if a good health outcome is necessary to achieve higher income or 

better education, an AIT may produce a preferable distribution. This relationship however 
has recently been questioned by Bosmans et al. (2015), who show that association 

increasing majorization may be compatible with complementarity. This controversial 

topic however requires further research.  

Another approach to capture sensitivity to change in the inter-dependence between 
multiple dimensions has been proposed by Dardanoni (1996), which Decancq and Lugo 

(2012b) refer to as unfair rearrangement (UR). For any two distributions 𝐗, 𝐘 ∈ 𝒳𝑛, 𝐘 is 

obtained from 𝐗 by an UR if 𝐘 is obtained from 𝐗 by a sequence of AITs such that there is 
vector dominance between every pair of persons in 𝐘. In words, if 𝐘 is obtained from 𝐗 by 

an UR, then one individual has largest achievements in all dimensions, another individual 

has second largest achievements in all dimensions and so on. In our example, 𝐙5 is 

obtained from both 𝐘5 and 𝐗5 by UR. Note, however, that UR cannot rank 𝐘5 and 𝐗5. 

Should inequality increase due to unfair rearrangement? Similar controversy may arise as 

in case of the association increasing majorization and converse association increasing 

majorization. 

We finally discuss the concept of Compensating Transfer (CT), proposed by Lasso de la 

Vega et al. (2010), which combines the concept of PBT and ADT. For any two distributions 𝐗, 𝐘 ∈ 𝒳𝑛, 𝐘 is obtained from 𝐗 by a CT whenever there are two persons ℎ and 𝑘, such that 
(i) 𝐱ℎ⋅ > 𝐱𝑘⋅, (ii) 𝐲𝑘⋅ = 𝐱𝑘⋅ + 𝛿 and 𝐲ℎ⋅ = 𝐱ℎ⋅ − 𝛿 for some 𝛿 = (𝛿1,… , 𝛿𝑑) > 0, (iii) 𝐲𝑖⋅ = 𝐱𝑖⋅ 
for all 𝑖 ≠ ℎ, 𝑘, and (iv) 𝐲ℎ⋅ ≥ 𝐱𝑘⋅. The definition of CT is analogous to the definition of PBT, 

but with one crucial difference. The fourth condition in the definition of CT allows reversal 

                                                             
14 We prefer to use the broader term ‘association’ rather than ‘correlation’. 



of ranks by requiring 𝐲ℎ⋅ ≥ 𝐱𝑘⋅, unlike 𝐲ℎ⋅ ≥ 𝐲𝑘⋅ in case of PBT. A CT is claimed to lower 

multidimensional inequality. 

In the following example 𝐘6 is obtained from 𝐗6 by a CT.  

𝐘6 = [42 3569 75] ; 𝐗6 = [
15 2669 75] and δ = (3,1). 

The first person in 𝐗6 is poorer than all others. An achievement of three units in 
dimension 1 (𝛿1 = 3) and an achievement of one unit in dimension 2 (𝛿2 = 1) are 

transferred from person 2 to person 1. After the transfer (i.e., in 𝐘6), person 1’s 
achievement in the first dimension is higher than that of person 2, but person 1’s 
achievement in the second dimension remains lower. In this case, thus, there is no vector 

dominance between persons 1 and 2. The CT from 𝐗6 to 𝐘6 can be broken down into a 

PBT (from 𝐗6 to 𝐙6 by 𝛿′) and an ADT (from 𝐙6 to 𝐘6) as:  

𝐘6 = [42 3569 75] ; 𝐙6 = [
24 3569 75] ; 𝐗6 = [

15 2669 75] and δ′ = (1,1). 
Our detailed discussions in this section has exposed the difficulties that one may face 

while assessing inequality within a multidimensional framework. 

