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Abstract— Loss of joints and severed sensory pathway 
cause reduced mobility capabilities in lower limb amputees. 
Although prosthetic devices attempt to restore normal 
mobility functions, lack of awareness and control of limb 
placement increase the risk of falling and causing amputee to 
have high level of visual dependency. Haptic feedback can 
serve as a cue for gait events during ambulation thus 
providing sense of awareness of the limb position. This paper 
presents a wireless wearable skin stretch haptic device to be 
fitted around the thigh region. The movement profile of the 
device was characterized and a preliminary work with able-
bodied participants and an above-knee amputee to assess the 
ability of users to perceive the delivered stimuli during static 
and dynamic mode is reported. Perceptibility was found to be 
increasing with stretch magnitude. It was observed that a 
higher magnitude of stretch was needed for the stimuli to be 
accurately perceived during walking in comparison to static 
standing, most likely due to the intense movement of the 
muscle and increased motor skills demand during walking 
activity. 

I. INTRODUCTION 

Lower limb amputation (LLA) has significant effects on 
a person’s quality of life and ability to perform activities of 
daily living. Caused mostly by vascular disease such as 
diabetes, LLA are becoming a major concern in the 
healthcare community. In England alone for example, 
hospital inpatient data showed that 5489 episodes of LLA’s 
were carried out in 2009/10 [1]. Prescription of prosthetic 
device post amputation is intended to help restore some 
degrees of mobility function, however studies have shown 
evidence of low balance confidence and higher risk of 
falling among amputee community, especially those 
suffering from above knee amputation [2] - [3]. The lack of 
response to external perturbation can be attributed to loss of 
sensorimotor post amputation [4], which reduces limb 
control during mobility. While powered prosthesis offers 
better control of prosthetic device, they often lack a form of 
feedback which creates awareness of the limb position to 
the user while walking. Haptic feedback has been suggested 
as a measure to recreate the ‘sensory pathway’ which was 
severed due to amputation. The use of haptic feedback in 

upper limb powered prostheses, which have been studied 
earlier and more extensively, has showed possibility of 
improving its functional capability, while carrying out task 
such as holding and grasping [5] - [6]. While lower limb 
functionalities such as weight bearing and locomotion are 
biologically different compared to upper limb, equivalent 
effect from haptic feedback in improving locomotion can be 
expected.  Prior studies of haptic feedback intended for 
lower limb amputees include use of pneumatic balloon [7] 
and vibration [8] - [9] to exert feedback on the skin in 
response to gait events identified using force sensors worn 
at foot.  Although vibrotactile stimuli find its way in many 
haptic applications, skin stretch modality has been 
suggested as having advantages to vibration as it activates 
multiple types of mechanoreceptors and does not show the 
adaptation effect demonstrated by vibrotactile actuators 
[10].  

To the author’s knowledge, skin stretch as a haptic 
modality for lower limb has not been extensively explored, 
specifically studying its perceptibility in dynamic mode. 
Chen et al. [11] investigated the sensitivity of lower limb to 
skin stretch stimuli for conveying directional information, 
however, only while seating. One possible reason is that 
evaluating skin stretch stimuli while walking requires 
portability. This work describes the development of a 
wireless wearable haptic device capable of delivering lateral 
stretch haptic stimuli to the skin. The haptic feedback is 
intended to be used as a cue for gait events delivered to 
lower limb amputees, to enhance their awareness on the 
limb placement while ambulating. The characterization of 
the device is described first and results of experimental 
work carried out with healthy participants and one amputee 
to evaluate the perceptibility of the stimuli during static and 
walking condition are then presented. 

