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Abstract 

The microstructure of the interfacial transition zone (ITZ) surrounding the aggregate in a 
cementitious composite is quite different from that of the bulk matrix, because of its distinct 
physical nature including relatively high porosity and low rigidity. The thickness and volume 
fraction of the ITZ play a major role in determining the transport and mechanical behaviour of 
cementitious composites. However, the ITZ thickness may be overestimated when undertaking 
sectional plane analysis of these composites. Analysis of Platonic particles has previously 
shown that the sphericity of the particle is an important parameter in determining the 
overestimation of the ITZ thickness, but this raises the question of whether sphericity is 
sufficient to uniquely characterize the influence of aggregate shape. This paper investigates the 
influence of particle shape on overestimation of ITZ thickness for aggregate shapes which have 
the same sphericity values as Platonic particles; specifically, spheroids of differing geometries. 
A normal line sampling algorithm, which is designed to replicate the practical experimental 
process used in ITZ determination, is employed to obtain the apparent ITZ thickness. The 
influences of particle shape, sampling method and particle size distribution are investigated in 
terms of the overestimation of the ITZ volume fraction, and the effective diffusivity within 
three-phase composites, using the differential effective medium approximation. 
 
Keywords: ITZ thickness, spheroidal particle, Platonic particles, sphericity, diffusivity. 

 

1. Introduction 

The interfacial transition zone (ITZ) surrounding the aggregate particles is an important 
phase within a cementitious composite structure [1, 2]. This is because the ITZ is more porous 
than bulk cement paste. The formation and evolution of the ITZ are affected by many factors, 
including: wall effects which effectively repel solid grains from a solid surface, flocculation of 
cement grains, micro-bleeding giving a locally higher water/cement ratio, nucleation and 
precipitation of specific phases such as portlandite, one-sided growth, and gel syneresis [3, 4]. 
Thus, the ITZ is considered to be a ‘weak link’ when describing or predicting the macroscopic 
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performance of cementitious composites, such as mechanical and transport properties [5-16]. 
To better understand the influence of the ITZ microstructure on the macroscopic performance 
of the composite as a whole [17], it is necessary to quantify the thickness and volume fraction 
of the ITZ [18-20]. However, the actual ITZ thickness (here denoted t) is difficult to measure 
because the constituents of most composites are opaque. Normally, a backscattered electron 
(BSE) image of a polished cross-section through a concrete sample is used to obtain information 
about the microscopic morphology of concrete [21-24]. Then, successive strips based on a 
concentric expansion method near the aggregate are employed to examine the ITZ 
microstructure, as shown in Fig. 1(a). However, since an arbitrary cross-section rarely passes 
through the normal of the aggregate surface, such an approach yields an apparent ITZ thickness 
t' which is larger than the actual ITZ thickness t, as shown in Fig. 1(b). 

 

  
(a) Backscattered electron image of concrete [25] 

(b) Schematic of the apparent ITZ thickness t' and the 
actual ITZ thickness t for a spherical aggregate, (t' > t) 

Fig. 1. Measurement of ITZ thickness around aggregate in numerical simulation and image analysis 

 
Many researchers have worked to survey the degree of overestimation between the apparent 

and the actual ITZ thickness. Stroeven [26] proposed a formula to quantify the degree of 
overestimation of ITZ thickness around a circular aggregate particle. Chen et al. [27] derived 
analytical solutions for two-dimensional (2D) rectangular and elliptical aggregates, and Zhu 
and Chen [28] investigated the overestimation of ITZ thickness around regular polygonal and 
elliptical aggregate particles under the same circularity conditions. Chen et al. [29] developed 
a generalized analytical formula for the overestimation of the ITZ thickness around convex-
shaped grains, as given in Eq.(1).  
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where B and S respectively represent the mean Feret (caliper) diameter and the surface area of 
a particle. It is evident that only when a sampling plane crosses through the aggregate, can the 
analysis of ITZ thickness start to be conducted in practice, as shown in Fig. 1(a). In other words, 
if the section plane crosses the ITZ region but not the aggregate, it is not possible to be certain 
from a 2D section whether this porous paste region in fact belongs to the ITZ layer. So, such a 
region of uncertainty is called an invalid region. The ratio of the volume of the invalid region 
to the total volume of the ITZ region, as shown in Fig. 1(b), is then defined as the invalid 
coefficient kinvalid which appears in Eq.(1). 
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The invalid coefficient kinvalid corresponding to spherical particles has been studied [29]. 
However, it is much more difficult to determine the invalid coefficient for non-spherical 
particles. Recently, based on a process which is similar to the Minkowski sum in mathematical 
morphology [30, 31], Chen et al. [32] proposed a methodology to accurately construct the ITZ 
layers surrounding Platonic particles (i.e., tetrahedron, cube, octahedron, dodecahedron, 
icosahedron [33]). They further extended the calculation of the invalid coefficient from spheres 
to Platonic particles by using a systematic line sampling (SLS) algorithm, including both 
sampling planes and sampling lines. Taking an arbitrary sampling plane in Fig. 2(a) as an 
example, the normal of the sampling plane is determined based on its spatial orientation, defined 
by angles ( , )i j  , then the spacing ∆L3D between two adjacent sampling planes is used to 

control the density of the sampling planes. For a specified sampling plane, the sampling lines 
traversing the entire sampling plane in all orientations are defined by the scanning planar angle 
step Δα, and the spacing ∆L2D between two adjacent parallel sampling lines is used to control 
the density of the sampling lines.  