4 Multidimensional Inequality Measures in Normative Framework 

In this section, we discuss various normative multidimensional inequality measures that 

have been proposed in the literature. Inequality within a single dimension 𝐱 ∈ ℝ++𝑛  (using 

notation from Section 0) is assessed by defining a unidimensional inequality measure, 
which is a function 𝐼(𝐱) that maps the achievements in 𝐱 in a real number ℝ. Technically, 𝐼: ℝ++𝑛 → ℝ. In the unidimensional context, inequality is exclusively about inequality across 

people within a certain dimension, say income. Similarly, in the multidimensional context, 

an inequality measure maps from the achievements in 𝐗 to a real number ℝ, i.e., 𝐼:𝒳 → ℝ.  

In Section 3, we introduced a set of distributional properties, namely, those related to 

transfer and those related to association across dimensions. In the next subsection, we 

introduce some of the important non-distributional properties.  

4.1 Non-Distributional Properties 

Aside from the distributional properties discussed in Section 3, inequality measures are 

required to satisfy certain additional properties; some of which are basic whereas others 

are more controversial.  

One basic property, symmetry (also called anonymity), requires that an inequality measure 
should be invariant to who has each achievement vector. Technically, for any 𝐗, 𝐘 ∈ 𝒳𝑛, if 𝐘 is obtained from 𝐗 by simply permuting the achievement vectors in 𝐗 (i.e., 𝐘 = 𝐏𝐗 where 𝐏 is a permutation matrix), then 𝐼(𝐗) = 𝐼(𝐘). A second basic property, replication 

invariance (also called population principle), requires that an inequality measure should be 
invariant to replications of the population. Technically, if 𝐘 ∈ 𝒳𝛾𝑛 is obtained from 𝐗 ∈ 𝒳𝑛 

by simply replicating or cloning each person’s achievement vector in 𝐗 by 𝛾 times (where 𝛾 is a positive integer and 𝛾 > 1), then 𝐼(𝐗) = 𝐼(𝐘). This property allows comparing 

inequality across societies with different population sizes. A third basic property, 

normalisation, requires that whenever every person has the same achievement vector the 
inequality measure should be equal to zero. Technically, for any 𝐗 ∈ 𝒳𝑛, if 𝐱𝑖⋅ = 𝐱𝑘⋅ for all 𝑖 ≠ 𝑘, then 𝐼(𝐗) = 0. 



The next set of normative properties are slightly controversial and not all are necessarily 

compatible with each other. The scale invariance (also called zero-degree homogeneity) 
property requires that an inequality measure should be invariant to proportional changes 

of all achievements. Technically, for any 𝐗, 𝐘 ∈ 𝒳𝑛, if 𝐘 is obtained from 𝐗 such that 𝐘 = 𝛿𝐗 
for any 𝛿 > 0, then 𝐼(𝐗) = 𝐼(𝐘). A more intuitive but related property is ratio scale 

invariance, which requires that if each column vector is multiplied by a factor, then this 
should not alter the level of inequality. Technically, for any 𝐗, 𝐘 ∈ 𝒳𝑛, if 𝐘 is obtained from 𝐗 such that 𝐲⋅𝑗 = 𝛿𝑗𝐱⋅𝑗  for any 𝛿𝑗 > 0 for all 𝑗, then 𝐼(𝐗) = 𝐼(𝐘). The ratio scale invariance 

property allows comparing the level of inequality when achievements are presented in 

alternative units (e.g., income may be assessed by US dollars or British Pounds, education 

may be assessed in years or months). A third related property but with a weaker 

requirement than ratio scale invariance property is unit consistency, which merely 
requires that the ordering of distributions by an inequality measure should not alter 

whenever units of measurement change (Zheng 2007). Suppose for any 𝐗, 𝐘 ∈ 𝒳𝑛, 𝐼(𝐗) >𝐼(𝐘). If 𝐘′ ∈ 𝒳𝑛 is obtained from 𝐘 and 𝐗′ ∈ 𝒳𝑛 is obtained from 𝐗 so that 𝐲⋅𝑗′ = 𝛿𝑗𝐲⋅𝑗 and 𝐱⋅𝑗′ = 𝛿𝑗𝐱⋅𝑗  for any 𝛿𝑗 > 0 for all 𝑗, then 𝐼(𝐗′) > 𝐼(𝐘′). Finally, the translation invariance 