II. DEVICE DESCRIPTION 

The proposed haptic device is a standalone, wireless 
device consisting of a haptic plate, power supply, drive 
actuators, handheld user feedback switch, and on-board 
electronics. The haptic plate that makes contact with the 
skin consists of a 3D printed array of 24 stimuli pins 
arranged in grid formation. An array of stimuli pins was 
chosen rather than a single stimulus point to maximize the 
area covered by the stimuli on the skin, adapting to our 
previous work [12]. To create the lateral movement to the 
skin, the haptic plate was attached to a frame driven by two 
miniature servo motors arranged in a rack-and-pinion 
mechanism as shown in Figure 1(a). The haptic plate is 
removable and can be replaced with different types of 
stimuli size, patterns or formations. When subjected to a 
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drive signal, both servo motors will rotate to a determined 
angle which is translated into a linear movement of the 
haptic plate (Figure 2). The wireless communication and 
control of the haptic device is handled by a tiny (33mm x 
23mm) wireless microcontroller (Moteino R4, 
LowPowerLab LLC, Michigan, USA). A rechargeable 
Lithium-Polymer battery was used as a power supply. A 
handheld switch was interfaced to the device to allow 
participants to actively record perceived stretch stimuli in 
real-time while conducting the experiments, especially 
during walking. The device was fitted with a flexible thigh 
sleeve and a fabric based cuff to allow secured and firm 
attachment to the leg. Table I shows the specifications of 
the haptic system. Figure 1(b) shows the overall assembled 
components of the device.  

TABLE I.  DEVICE SPECIFICATIONS 

Criteria Specification 

Dimension 98mm (W) x 90mm (L) x 50mm (H) 

Weight 235 g 

Power Unit Li -Po, 3.7V, 2000mAh 

Wireless 
Technology 

868MHz Radio Frequency (RF) 

System Delay Overall < ~60 ms 

Servo Rating 
Stall torque: 1.8 kg.cm 
Speed: 0.1s / 60 degree 

 

 

 
Figure 1.  (a) Front view (b) top view of the assembled haptic device. 

III.  EXPERIMENTAL WORK 

A. Device Characterization 

 
Since the haptic pins will move along the skin and cause 

skin displacement, it was necessary to find the relationship 
between the servo rotation and the distance of plate 
movement, and experimentally validate it. 

With a pinion pitch diameter, pd = 9.6 mm, 

The linear travel dt, per revolution can be calculated as: 
dt = ʌ(pd) 

= 30.2 mm/rev 

The relationship between servo rotation angle and linear 
displacement can then be defined as: 

360 / dt = 11.9         or    ~12 degree per mm. 

To validate this movement profile, an optical laser 
distance sensor (Leuze Electronics, Germany) was 
positioned opposite to the body of the haptic frame, along 
the axis of the movement as shown in Figure 2. Initial 
distance reading was recorded as the baseline position. 
Subsequently, the haptic plate was programmed to move 
1mm (12-degree servo rotation) towards the distance 
sensor, and then return to the baseline position. The step is 
repeated with 2mm, 3mm, 4mm travel, with the output from 
the sensor recorded throughout each movement. The task 
was repeated 5 times to obtain the average actual travel 
distance. 

 
Figure 2.  Setup for validating displacement created by the device 

(haptic plate, elctronics and power units are not shown). 

B. Haptic Perception 

 
To assess whether the stretch stimuli provided to the 

skin can be perceived and therefore can be meaningful in 
providing feedback to the user, a pilot experimental work 
was carried out. Five able-bodied male participants (age: 
27.6±3.8 years; height: 170.2±3.6 cm; weight: 74.4±9.2 kg) 
without any known gait abnormalities, and one male above-
knee amputee (age: 54 years old; height: 165 cm; weight: 
61 kg) participated in this study. The amputee was free from 
other morbidities apart from amputation and was not 
dependent on any ambulatory aid. Consents were obtained 
from the participants and the activities performed were 
approved by the Institutional Review Board. 

 

 



1) Static Perceptibility 
 

The device was strapped on the anterior mid-thigh on 
the right leg while the participant is standing. The haptic 
plate was adjusted such that it was rested firmly on the skin. 
For the above knee amputee, the device was fitted on the 
intact leg for this assessment. Participants held the handheld 
switch with one hand to indicate perceived stimuli. 
Participants also wore an earphone playing white noise to 
mask the sound coming from the haptic device, thus 
eliminating the chance of guessing the stimuli via auditory 
means. Series of stretch stimuli were delivered to the skin 
with 1, 2, 3, and 4mm stretch displacement. A single 
stimulus is completed when the actuator moved from 
baseline position to the intended displacement value and 
return. Participants were instructed to push the handheld 
switch upon perceiving the stretch stimuli. A pause of 2s 
was given in between each stimulus to allow sufficient time 
for the participants to respond. The trials were repeated two 
times for each participant. 