  
(a) SLS algorithm [32] (b) NLS algorithm [34] 

Fig. 2. Two sampling methods for Platonic particles 
 

Moreover, Fig. 2(a) shows that a series of parallel sampling lines are oriented in all potential 
directions in a given sampling plane, rather than only in the direction normal to the aggregate 
boundary. In conventional quantitative image analysis experiment as shown in Fig. 1(a), the 
profiles of strip delineation are always arranged parallel to the outer boundary of the aggregate 
in the given section plane, although the section plane itself could be of any orientation. The 
thickness of the ITZ layer can then be determined based on the distribution curve of a specified 
phase, or of porosity in cases where this rather than a difference in mineralogical phases is the 
defining characteristic of the ITZ [35], as a function of the distance along the normal of the 
aggregate boundary. So, the statistical average of the apparent ITZ thickness via the SLS 
algorithm is not consistent with the conventional experimental results, obtained e.g. by BSE 
image analysis, because the sampling line in the SLS algorithm is not perpendicular to the 
aggregate boundary. Therefore, Zhu et al. [34] further proposed a normal line sampling (NLS) 
algorithm (details can be seen in Section 3.1) to accurately evaluate the ITZ thickness along the 
normal of a Platonic aggregate boundary, as shown in Fig. 2(b). 

So far, the studies on the statistical relationship of apparent to actual ITZ thickness have only 
focused on Platonic and spherical aggregate particles; it is necessary to extend this study to 
other non-spherical particles, and even to concave particles, to represent actual aggregates such 
as those which have been reconstructed by a spherical harmonic function approach [36-38] in 
Fig. 3(a). According to the visualization of the ITZ layer around a concave polygon as shown 
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in Fig. 3(b), the outer profile of the ITZ layer around concave particle is even more complex 
than that around a convex particle in Fig. 3(c). Therefore, we still restrict our study here to the 
convex particle system. 

   
(a) A star-shaped particle (b) ITZ layer around a concave polygon 

(c) ITZ layer around a convex 
polygon (regular triangle [28]) 

Fig. 3. Schematic of a concave particle (star-shaped) and the ITZ layer around arbitrary polygons 
 
It was determined in our previous study for Platonic particles [32, 34] that the sphericity of 

the particle, which is a shape descriptor for the particle itself, is important in determining the 
value of t'/t at a given ratio of actual ITZ thickness to equivalent particle diameter t/Deq (where 
Deq is the diameter of a sphere with the same volume as a given particle). Specifically, the 
results showed that the values of t'/t decrease with increasing sphericity for both sampling 
methods. This raises the question of whether sphericity is a sufficient and unique parameter 
which can characterize the influence of aggregate shape on t'/t at a given value of t/Deq. 
Spheroidal particles offer the easiest example to investigate this, because the sphericities of 
both oblate and prolate ellipsoids can be specified to be exactly equal to that of a particular 
Platonic particle by adjusting their aspect ratios. In addition, we can obtain a spheroid with 
arbitrary sphericity by changing aspect ratios, and spheroids can represent a wide range of 
shapes from very platy to elongated [39], which is more flexible than Platonic particles. 
Recently, Zhu and Chen [40] also employed the SLS algorithm to obtain kinvalid for spheroidal 
particles, and examined the influence of particle shape on the overestimation of the ITZ 
thickness around spheroidal particles which have the same sphericity as Platonic particles. 

Therefore, this paper intends to investigate the influence of the particle shape for spheroidal 
and Platonic particles with matching sphericity, and to evaluate the differences between the two 
sampling methods (NLS and SLS) for spheroidal particles. For this purpose, the NLS algorithm, 
which is much closer to the practical experimental process, is adopted for spheroidal particles 
to obtain the apparent ITZ thickness. Furthermore, for polydisperse packed particles, the 
influences of particle shape, particle size distribution (PSD) and sampling method on the degree 
of overestimation of the statistical average of the ITZ thickness, ITZ volume fraction and 
effective diffusivity (based on differential effective medium approximation) within the 
composite are investigated. 

2. ITZ layer around ellipsoidal particles  

The equation of a tri-axial ellipsoid (denoted as E) centered at the origin with semi-axes a, 
b and c aligned along the coordinate axes, is expressed in Eq.(2). 

 
2 2 2

2 2 2
: 1

x y z
E

a b c
     (2) 

https://doi.org/10.1016/j.powtec.2017.12.008


This is a preprint of a paper published in Powder Technology. The version of record can be found at 

https://doi.org/10.1016/j.powtec.2017.12.008  

5 
 

An ellipsoid of revolution (spheroid) has a pair of equal semi-axes (a=b) and a distinct third 
semi-axis (c) which is an axis of symmetry. The ellipsoid is prolate or oblate when c is 
respectively greater than or smaller than a. The aspect ratio of a spheroid, usually denoted κ, is 
defined as κ = c/a. The relationship between κ and equivalent spherical diameter Deq of the 
spheroid is given in Eq.(3). 