property, requires that an inequality measure should be invariant when all achievements 

within each distribution are changed by certain amounts (Kolm 1976). Technically, for any 𝐗, 𝐘 ∈ ℝ++𝑛 , if 𝐘 is obtained from 𝐗 such that 𝑦𝑖𝑗 = 𝑥𝑖𝑗 + 𝛿𝑗 for any 𝛿𝑗 ∈ ℝ for all 𝑗 and for 

all 𝑖, then 𝐼(𝐗) = 𝐼(𝐘).  
Along with other properties, an inequality measure that satisfies scale invariance or ratio 

scale invariance or unit consistency is referred to as a relative inequality measure. An 
inequality measures that satisfies translation invariance, along with other properties, is 

referred to as an absolute inequality measure. It should be noted that no inequality 

measure can simultaneously be relative and absolute. Kolm (1976) refers the relative 

viewpoint as rightist; the absolute viewpoint as the leftist. In this chapter, we focus on 

relative multidimensional inequality measures. 

Finally, in the assessment of inequality, it is often required understanding the link 

between the overall inequality and the inequality of different population subgroups 
whenever the entire population is divided into a collection of mutually exclusive and 

collectively exhaustive subgroups. For example, the entire population of a country may be 

subgrouped across states, provinces, ethnic or religious groups. The subgroup consistency 

property requires that an increase in inequality in one subgroup should lead to an 
increase in the overall inequality if inequality in other subgroups remains unchanged. The 

subgroup decomposability property requires that the overall inequality can be expressed in 

terms of the inequality levels of subgroups, their vector of average achievements in 

different dimensions and their population sizes. 

4.2 Structure 

We now turn to the structure of inequality measures. Foster (2008) eloquently showed 

that – except for some limiting cases – all unidimensional inequality measures can be 

presented as a function of two achievement standards, where an achievement standard is a 
measure of the size of a distribution of achievement.15 Some of the achievement standards 

may be viewed as social welfare functions (𝑊). In those cases, an inequality index can be 
presented as a function of two social evaluation functions: 𝑊(𝐱) and 𝑊(�̅�), where �̅� is 

obtained from 𝐱 such that �̅� = (𝜇(𝐱), … , 𝜇(𝐱)) or each person in �̅� receives the average 

achievement 𝜇(𝐱) . An inequality measure is typically presented either as 𝐼(𝐱) =
                                                             
15 The limiting cases are one of Theil’s measures and the variance of logarithms. Foster (2006) uses the term 

income standard to refer the size of any unidimensional income distribution as opposed to the term 

achievement standard that we use here. 



[𝑊(�̅�) −𝑊(𝐱)]/𝑊(�̅�) whenever 𝑊(�̅�) > 𝑊(𝐱) or 𝐼(𝐱) = [𝑊(𝐱) −𝑊(�̅�)]/𝑊(𝐱) whenever 𝑊(�̅�) < 𝑊(𝐱). 
In the multidimensional context – analogously – almost all multidimensional inequality 

measures are functions of two social evaluation functions: 𝑊(𝐗) and 𝑊(�̅�), where �̅� is 

obtained from 𝐗 such that �̅�𝑖⋅ = 𝛍(𝐗) for all 𝑖 = 1,… , 𝑛 or each person in �̅� receives the 

mean achievement in all 𝑑 dimensions. Similarly, the typical approach to present an 

inequality measure is:  

 𝐼(𝐗) = 1 −𝑊(𝐗)𝑊(�̅�). (1) 

Unlike in the unidimensional framework, multidimensional social welfare functions are 

constructed using a two-step aggregation approach.16 Some of them pursue a row-first 

aggregation approach; whereas others pursue a column-first aggregation approach. A row-

first aggregation approach uses an aggregation function in the first step to aggregate the 

achievements of each person (row of 𝐗) in all 𝑑 dimensions to obtain an aggregate 

individual-achievement; then all 𝑛 aggregate individual-achievements are aggregated using 

another aggregation function to obtain the overall social evaluation. A column-first 

aggregation approach, on the other hand, uses an aggregation function in the first step to 

aggregate the achievements in each dimension  (column of 𝐗) of all 𝑛 persons to obtain an 
aggregate dimensional-achievement; then all 𝑑 aggregate dimensional-achievements are 

aggregated using another aggregation function to obtain the overall social evaluation. 