2) Dynamic Perceptibility 
 

To assess perceptibility of the device in dynamic mode, 
the participants performed the walking activity on a 
treadmill. As a safety measure, participants were required 
to wear safety harness attached to a rigid frame to prevent 
tripping or falling. The treadmill was started at an arbitrary 
low speed to allow the participants to do a 2-minute 
warming up session. Subsequently, the participants were 
asked to adjust the treadmill speed in 0.1 km/h increment 
until it reached the speed which they thought bears the 
closest resemblance to their normal walking speed over 
ground. When the participants indicated comfortable 
walking pattern, similar task as described in static 
experiment were carried out.  

The response received from the participants were sent 
wirelessly to a computer which stored the data into a 
spreadsheet. The percentage of correctly identified stimuli 
were used as a measure of perceptibility i.e. the ability to 
perceive the stimuli. Participant’s responses were also 
analyzed for any false perceptions (participants indicating 
stimuli when there was not one). 

  
Figure 3.  Haptic device fitted on the amputee participant, in standing 

mode (left) and on the treadmill (right). 

IV.  RESULTS 

A. Movement profile 

 
Figure 4 shows the movement profile of the haptic plate, 

for travel distance of 1-4mm. The time taken to complete 
single movement cycle (baseline-target-baseline) was less 
than 0.5ms. The data obtained from the optical sensor 
showed an average positioning error of +0.3mm.  

 
Figure 4.  Distance travelled by haptic device as measured by the 

optical sensor. 

B. Static and Dynamic Perceptibility 

 
Table II  shows the summary of perception accuracy in 

both static and walking mode.  A total of 96 stretch stimuli 
in the range 1 – 4mm were delivered to each participant in 
each activity mode. The perception of the stimuli varies 
according to the level of the stretch applied. The 3mm and 
4mm stretch remained highly perceived throughout both 
standing and walking mode with 100% accuracy. The 
perceptibility for 2mm stretch was high during standing, 
however, reduces to just over 90% during walking (87.5% 
for amputee).  The 1mm stretch was perceived with at least 
80% accuracy in standing mode but was poorly perceived 
during walking (< 25%) for both able-bodied and amputee 
participants. There were a total 6 instances (~0.4%) of false 
perception recorded in the entire dataset, where participants 
indicated feeling stimuli when it was not actually given. 
However, this can be observed only during walking mode 
as shown in table III. The average self-selected walking 
speed was 3.2 km/h for all the participants. 

TABLE II.  SUMMARY OF PERCEPTION ACCURACY (%). 
DARKER SHADES INDICATES GREATER ACCURACY. 

Stretch 
level 

Able-bodied Amputee 

Standing Walking Standing Walking 

1mm 91.7 20.8 83.3 8.3 

2mm 100 91.7 91.7 87.5 

3mm 100 100 100 100 

4mm 100 100 100 100 

TABLE III.  INSTANCES OF FALSE PERCEPTIONS 

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5

D
is

ta
n

ce
 (

m
m

)

Time (s)

Distance travelled over time

Distance (1mm) Distance (2mm)

Distance (3mm) Distance (4mm)



Stretch 
level 

Able-bodied Amputee 

Standing Walking Standing Walking 

1mm 0 1 0 0 

2mm 0 1 0 1 

3mm 0 0 0 1 

4mm 0 1 0 1 

V. DISCUSSION 

Skin stretch on non-glabrous skin has been studied 
previously as a feasible feedback method for conveying 
motion information and directional cues [11], 13]. In 
addition, skin displaced in lateral direction has been 
suggested as a preferable choice for developing tactile 
displays on hairy skin (which dominates the lower limb) 
[14]. This study showed that apart from directional and 
motion cues, skin stretch stimuli has the potential of 
delivering a one-off or event based cue as well.  