 
2/3 1/3 2 2eq aD c     (3) 

Because a real ITZ will have significant heterogeneity when defined and measured 
experimentally, the structure of the ITZ is not strictly a uniform shell of constant thickness. 
However, at present, it is very difficult to study ITZ layers with non-uniform thickness. So, for 
the purposes of this work, we assume that the ITZ layer is a uniform shell of constant thickness 
around an aggregate particle. In our previous study, we have proposed a methodology to 
construct an ITZ layer with uniform thickness around an ellipsoid [40]. The construction 
process is determined by a vector of constant length drawn from any point of the particle surface 
in the direction of the surface exterior normal, which is similar to the Minkowski sum in 
mathematical morphology [30, 31]. This study mainly considers the ITZ layer around oblate 
and prolate ellipsoids which have the same sphericities as the five different Platonic particles 
[32]. The sphericity (s; 0 < s  1) of a particle is defined as the ratio of the surface area of a 
sphere to that of a given particle with the same volume [32, 41]. The aspect ratios of these 
spheroidal particles with semi-axes a : b : c = 1 : 1 : κ are given in Table 1. The volume of a tri-
axial ellipsoid is V=4abc/3, and the corresponding surface area S is given in Eq.(4) [42]. 

 

2 2

2 2

1
2 ( / ) , Oblate ( )

1

2 2 ( / ) arcsin( / ), Prolate ( )

a c ln c a
S

a c a c c a

  


   

   
  

  (4) 

where 2|1 ( / ) |c a   . 

 
Table 1 Geometry of spheroidal particles with the same sphericity values as the Platonic particles 

Polyhedron Sphericity, s Oblate ellipsoid (a:b:c) Prolate ellipsoid (a:b:c) 

Tetrahedron 0.671 1 : 1 : 0.229 1 : 1 : 6.625 

Cube (Hexahedron) 0.806 1 : 1 : 0.344 1 : 1 : 3.593 

Octahedron 0.846 1 : 1 : 0.391 1 : 1 : 3.007 

Dodecahedron 0.910 1 : 1 : 0.495 1 : 1 : 2.204 

Icosahedron 0.939 1 : 1 : 0.562 1 : 1 : 1.884 

 

3. Sectional plane analysis  

Sectional plane analysis has commonly been used to study ITZ microstructure because 
image analysis techniques applied to 2D sections provide a method to obtain structural 
information for composites. Similarly, a sectional plane analysis algorithm [36] is employed in 
computer simulations to obtain the morphology of the ellipsoidal particle surrounded by an ITZ 
layer. Actually, the cross-section of a spheroidal particle can be either a circle (for sampling 
planes parallel to an equator, i.e., perpendicular to the symmetry axis) or an ellipse (otherwise). 
The elliptical cross-section can be characterized by its minor and major principal semi-axes [43] 
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which are denoted as m and M, respectively, as shown in Fig. 4. The equation of the elliptical 
cross-section is given in Eq.(5). 

 

2 2
2 0

2 2
0
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1 sin
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

 
  



    

   (5) 

where p is the distance from the center of the spheroid to the cross-section measured normal to 
the cross-section plane, and  [0, /2] is the angle between the symmetry axis of the spheroid 
and the normal of the sampling plane. The eccentricity e0 of the spheroid is described by its 
minor and major semi-axes, as given in Eq.(6). 
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，

，
  (6) 

The eccentricity e (0  e <1) of the elliptical cross-section is defined by e2 = 1 – m2/M2. The 
relationship between e and e0 is given in Eq.(7). 
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  (7) 

 
Fig. 4. Schematic of the elliptical cross-section for a prolate ellipsoid 

 
In this section, for a given sampling plane, the apparent ITZ thickness along the normal line 

at the aggregate boundary will be described in detail. Then, the line sampling rule of the NLS 
algorithm is established for spheroidal particles, and applied to obtain the apparent ITZ 
thickness around a single particle. 

3.1. NLS algorithm 

Having obtained the morphologies of the ITZ and aggregate on a cross-section for a 
spheroidal particle, a method similar to the practical image analysis technique as shown in Fig. 
1(a) is needed to measure the apparent ITZ thickness. Therefore, the normal line sampling (NLS) 
algorithm previously presented for Platonic particles [34] is adopted. Since the ITZ region exists 
in the vicinity of the aggregate, only those sampling planes crossing through both the aggregate 
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and ITZ regions are considered. In three-dimensional (3D) space, an arbitrary sampling plane 
can be defined by two components, i.e., a normal vector and a point location. As shown in Fig. 
5(a), a normal vector nij of the (i, j)th sampling plane is given by ( sin( )cos( )i j  , 

sin( )sin( )i j  , cos( )i ) based on its spatial angle )( ,i j  , where 0  ,i j    π, for 1  i  

N  and 1  j  N . Here, N  is the total number of uniformly divided polar angle 

increments measured from the zenith direction (z-axis), and N  is the total number of 

uniformly divided azimuthal angle increments measured from the azimuth reference direction 
(x-axis) to the orthogonal projection of the normal vector on the reference plane xoy. For the 
sake of simplification, we specify N N   in this paper. The point location is used to fix the 

position of the sampling plane in 3D space, and is chosen as a division point of a projected 
segment [36] of the aggregate particle onto the normal of the sampling plane. Fig. 5(b) shows 
a schematic view of a projected segment PQ of an ellipsoidal particle onto the normal vector 
nij, and the projected segment is divided into |PQ|/∆L3D (rounded to the nearest integer) 
increments based on the spacing ∆L3D between two adjacent sampling planes. 