Given that the column-first aggregation function first aggregates achievements across each 

dimension, it is not possible to capture the second form of multidimensional inequality for 

reflecting association between dimensions.17 

4.3 Measures 

In Table 1, we summarise the social evaluation functions of various multidimensional 

inequality measures proposed in the literature. Interestingly, all the social evaluation 
functions in Table 1 use either a generalised mean evaluation function or a generalized 

Gini evaluation function in either step. For 𝑚 ≥ 2, for any 𝐚 = (𝑎1, … , 𝑎𝑚) ∈ ℝ++𝑚  and for 
any 𝐰 = (𝑤1, … , 𝑤𝑚) ∈ ℝ+𝑚  such that 𝐰 ≥ 0 and ∑ 𝑤𝑘𝑚𝑘=1 = 1, the generalised mean of 

order 𝛽 ∈ ℝ is defined as: 

 𝐺𝑀(𝐚;𝐰, 𝛽) =
{   
   (∑𝑤𝑘𝑎𝑘𝛽𝑚

𝑘=1 )1𝛽 for 𝛽 ≠ 0
∏𝑎𝑘𝑤𝑘𝑚
𝑘=1 for 𝛽 = 0 . 18 (2) 

The expression for general mean is also equivalent to the expression of the constant 

elasticity of substitution function. The generalised mean evaluation function for 𝛽 < 1 is 

used to construct the well-known unidimensional Atkinson’s inequality measure 
(Atkinson 1970). 

                                                             
16 See Bosmans et al. (2015) for an axiomatic justification of the structure in (1) as well as the two-step 

aggregation approach. 
17 For a class of standard of living measures that are invariant to the order of aggregation, see Dutta et al. 

(2003).  
18 The generalised mean takes different forms, such as arithmetic mean (𝛽 = 1), geometric mean (𝛽 = 0), 

harmonic mean (𝛽 = −1) and Euclidean mean (𝛽 = 2). When 𝛽 > 1 (𝛽 < 1), higher (lower) weight is placed 

on larger elements and 𝐺𝑀(𝐚;𝐰,𝛽) approaches the maximum (minimum) element as 𝛽 → ∞ (𝛽 → −∞). 



For 𝑚 ≥ 2 and for any 𝐚 = (𝑎1, … , 𝑎𝑚) ∈ ℝ++𝑚  the generalized Gini evaluation function is 

defined as: 

 𝐺𝐺(𝐚; 𝛿) = ∑ [(𝑟𝑘𝑚)𝛿 − (𝑟𝑘 − 1𝑚 )𝛿]𝑚
𝑘=1 𝑎𝑘; (3) 

where 𝑟𝑘  is the rank of the 𝑘th element in 𝐚 when all elements are ranked in descending 

order. Note that 𝐺𝐺(𝐚; 𝛿) is also a type of average, where the 𝑘th element is assigned a 

weight of 𝑤𝑘′ = (𝑟𝑘/𝑚)𝛿 − ([𝑟𝑘 − 1]/𝑚)𝛿. It is straightforward to verify that ∑ 𝑤𝑘′𝑚𝑘=1 = 1. 

In this evaluation function, smaller elements receive larger weight.19 Setting 𝛿 = 2 in 

equation (3), we obtain the Gini social evaluation function:  

 𝐺𝐺(𝐚; 2) = ∑ [(2𝑖 − 1)𝑚2 ]𝑚
𝑘=1 𝑎𝑘 . (4) 

The Gini social evaluation function is used to compute the well-known Gini coefficient. 