Chen et al. [11] studied the skin sensitivity to stretch 
stimuli in lower extremity, although focusing on several 
locations below the knee only. It was anticipated that 
targeting the upper part of the leg will have more 
advantages in the amputee application, as most amputees 
(especially above knee) will have lost a significant portion 
of the limb due to amputation. While the remaining stump 
for above knee amputee will most likely be covered with 
the prosthesis socket, a miniaturized version of the wearable 
device will allow possible integration into or around the 
prosthetic socket, allowing placement of the haptic device 
on the amputated leg itself.  

The reason for walking on the treadmill rather than 
walking overground while carrying out this study was to 
allow smooth and uninterrupted motion over several 
minutes of walking time, which is not possible in our indoor 
laboratory space. Previous study has shown that walking on 
the treadmill is comparable to walking overground [15], 
making it preferable choice for our application.  

It can be observed that while 1mm stretch stimuli can be 
perceived relatively accurately (over 80% of the time) by 
the participants during static standing, the same stimuli 
went virtually unnoticed during walking exercise. This 
could be explained by the fact that walking requires higher 
motor skills demand and more intense muscle activity 
(continuous extension and contraction of the muscle), 
which can mask low intensity external stimuli. Authors in 
[16] noted in an experiment with low frequency vibrotactile 
feedback given at the quadriceps tendons, the stimuli were 
effectively ignored, attributed to down weighting by the 
sensory motor system. In addition, certain gait events such 
as heel strike induces higher reaction force from the ground, 
which might as well mask lower magnitude stimuli coming 
from the device. Although the above knee amputee had 
lower accuracy in identifying lower level stretch magnitude, 
the accuracy of the perceiving 3mm and 4mm stretch 
remained superior throughout the experiments for both 
groups. This confirms to the pattern shown in [11] where 
stretch perceptibility was found to be proportional to the 
stretch magnitude. The instances of false perception 

occurred randomly, albeit rarely, throughout the walking 
experiments. This might be attributed to the participants 
mistaking the general vibration caused by walking as a form 
of stimuli or due to losing concentration.  

This proposed haptic feedback system is intended to be 
used in lower limb prostheses feedback scheme, coupled 
with an Inertial Measurement Unit (IMU) placed at 
prosthetic shank/pylon developed in our previous study [17] 
which was capable of identifying gait events in real-time 
with high accuracy in both level ground and inclined 
walking surface. Figure 5 shows the intended overall 
feedback scheme. Upon detection of Initial Contact (IC) 
and Toe-off (TO) by the IMU sensor, stretch stimuli can be 
mapped onto different locations of the actuators on the skin 
to notify the amputee about the respective gait events. For 
example, an IC event will activate a stretch stimuli on the 
anterior part of the limb while a TO event will activate a 
stimuli on the posterior region of the limb. 

 
Figure 5.  Overall haptic feedback scheme. IC: Initial contact; TO; Toe-

off 

An important consideration for this application is the 
time required for the stretch to take place as well as the 
response time of the participants. As noted in Figure 4, the 
time taken to induce the stretch stimuli from baseline to 
intended stretch distance is less than 500ms for all the 
stretch level range. Although this is satisfactory for 
providing feedback for two gait events (IC and TO), the 
reaction time for the participants to respond to such stimuli 
while walking should also be taken into account. Jiang and 
Hannaford [18] reported that the reaction time to stimuli 
while walking are higher than while standing, more 
noticeably for stimuli in the thigh region. Investigating the 
ability of the participants to associate the stimuli to different 
actuator locations while walking would be an interesting 
direction for the future work. For long term use, the 
wearable haptic device must be ergonomic and comfortable 
to wear. Two participants in this experiment indicated that 
a smaller factor of the device would help reduce the weight 
and therefore offers a more comfortable attachment. 



VI.  CONCLUSION 

A wearable stretch haptic device capable of delivering 
perceptible stimuli during static and dynamic activities was 
presented in this paper. A stretch magnitude of at least 3mm 
was found to be adequate for high perception during 
waking. Combined with gait event detection system, the 
device could potentially provide information to the 
prosthesis user about the position of the prosthetic limb on 
the ground, especially on critical gait events such as heel 
strike and toe off. Manipulating the stimuli parameters, 
varying walking speed and terrain will be the future focus 
of this study, as well as investigating the real-time effect of 
such intervention on amputees’ gait awareness. 
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