 

  
(a) Sampling planes and sampling lines in the NLS 

algorithm 
(b) Projected segment PQ of an ellipsoidal particle 

on the normal vector nij [40] 
Fig. 5. Schematic of the normal line sampling algorithm for an ellipsoidal particle 

 

For a given sampling plane crossing through the spheroidal aggregate, as shown in Fig. 5(a), 
we can find the boundaries of the aggregate particle and its corresponding ITZ layer, 
respectively. The apparent ITZ thickness along the exterior normal vector of the boundary of 
the aggregate can be obtained using the NLS algorithm. To ensure that the sampling lines are 
uniformly distributed, a set of sampling lines which are perpendicular to the boundary of the 
aggregate, and the spacing ∆L2D between two adjacent sampling lines, need to be determined. 
To this end, ∆L2D is defined specifically as the distance between the intersection points of two 
adjacent sampling lines with the boundary of the aggregate. In this study, for the sake of 
simplification, we set ∆L2D = ∆L3D. A sampling line perpendicular to the boundary of the 
aggregate and intersecting with the boundary of the ITZ layer returns a line segment MN as 
shown in Fig. 5(a). The length of the line segment MN is the apparent ITZ thickness, i.e., t '  

= |MN|.  
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From this description of the NLS algorithm, the statistical average apparent ITZ thickness 
for a spherical particle (as a special case of the more general relationships for spheroids) can be 
analytically derived, Eq.(8). 

 

 2 2 2 2
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1 1 1
1 1 1 arcsin

2 2 1 / 4
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t ' R t h R h dh
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t t
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
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                    


  (8) 

where R is the radius of the spherical particle, and h is the height from the center of the sphere 
to the sampling plane, as shown in Fig. 1(b). 

Taking an ellipsoidal particle with ITZ thickness t as an example, as shown in Fig. 6, a 
sampling line which is parallel to the minor principal axis and crosses through the center of the 
ellipsoid is used to verify the reliability of the NLS algorithm. The numerical values of the 
apparent ITZ thickness are: |AB| = 1.0000t and |CD| = 1.0000t. Theoretically, the lengths of AB 
and CD should be equal to t. This indicates that the numerical values are consistent with their 
corresponding theoretical values. Therefore, the NLS algorithm is reliable and accurate. 

 
Fig. 6. Verification of the ITZ thickness for a specified sampling line 

 

3.2. Line sampling rule of the NLS algorithm for spheroidal particles 

The key issue to guarantee a reliable statistical analysis of the apparent ITZ thickness is to 
determine how many sampling lines are appropriate for spheroidal particles. According to the 
above description of the algorithm, four parameters may affect the result of the apparent ITZ 
thickness: ,N N  , ∆L3D and ∆L2D. Based on the specification, as described above, of 

N N   and ∆L3D = ∆L2D, the strategy to determine the line sampling rule becomes to observe 

when the curves of /t ' t  become stable with respect to an increase in the number of sampling 

lines. In other words, we need to address: (a) determination of the spacing ∆L3D when Nθ is 
specified, and (b) determination of the value of Nθ when the spacing ∆L3D is fixed. 

Firstly, using t/Deq = 0.01 and N N  = 10, the influence of ΔL3D/Deq on the ratio of the 

apparent to the actual ITZ thickness /t ' t  is investigated. Fig. 7(a) shows that the curves of 
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/t ' t  become stable with decreasing ΔL3D/Deq; when ΔL3D/Deq is less than 0.005, there is no 

further change in /t ' t . So, the spacing ∆L3D = ∆L2D = 0.005Deq is selected as the line sampling 

rule for the NLS algorithm to give an accurate value of /t ' t . 

Secondly, we need to determine how many spatial angle increments are needed for spheroidal 
particles under the given conditions: t/Deq = 0.01 and ∆L3D = ∆L2D = 0.005Deq. It can be seen 

from Fig. 7(b) that the values of /t ' t  for oblate ellipsoids increase with an increase in Nθ, 

while /t ' t  for prolate ellipsoids decreases with increasing Nθ. The curves of /t ' t  become 

stable when Nθ  20, so that accurate values of /t ' t  can be obtained when N N  = 20. 

Fig. 7. Determination of the spacing ∆L3D and the number of spatial directions Nθ 

 
Consequently, the line sampling rule of the NLS algorithm N N  = 20, ∆L3D = ∆L2D = 

0.005Deq may be adopted. To further confirm the reliability of this rule, the influence of the 
total number of sampling lines on both probability density curves and cumulative probability 

curves of /t ' t  is considered in Appendix A. 

 

3.3. Application of the NLS algorithm to a single spheroidal particle 

Based on the line sampling rule described above, the influence on the overestimation of the 
ITZ thickness of the ratio of the actual ITZ thickness to the particle size t/Deq will be considered 
in this section. To achieve this, we analyze three types of particle shapes with the same 
sphericity (Platonic; oblate and prolate ellipsoids) and two sampling methods (SLS [40] and 

NLS). Fig. 8(a) indicates that increasing t/Deq results in a lower value of /t ' t  for both oblate 

and prolate ellipsoids. In addition, /t ' t  in Fig. 8(a) decreases with increasing sphericity for 

oblate ellipsoidal particles, but increases for prolate ellipsoidal particles. Compared with the 
spherical particle (sphericity s = 1), the ranking of the degree of overestimation of the ITZ 

thickness is: oblate ellipsoid > sphere > prolate ellipsoid. Most importantly, the curves of /t ' t  

tend toward the curve of /t ' t  for a spherical particle (s = 1), Eq.(8), for both oblate and 

prolate ellipsoids with increasing sphericity. However, for the same sphericity, the three kinds 

  
(a) The spacing ∆L3D (b) The number of spatial directions Nθ (= N ) 
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of particle shapes (i.e. oblate ellipsoid, prolate ellipsoid and Platonic particle) have different 

impacts on /t ' t , as shown in Fig. 8(b-f). Thus, the sphericity of a particle is an important 

parameter to quantitatively characterize the effect of particle shape on the values of /t ' t , but 

it is not a unique one, nor is it sufficient to define this relationship. The degree of overestimation 

of /t ' t  is greater for oblate ellipsoids than for prolate ellipsoids, although the gap between 

oblate and prolate ellipsoids decreases with increasing sphericity. No clear trend exists between 
Platonic and spheroidal particles under the same sphericity conditions. 