We should point out that a pioneering multidimensional inequality measure proposed by 
Maasoumi (1986) differs from equation (1) not only in the general structure, but also in 

the distribution that is considered as the most equal. Maasoumi (1986) used a row-first 

aggregation approach, but a key difference from other measures is that the most equal 
distribution is in which the aggregate individual-achievements are equal and not 

necessarily when everyone has the equal achievement vector. Consider the following 

achievement matrices: 

𝐘′ = [33 7777 33]  and 𝐗′ = [
55 5555 55]. 

Suppose, the level of human development for each individual is assessed by 𝑈(𝑥𝑖1′ , 𝑥𝑖2′ ) =(𝑥𝑖1′ 𝑥𝑖2′ )0.5. Massoumi (1986) would consider both 𝐘′ and 𝐗′ to be the most egalitarian; 

whereas other normative inequality measures would consider only 𝐗′ to be the most 

egalitarian. 

It is worth noting that all the inequality measures detailed in Table 1 are sensitive to 
distribution. In other words, they satisfy UPD majorization or uniform majorization. 

Additionally, the measures proposed by Bourguignon (1999), Tsui (1995, 1999), Decancq 

and Lugo (2012b), Seth (2013) and Diez et al. (2007) are sensitive to association between 
dimensions under appropriately selected parameter restrictions. However, Gajdos and 

Weymark (2005) and Foster et al. (2005), as they use column-first aggregation, are not 

sensitive to association between dimensions. In fact, measures proposed by Foster et al. 

(2005) yield the same level of social evaluation whether a row-first or a column-first 
aggregation is used. In this case, the social evaluation function may be referred as path 

independent. All measures presented in Table 1 require variables under consideration to 

be cardinal. 

                                                             
19 The weight assigned to the largest element is (1/𝑚)𝛿 − (0/𝑚)𝛿 or 1/𝑚𝛿; whereas the weight assigned to 

the smallest element is (𝑚/𝑚)𝛿 − ([𝑚 − 1]/𝑚)𝛿 = 1− ([𝑚 − 1]/𝑚)𝛿. 
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Table 1: Multidimensional Inequality Measures, Relevant Social Evaluation Functions and the Order of Aggregation  

 
 Order of 

aggregation 
First stage aggregation function Second stage aggregation function Inequality measure 

1. Tsui (1995) Row-first ℎ𝑖 =∏𝑥𝑖𝑗𝛼𝑗𝑑
𝑗=1  𝑊(𝐗) =

{  
   
 [1𝑛∑ℎ𝑖𝑛

𝑖=1 ] 1∑ 𝛼𝑗𝑑𝑗=1

[∏ℎ𝑖 1∑ 𝛼𝑗𝑑𝑗=1𝑛
𝑖=1 ]1𝑛  𝐼(𝐗) = 1 −𝑊(𝐗)𝑊(�̅�) 

2. 
Bourguignon 

(1999) 
Row-first ℎ𝑖 =

{   
   (∑𝑤𝑗𝑥𝑖𝑗𝛽𝑑

𝑗=1 )1𝛽 for 𝛽 < 1 & 𝛽 ≠ 0
∏𝑥𝑖𝑗𝑤𝑗𝑑
𝑗=1 for 𝛽 = 0  𝑊(𝐗) = 1𝑛∑ℎ𝑖𝛼𝑛

𝑖=1 ; 0 < 𝛼 < 1 𝐼(𝐗) = 1 −𝑊(𝐗)𝑊(�̅�) 

3. 

Foster, Lopez-

Calva and 

Szekely 

(2005)* 

Column-first ℎ𝑗 =
{   
   (∑𝑥𝑖𝑗𝛼𝑛

𝑖=1 )1𝛼 for 𝛼 < 1 & 𝛼 ≠ 0
(∏𝑥𝑖𝑗𝑛
𝑖=1 )1𝑛 for 𝛼 = 0  𝑊(𝐗) =

{   
   (∑𝑤𝑗ℎ𝑗𝛼𝑑

𝑗=1 )1𝛼 for 𝛼 < 1 & 𝛼 ≠ 0
∏ℎ𝑗𝑤𝑗𝑑
𝑗=1 for 𝛼 = 0  𝐼(𝐗) = 1 −𝑊(𝐗)𝑊(�̅�) 

4. 