 

  
(a) Spheroidal and spherical particles (note 

logarithmic horizontal coordinate) 
(b) Sphericity, s = 0.671 

  
(c) Sphericity, s = 0.806 (d) Sphericity, s = 0.846 
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(e) Sphericity, s = 0.910 (f) Sphericity, s = 0.939 

Fig. 8. Effect of particle shape on the overestimation of the ITZ thickness 

 
Results obtained using the SLS algorithm [40] for spheroidal particles were also collected to 

analyze the differences between the two sampling methods. Fig. 9 shows that the degree of 
overestimation of the ITZ thickness in the NLS algorithm is less than that in the SLS algorithm 
for both oblate and prolate ellipsoids. 

 

 
Fig. 9. Effect of sampling method for spheroidal particles on the overestimation of the ITZ thickness 

 
Researchers may also be interested to calculate the difference between the influence of 

spheroidal and spherical particles on the degree of overestimation of the ITZ thickness; this is 
discussed in Appendix B. 

 

4. Influence of particle size distribution on overestimation of the ITZ thickness 

To extend these results to real concretes, assemblages of aggregate particles with various 
sizes must be investigated, as the aggregate in concrete is a polydisperse particle packing system. 
Thus, we must determine the effect of particle size distribution on a statistical average apparent 
ITZ thickness. The Fuller distribution function, Eq.(9), is commonly used to characterize the 
aggregate size distribution in concrete, and is used here as the basis of the discussion, but the 
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methodology presented in this paper may also be extended to other PSD functions such as the 
equivalent volume function [44, 45] or discrete sieve curves. It is noted that inter-particle 
interactions (including potential intersections between neighbouring ITZ regions) are excluded 
from this analysis. 

 ( )
eq eq_min

V eq

eq_max eq_min

D D
F D

D D





  (9) 

where FV(Deq) is the volume-based cumulative probability function; and Deq_min and Deq_max 
respectively represent the minimum and maximum equivalent spherical diameter of particles. 

The number-based probability density function fN(Deq) given in Eq.(10) can be derived from 
Eq.(9) to generate the number of aggregate particles with different sizes [32]. 

 7/2 5/2 5/2

5
( )

2 ( )
N eq

eq eq_min eq_max

f D
D D D

 


  (10) 

The statistical average of the apparent ITZ thickness 𝑡𝑁⊥′  for a polydisperse aggregate 
system with a Fuller distribution thus can be expressed as: 

 ( )
eq_max

eq_min

D

N N eq eq
D

t ' t ' f D dD


    (11) 

It is clear from Eq.(11) that the degree of overestimation of 𝑡𝑁⊥′ is affected by the aggregate 
particle shape and PSD, and we also want to know the influence of sampling method on the 
ratio of 𝑡𝑁⊥′/𝑡. Firstly, the effect of particle shape on 𝑡𝑁⊥′/𝑡 is examined in Fig. 10(a) for a 
given PSD following the Fuller 0.25-10 mm distribution (Deq_min = 0.25 mm and Deq_max = 10 
mm). Normally, the actual ITZ thickness is in the range 20  50 µm [25]. It can be seen from 
Fig. 10(a) that the curves of 𝑡𝑁⊥′/𝑡 decrease with increasing actual ITZ thickness. The values 
of 𝑡𝑁⊥′/𝑡  at the same actual ITZ thickness decrease with increasing sphericity for oblate 
ellipsoidal particles, but increase for prolate ellipsoidal particles. Compared with the spherical 
particle (sphericity s = 1), the degree of overestimation of the statistical average ITZ thickness 
is consistent with the single-particle case: oblate ellipsoid > sphere > prolate ellipsoid. The 
asymptotic line is still the curve of 𝑡𝑁⊥′/𝑡 for spherical particles. However, under the same 
sphericity conditions, the values of 𝑡𝑁⊥′/𝑡  for oblate ellipsoids are larger than for prolate 
ellipsoids. 

Secondly, taking three types of particle shapes with the same sphericity s = 0.671 as an 
example, i.e., oblate κ = 0.229, prolate κ = 6.625 and the tetrahedron, Fig. 10(b) shows that the 
order of the degree of overestimation of 𝑡𝑁⊥′/𝑡 is: oblate ellipsoid > tetrahedron > prolate 
ellipsoid. 

Thirdly, when we consider the difference between two sampling methods, Fig. 10(c) shows 
that the degree of overestimation of the statistical average ITZ thickness in the NLS algorithm 
is less than that in the SLS algorithm for both oblate and prolate ellipsoids. 

Lastly, the influence of PSD on the overestimation of ITZ thickness needs to be discussed. 
Five kinds of PSD functions are chosen as given in the literature [32], i.e., Fuller 0.125-10, 
Fuller 0.25-10, Fuller 0.50-10, Fuller 0.25-20 and Fuller 0.25-40 as shown in Fig. 10(d). It can 
be found from the oblate κ = 0.229 ellipsoidal aggregate system that the three curves of 𝑡𝑁⊥′/𝑡 

with Deq_min = 0.25 seem to overlap. The reason is that these three aggregate systems possess 
similar statistical average specific surface area SV [32], Eq.(12). 
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V N eq eq
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where s is the sphericity of particle. 

  
(a) Effect of spheroidal particle shape on 𝑡𝑁⊥′ using 

the NLS algorithm 
(b) Three types of particle shapes with the same 

sphericity, s = 0.671 

  
(c) Effect of spheroidal particle shape on tN' using the 

SLS algorithm [40] 
(d) Effect of PSD for oblate ellipsoids with κ = 0.229 

(sphericity s = 0.671) 
Fig. 10. Influences of particle shape and PSD on 𝑡𝑁⊥′/𝑡  

 

Moreover, the value SV as shown in the legend of Fig. 10(d) increases with increasing 
fineness of the aggregate, and the degree of overestimation of 𝑡𝑁⊥′/𝑡 reduces with an increase 
in both the actual ITZ thickness and fineness of the aggregate. 

5. ITZ volume fraction overestimation 

Using the values of 𝑡𝑁⊥′ obtained from the NLS algorithm, it is possible to exactly assess 
the degree of overestimation of the ITZ volume fraction induced by the sectional analysis, as it 
is important to assess both the thickness and the volume fraction of the ITZ when predicting 

the transport properties of concretes. The actual ITZ volume fraction ITZ  and the calculated 

ITZ volume fraction 𝜙𝐼𝑇𝑍 ⊥ ′ can be respectively determined from t (actual ITZ thickness) and 𝑡𝑁⊥′ according to a modified Garboczi-Bentz formula [5, 32] (denoted as the ‘Chen model’), 
Eq.(13). 

 1 ( )ITZ agg Ve t      (13) 

where agg  and 𝑒𝑉(𝑡) are the volume fractions of aggregate, and of the cement paste matrix 

outside all aggregates and ITZs in the concrete, respectively. 
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where  2
2/eq eqB s D D  ,    2 3

eq eq eqS D D s D   , and s is the sphericity of particle, A is a 

constant depending on the theoretical approximation in the nearest-surface distribution 
functions [46-49]; values of A = 0, 2 and 3 correspond to the Percus-Yevick approximation, 
Carnahan-Starling approximation and Scaled-Particle approximation, respectively, and A = 0 is 

considered to be always the best choice to use for spherical aggregates [5]. n

eqD  is the nth-order 

central moment as expressed in Eq.(16). 

  _ max

_ min

eq

eq

D
n n

eq eq N eq eq
D

D D f D dD    (16) 

Recently, Xu et al. [41, 50, 51] reported the ITZ volume fraction around polydisperse 
ellipsoidal particles, denoted the ‘Xu model’. The actual ITZ volume fraction can be obtained 
according to these two models, and the results are shown in Fig. 11. It is noted that there is 
almost no difference between two models. Thus, Chen model is chosen in this paper to calculate 
the ITZ volume fraction. 

 
Fig. 11. Comparison of the actual ITZ volume fraction between the Chen model and the Xu model 

 
In this section, the influences of the particle shape, PSD and sampling method on the values 

of 𝜙𝐼𝑇𝑍 ⊥ ′/𝜙𝐼𝑇𝑍 are discussed. It can be seen from Fig. 12(a) that the degree of overestimation of 
ITZ volume fraction decreases with increasing aggregate volume fraction under the conditions: 
A = 0, t = 20 µm and Fuller 0.125-10. As was the case for the thickness, the values of 𝜙𝐼𝑇𝑍 ⊥ ′/𝜙𝐼𝑇𝑍 
decrease with increasing sphericity for oblate ellipsoidal particles when agg  ≤ 0.76, but 

increase for prolate ellipsoidal particles. 
Taking three types of particle shapes with the same sphericity s = 0.671 as an example, i.e., 

oblate κ = 0.229, prolate κ = 6.625 and tetrahedron. Fig. 12(b) shows that the order of the degree 
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of overestimation of 𝜙𝐼𝑇𝑍 ⊥ ′/𝜙𝐼𝑇𝑍 is again: oblate ellipsoid > tetrahedron > prolate ellipsoid. Fig. 
12(c) also shows the difference between two sampling methods, in that the degree of 
overestimation of the ITZ volume fraction in the NLS algorithm is less than that in the SLS 
algorithm for both oblate and prolate ellipsoids. 

Three PSD functions (i.e., Fuller 0.125-10, Fuller 0.25-10 and Fuller 0.50-10 mm) are 
selected to investigate the influence of PSD on the overestimation of ITZ volume fraction for 
oblate and prolate ellipsoids with the same sphericity. Fig. 12(d) shows that the values of 𝜙𝐼𝑇𝑍 ⊥ ′/𝜙𝐼𝑇𝑍 reduce with increasing aggregate fineness and aggregate volume fraction for both 
oblate and prolate ellipsoids. In addition, the degree of overestimation of the ITZ volume 
fraction for oblate ellipsoids is larger than that for prolate ellipsoids for a specified PSD function. 