Gajdos and 

Weymark 

(2005)** 

Column-first 

ℎ𝑗 =∑[(𝑟𝑖𝑗𝑛 )𝛿 − (𝑟𝑖𝑗 − 1𝑛 )𝛿]𝑛
𝑖=1 𝑥𝑖𝑗 ; 𝛿 > 0 & 𝑟𝑖𝑗 is the rank of 

person 𝑖 in dimension 𝑗 𝑊(𝐗) =
{   
   (∑𝑤𝑗ℎ𝑗𝛽𝑑

𝑗=1 )1𝛽 for 𝛽 ≠ 0
∏ℎ𝑗𝑤𝑗𝑑
𝑗=1 for 𝛽 = 0  𝐼(𝐗) = 1 −𝑊(𝐗)𝑊(�̅�) 
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 Order of 

aggregation 
First stage aggregation function Second stage aggregation function Inequality measure 

5. 
Decancq and 

Lugo (2012b) 
Row-first ℎ𝑖 =

{   
   (∑𝑤𝑗𝑥𝑖𝑗𝛽𝑑

𝑗=1 )1𝛽 for 𝛽 ≠ 0
∏𝑥𝑖𝑗𝑤𝑗𝑑
𝑗=1 for 𝛽 = 0 

𝑊(𝐗) =∑[(𝑟𝑖𝑛)𝛿 − (𝑟𝑖 − 1𝑛 )𝛿]𝑛
𝑖=1 ℎ𝑖; 𝛿 > 0 & 𝑟𝑖  is the rank of 

person 𝑖 in dimension 𝑗 𝐼(𝐗) = 1 −𝑊(𝐗)𝑊(�̅�) 

6. Seth (2013) Row-first ℎ𝑖 =
{   
   (∑𝑤𝑗𝑥𝑖𝑗𝛽𝑑

𝑗=1 )1𝛽 for 𝛽 ≤ 1 & 𝛽 ≠ 0
∏𝑥𝑖𝑗𝑤𝑗𝑑
𝑗=1 for 𝛽 = 0  𝑊(𝐗) =

{  
   
 (1𝑛∑ℎ𝑖𝛼𝑛

𝑖=1 )1𝛼 for 𝛼 ≤ 1 & 𝛼 ≠ 0
(∏ℎ𝑖𝑛
𝑗=1 )1𝑛 for 𝛼 = 0  𝐼(𝐗) = 1 −𝑊(𝐗)𝑊(�̅�) 

7. 

Tsui (1999) 

and Diez et al. 
(2007) 

Row-first ℎ𝑖 =∏𝑥𝑖𝑗𝛼𝑗𝑑
𝑗=1  𝑊(𝐗) = 1𝑛∑ℎ𝑖𝑛

𝑖=1  𝐼(𝐗) = 𝜙(𝜌∏𝜇𝑗𝜏𝑑
𝑗=1 [𝑊(𝑋)𝑊(�̅�) − 1]) 

8. Tsui (1999) Row-first ℎ𝑖 =∑𝛿𝑗 log(𝑥𝑖𝑗)𝑑
𝑗=1  𝑊(𝐗) = 1𝑛∑ℎ𝑖𝑛

𝑖=1  𝐼(𝐗) = 𝜙 (𝜌 [𝑊(𝑋)𝑊(�̅�) − 1]) 

* Both stages of aggregation use the same parameter 𝛼. This social evaluation function is path independent. 

** Here we present only one measure from the class of indices proposed by Gajdos and Wermark (2005) based on Gini social evaluation function. The first stage aggregation function 

may be a generalized Gini social evaluation function ℎ𝑗(𝑥⋅𝑗) = ∑ 𝑎𝑖𝑛𝑖=1 𝑥𝑖𝑗𝑂𝑟𝑑  such that 0 < 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 and ∑ 𝑎𝑖𝑛𝑖=1 = 1. 