  
(a) Effect of spheroidal particle shape by using the 

NLS algorithm 
(b) Three types of particle shapes with the same 

sphericity, s = 0.671 

  
(c) Effect of spheroidal particle shape, ITZ

'  is the 

ITZ volume fraction which is determined by the SLS 
algorithm [40] 

(d) Effect of PSD for spheroidal ellipsoids, sphericity 
s = 0.671 

Fig. 12. Effects of particle shape and PSD on the overestimation of ITZ volume fraction 

 

6. Diffusivity overestimation 

A variety of theoretical models have been employed to investigate the influence of the ITZ 
on the macroscopic properties of cementitious composites, such as differential effective 
medium (DEM) method [46, 52, 53]. In the DEM approximation, the inclusions are 
discontinuous, and the matrix is considered to be continuous. This represents the general 
situation for concrete, which has discontinuous aggregates surrounded by ITZ regions, 
embedded in a continuous paste matrix [54-56]. The DEM analytical approximation as given 
in Eq.(17) is widely used [53, 57, 58], and reveals good agreement with experimental results 
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[53, 59], so is adopted in this paper to calculate the diffusivity of a mobile species within the 
composite. 

 

1
3

1
cp con e

agg ITZ

con cp e

D D D

D D D
 

   
         

  (17) 

where Dcon, Dcp and DITZ are the diffusivities within concrete, cement paste matrix and the ITZ, 

respectively, 2 / (3 2 )e aggITZ ITZ ITZD D    , and agg  and ITZ  are the volume fractions 

of aggregate and ITZ, respectively. 
The diffusivity within the concrete, as calculated from the actual ITZ thickness t and the 

statistical average of the apparent ITZ thickness 𝑡𝑁⊥′ , are expressed as Dcon and 𝐷𝑐𝑜𝑛 ⊥ ′ , 
respectively. In this section, the influences of the DITZ/Dcp, particle shape, PSD and sampling 
method on the degree of overestimation of the diffusivity is analysed. Normally, the diffusivity 
of the ITZ is taken as an integer multiple of the diffusivity of cement paste. For instance, ratios 
DITZ/Dcp = 3, 5 or 7, for oblate spheroids at κ = 0.229, are used here to evaluate the degree of 
overestimation of the diffusivity under the conditions of A = 0, actual ITZ thickness t = 20 µm, 
Fuller 0.125-10 mm grading. The results are shown in Fig. 13 ; the overestimation of diffusivity 
increases with increasing DITZ/Dcp at a given aggregate volume fraction. 

 
Fig. 13. Effect of DITZ/Dcp on the overestimation of diffusivity within concrete 

 
Taking DITZ/Dcp = 5 [32] as an example, the results are shown in Fig. 14 under the conditions: 

A = 0, t = 20 µm, Fuller 0.125-10 mm. Fig. 14(a) shows that the values of 𝐷𝑐𝑜𝑛 ⊥ ′/𝐷𝑐𝑜𝑛 increase 
at first, but subsequently drop down, with an increase in aggregate volume fraction. The values 
of 𝐷𝑐𝑜𝑛 ⊥ ′/𝐷𝑐𝑜𝑛 decrease with increasing sphericity for oblate ellipsoids, but increase for prolate 
ellipsoids. Compared with the spherical particle (sphericity s = 1), the order of the degree of 
overestimation of concrete diffusivity is: oblate ellipsoid > sphere > prolate ellipsoid. However, 
taking three types of particle shapes with the same sphericity s = 0.671 as an example, i.e., 
oblate κ = 0.229, prolate κ = 6.625 and tetrahedron, Fig. 14(b) shows that the order of the degree 
of overestimation of 𝐷𝑐𝑜𝑛 ⊥ ′/𝐷𝑐𝑜𝑛 is: oblate ellipsoid > tetrahedron > prolate ellipsoid. Fig. 14(c) 
shows the difference between the two sampling methods; the degree of overestimation of the 
diffusivity calculated using the NLS algorithm is less than that in the SLS algorithm for both 
oblate and prolate ellipsoids. 
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Fig. 14. Effects of particle shape and PSD on the overestimation of diffusivity within concrete 
 

Lastly, taking oblate ellipsoids with κ =0.229 as an example, three PSD functions (Fuller 
0.125-10, Fuller 0.25-10 and Fuller 0.50-10 mm), we consider the effect of PSD on the values 
of 𝐷𝑐𝑜𝑛 ⊥ ′/𝐷𝑐𝑜𝑛 , as shown in Fig. 14(d). This calculation indicates that the degree of 
overestimation of 𝐷𝑐𝑜𝑛 ⊥ ′/𝐷𝑐𝑜𝑛 increases with increasing aggregate fineness when agg  is in 

the range 0.40  0.60. Conversely, the values of 𝐷𝑐𝑜𝑛 ⊥ ′/𝐷𝑐𝑜𝑛 reduce with increasing aggregate 
fineness when agg  > 0.72. 

7. Conclusions 

An interfacial transition zone (ITZ) layer model around an ellipsoidal particle, along with 
the normal line sampling (NLS) algorithm, have been employed in this paper to investigate the 
influence of the particle shape on the overestimation of the ITZ thickness by statistical sampling 
methods. A line sampling rule with N N   = 20, ∆L3D = ∆L2D = 0.005Deq was determined 

to be appropriate for application of the NLS algorithm to spheroidal particles. The ratio of the 

apparent to the actual ITZ thickness /t ' t  is used to characterize the degree of overestimation 

  
(a) Effect of spheroidal particle shape by using the 

NLS algorithm 
(b) Three types of particle shapes with the same 

sphericity, s = 0.671 

  
(c) Effect of spheroidal particle shape, Dcon' is the 
diffusivity determined by the SLS algorithm [40] 