 

 

16 

5 Empirical Applications 

Many of the indices presented in Table 1 of Section 4 have been used to measure 

inequality in human development.20 Two early inequality-adjusted indices of human 

development are the Gender-related Development Index (GDI) (Anand and Sen, 1995), 

and Inequality-Adjusted Human Development index (Hicks, 1997). Both use the same 

three dimensions: health, knowledge and living standard, and apply column-first 

aggregation. The GDI first computes an equally distributed equivalent (EDE) achievement 
(with 𝛽 = −1 in Equation (1)) aggregating the achievements of males and females in each 

dimension, and then averages these three dimensional EDE achievements. Similarly, Hicks 

first computes an aggregate achievement for each dimension adjusting for Gini coefficient 

within the corresponding dimension capturing inequality (similar to Gajdos and Weymark 

(2005)), and then averages these three inequality-adjusted achievements. 21  Data 

unavailability however imposes serious constraints for Hicks’ index. Inequality could only 

be captured across  income quintiles for living standard, across six ordered categories of 

education for knowledge, and across mortality statistics by age, gender and area of 

residence for health. 

Building upon Anand and Sen (1995) and Hicks (1997), Foster et al. (2005) propose a 

family of distribution sensitive HDIs, reported in Table 1. Unlike its two predecessors, 

these indices are invariant to the order to aggregation and are subgroup consistent. These 
indices have been used to study the link between the level of and the inequality in human 

development in Mexico using the 2000 population census data. Inequality in living 

standard is captured across per capita household incomes and inequality in education by 

weighted average of literacy and attendance across households. However, health 

inequality could only be captured across municipalities using infant survival rates. Despite 

data limitations, when sensitivity to inequality considered, Mexican states’ rankings 
change considerably from when inequality is ignored. A particular index with 𝛼 = 0 from 
their family of indices has been used to construct UNDP’s inequality-adjusted HDI (UNDP, 

2010; Alkire and Foster, 2010). 

Analysing the cross-country results based on inequality-adjusted human development 

indices, Seth and Villar (2017b) observe a consistent inverse relationship: lower level of 

human development is associated with larger loss in human development due to existing 

inequality.    

The three inequality adjusted indices so far represent a very significant progress by 

incorporating one form of inequality, but they are not sensitive to the joint distribution of 
achievements. They either use column-first aggregation or are invariant to the order of 

aggregation, yet there are strong arguments in favour of requiring sensitivity to the joint 

distribution of achievements (Seth 2009, 2013; Decancq 2017; Seth and Villar 2017a). 

Seth (2009, 2013) proposes a family of well-being indices (detailed in Table 1) by row-
first aggregation that are sensitive to both forms of multidimensional inequality. These 

indices, at the first stage, aggregate the achievements of each person across all dimensions 

using a generalised mean of order 𝛽, and then in the second stage aggregate individual 
achievements of a general mean of order 𝛼. The restriction that 𝛼 ≠ 𝛽 makes these indices 

sensitive to the joint distribution of achievements.22 Seth (2009) applies these indices to 

the same Mexican dataset studied by Foster et al. (2005); whereas Seth (2013) uses these 

indices to study the change in the level of human development in Indonesia between 1997 

and 2000. In both cases new insights can be obtained from using indices that are sensitive 

                                                             
20 For a review of inequality sensitive indices of human development, see Seth and Villar (2017a,b). 
21 The Gini coefficient adjusted achievement of a dimension is computed as 𝜇(1 − 𝐺), where 𝜇 is the average 

dimensional achievement and 𝐺 is the dimensional Gini coefficient. 
22 The Foster et al (2005) family of indices is a sub-family of the Seth family of indices, when 𝛼 = 𝛽. 
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to inequality across dimensions.23 The 2010 HDR has replaced the GDI by the Gender 