(d) Effect of PSD for oblate κ = 0.229 (sphericity s = 
0.671) 
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of the ITZ thickness; this is significantly influenced by the particle shape. The values of /t ' t  

decrease with increasing sphericity for oblate ellipsoidal particles, but increase for prolate 
ellipsoidal particles. Compared with a spherical particle (sphericity s = 1), the degree of 
overestimation of the ITZ thickness is: oblate ellipsoid > sphere > prolate ellipsoid, and 
increasing with decreased sphericity for each of the types of ellipsoid. The degree of 
overestimation of the ITZ thickness for oblate ellipsoids is up to 9.3% greater than for spherical 
particles, but lower by as much as up to 6.6% for prolate ellipsoids than for spherical particles. 
However, no clear trend exists between Platonic and spheroidal particles of the same sphericity. 
The NLS algorithm resembles the experimental process for determining the ITZ thickness, and 
yields a lower degree of ITZ thickness overestimation than does the systematic line sampling 
(SLS) algorithm for spheroidal ellipsoids. For a polydisperse aggregate system, the value of 𝑡𝑁⊥′/𝑡  is governed by the sphericity of the particles, the particle size distribution of the 
aggregate, and the actual ITZ thickness. Finally, the degree of overestimation of ITZ volume 
fraction 𝜙𝐼𝑇𝑍 ⊥ ′/𝜙𝐼𝑇𝑍 and of diffusivity within concrete 𝐷𝑐𝑜𝑛 ⊥ ′/𝐷𝑐𝑜𝑛 resulting from the sampling 
of the ITZ are evaluated. The results indicate that the values of 𝜙𝐼𝑇𝑍 ⊥ ′/𝜙𝐼𝑇𝑍  reduce when 
increasing both aggregate volume fraction and fineness of aggregate. The degree of 
overestimation of diffusivity is governed by aggregate volume fraction, fineness of aggregate 
and particle shape. 

This work highlights that aggregate shape has a significant effect on the apparent ITZ 
thickness, ITZ volume fraction, and further on the macroscopic transport properties of 
cementitious composites. Dehghanpoor Abyaneh et al. [60] also pointed out that the shape and 
orientation of aggregate particles have a significant effect on diffusivity ; such effects remain 
to be captured by models of the type presented here. The sphericity of a particle is an important 
parameter to quantitatively generalize the effect of particle shape, but it is not a unique one, nor 
is it sufficient to fully define the governing relationship. It is therefore important to consider 
particle shape parameters that will enable us to obtain an analytical formula for the influence 
of particle shape on the degree of overestimation of the ITZ thickness in the future. 
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Appendix A. Supplementary data for the NLS algorithm 

Taking two spheroidal particles with the same sphericity (i.e., oblate ellipsoid with κ = 0.229 
and prolate ellipsoid with κ = 6.625) as an example, the total number of sampling lines is about 
105, 106, 107 and 108 when Nθ is 3, 5, 10 and 20, respectively. Both probability density curves 

and cumulative probability curves of /t ' t  are shown in Figure A-1(a), which reveals that the 
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curves become smoother with an increase of the total number of sampling lines. When the total 
number of sampling lines reaches 108, the curves of probability density and cumulative 
probability are smooth enough to represent their actual distribution. So, a total number of 
sampling lines of 108 is further used to study the influence of particle shape on the probability 

distribution curves of /t ' t . Figure A-1(b) shows that if the total number of sampling lines 

reaches 108, no significant difference in the overall curves of /t ' t  occurs among oblate and 

prolate ellipsoids with different sphericities as given in Table 1. However, a slight discrepancy 

can still be found in the zoomed-in inset region at smaller values of /t ' t . Therefore, the line 

sampling rule of the NLS algorithm ( N N   = 20, ∆L3D = ∆L2D = 0.005Deq) is acceptable, 

and is employed in this study. 

Figure A-1. Probability density and cumulative probability distributions of /t ' t  

 
 

Appendix B. Comparison of effect of particle shapes on /t ' t  

The relative degrees of error between non-spherical and spherical particles in terms of the 
degree of overestimation of the ITZ thickness can be calculated from Fig. 8(a) according to 
Eq.(18). 

 
( / ) ( / )

Relative error of / 100%
( / )

object sphere

sphere

t ' t t ' t
t ' t

t ' t

 





    (18) 

where object = oblate ellipsoid, prolate ellipsoid, and five kinds of Platonic particles, 
respectively. 

Relative errors in /t ' t  between spheroidal and spherical particles increase with 

decreasing sphericity, as shown in Figure B-1(a). The ITZ thickness for oblate ellipsoids is 
overestimated by up to 9.3% more than for spherical particles, while the estimation degree of 
the ITZ thickness for prolate ellipsoids is overestimated by up to 6.6% less. Similarly, the 

relative errors of /t ' t  between Platonic [34] and spherical particles are shown in Figure B-

  
(a) Statistical distribution of /t ' t  for spheroidal 

particle at different total numbers of sampling lines 

(b) Oblate and prolate ellipsoidal particles at 108 
sampling lines 
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1(b). The relative errors of /t ' t  increase with decreasing sphericity, and the ITZ thickness 

for Platonic particles may be overestimated by up to 5.4% more or by up to 16.8% less than for 
spherical particles, depending on t/Deq. 

  
(a) Oblate and prolate ellipsoids (b) Platonic particles 

Figure B-1. Relative error of the overestimation of the ITZ thickness based on the NLS algorithm 
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