Inequality Index (GII), which is based on Seth (2009). The GII is constructed in three steps. 
First, the achievements of each gender group are aggregated using a geometric mean (𝛽 =0). Second, the aggregate achievements of both genders are aggregated using a harmonic 

mean (𝛼 = −1). Third, the normalised short-fall of the overall index, obtained in the 

second step, from the level of human development with perfect gender equality is the 

GII.24 

Decancq and Lugo (2012b) perform an empirical application of two families of 

multidimensional inequality indices using Russian data. The two families of indices are 

based on Gini social evaluation functions: one family uses a column-first aggregation 
(Gajdos and Weymark 2005) and thus is insensitive to association; whereas another 

family uses a row-first aggregation (Decancq and Lugo, 2012b) and is thus sensitive to 

association. They consider four dimensions: equivalent real expenditure, health, years of 

schooling and housing. For this application, however, the authors cardinalise some of the 
non-cardinal indicators. They find through a simulation exercise that the assessed levels 

and trends of inequality differ substantially when judged with association-sensitive 

indices as opposed to when judged with association-insensitive indices. 

Using the same family of indices as Seth (2009), Decancq (2017) proposes and estimates a variant of the OECD’s ‘Better Life Index’ (BLI), making it sensitive to inequality. He uses 

some variant of BLI indicators from micro data using the Gallup World Poll survey. 

Findings suggest that incorporating inequality does change country rankings, and again, 

countries with lower BLI tend to have larger loss due to multidimensional inequality.  

Reviewing the applications of multidimensional inequality indices so far one may extract a 

few general observations. First, the field seems to be still very fertile for further empirical 

investigations. Applications are still relatively few and yet all of them show interesting 
insights of the effects of incorporating inequality in the measurement of human well-being 

or development. Second, some of the most prominent applications have used column-first 

aggregation, despite the recognised importance of considering the joint distribution of 

achievements. This may be no coincidence. Two factors may be at interplay. First, row-
first aggregation type of measures require micro-data on the relevant variables. This on 

itself may be not such a great limitation, as the availability of household surveys micro 

data keeps increasing. However, variables to implement measures sensitive to the joint 

distribution need to be of cardinal nature, or otherwise, require a prior cardinalisation 
procedure (as performed in the work by Decancq and Lugo, 2012b and Decancq, 2017). 

While life expectancy can be considered a cardinal variable, finding an equivalent 

meaningful cardinal variable at the individual level seems not so straightforward. Thus, it 

may be that the combined requirements, namely cardinally meaningful variables at the 
micro-data level, does represent a practical limitation for a burst in the implementation of 

multidimensional inequality indices. Note, in fact, that the recent surge in 

implementations of the sister measures of multidimensional poverty has been with 
measures that work with dichotomised achievements, facilitating the use of ordinal 

variables, which are predominant in multidimensional analysis. 

  

                                                             
23 For further insight, see our working paper version (Seth and Santos, 2017). 
24 See the technical note at http://hdr.undp.org/en/content/gender-inequality-index-gii.  

http://hdr.undp.org/en/content/gender-inequality-index-gii
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6 Concluding Remarks  

The technology for measuring multidimensional inequality has greatly evolved and has a 
lot of potential for monitoring human development. Considering what we have presented 

in this chapter we shall end with two final remarks.  

In the first place, while there seems to be an increasing consensus regarding the transfer 

properties (PBT has overcome controversies posed by UPD and UM), there is still debate 
over the association sensitive properties, which, in fact, reflects the discussion on whether 

dimensions of development are substitutes or complements.  

Second, the framework of multidimensional inequality measurement is a rigorous 

technical framework. Yet it is the actual selection of dimensions and indicators of relevant 

capabilities and functionings – something briefly discussed in the introduction, what can 

make it operational to the measurement of human development. Real world data 

frequently pose significant limitations that require careful assessment and assumptions. 
This is no trivial matter and while it exceeds the coverage of this chapter, it is worth 

reminding. In connection to this, the fact that many of the typical available variables are of 

ordinal nature, combined with the requirement of micro-data to consider the joint 

distribution in the measures, poses an additional challenge, requiring further research.  
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