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Abstract  

An order effect was found in English infants’ discrimination of an Urdu contrast. In 

Experiment 1 7- and 11-month-old English infants were tested on the Urdu contrast 

between the affricates /tʃʰ/ and /tʃ/. The order of presentation was counterbalanced: At 

each age half the infants were habituated to the aspirated and tested on the unaspirated 

affricate, the other half habituated to the unaspirated and tested on the aspirated. As 

expected, younger infants discriminated the contrast whereas older infants did not, 

showing the expected decline in discrimination. Order of presentation seemed to affect 

the older infants’ response. Experiment 2 tested the order effect directly. The results 

showed no asymmetry in the performance of 7-month olds but clear asymmetry in that 

of 11-month-olds, who discriminated the contrast only when the non-English-like 

aspirated affricate was presented first. Experiment 3 tested adult native-speakers of both 

Urdu and English. Although the English listeners showed a reduced sensitivity to the 

contrast, there was no effect due to order of presentation of the stimuli in either adult 

group. The finding of an asymmetry in the infants suggests that infants’ perceptual 
narrowing for speech sounds may be a more complex phenomenon than has generally 

been assumed.  
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An order effect in English infants’ discrimination of an Urdu affricate contrast 

1.0 Introduction 

There is ample evidence that infants are born with ‘universal’ listening abilities that 

allow them to successfully discriminate most of the phonetic contrasts found in the 

world’s languages. This ability is not maintained into adulthood, however; a 

developmental decline in the discrimination of contrasts has been demonstrated in 

numerous studies, using a range of non-native contrasts (Best & McRoberts, 2003; Best, 

McRoberts, LaFleur & Silver-Isenstadt, 1995; Bohn & Polka, 2001; Kuhl, Conboy, 

Coffey-Corina, Padden, Rivera-Gaxiola & Nelson, 2008; Kuhl, Stevens, Hayashi, 

Deguchi, Kiritani & Iverson, 2006; Kuhl, Williams, Lacerda, Stevens & Lindblom, 

1992; Werker & Tees, 1983, 1984; Werker & Tees, 2002; Werker, Gilbert, Humphrey, 

& Tees, 1981).
1
 Ambient language exposure enables infants to form phonetic and 

phonological categories that affect the way they perceive the sounds around them 

(Maye, Weiss, & Aslin, 2008; Maye, Werker, & Gerken, 2002; Wanrooij, Boersma & 

van Zuijen, 2014). Interestingly, studies have also shown that despite a significant shift 

in perception before the first birthday, the ability to perceive non-native contrasts is not 

entirely lost, and only minimal exposure is required to reinstate sensitivity during the 

period of decline (Conboy, Sommerville & Kuhl, 2008; Kuhl, Tsao & Liu, 2003; Maye 

et al., 2008; Yeung & Werker, 2009; Yoshida, Pons, Maye & Werker, 2010). The 

current study investigates this decline in discrimination for a non-native consonant 

contrast. In particular, it reveals the fact that the experimentally robust finding of such a 

decline in infant discrimination is, at least in part, dependent on task characteristics, and 

specifically, on the order in which sounds are presented to the infant in the experimental 

task. 

 

Werker et al. (1981) were the first to attempt to trace the time-course of perceptual 

decline from infancy to adulthood. English- and Hindi-speaking adults and English-

learning infants were tested on two Hindi contrasts: (1) dental /tа/ vs. retroflex /ʈа/, and 

(2) voiceless aspirated /tʰ/ vs. breathy-voice /dʰ/. Prior to the experiment ten English-

speaking adults had received training in the Hindi contrasts. Hindi adults and English-

learning infants were able to discriminate the sounds, but only one English-speaking 

adult could perceive the difference without prior training. This study also pointed 

towards the fact that in adults there is a decline rather than a complete loss of the ability 

to discriminate non-native contrasts, since discrimination remained possible with 

specific training. Werker and Tees (1983) further tested English-speaking children at 

four, eight and twelve years of age: None of the children were able to discriminate the 

Hindi contrasts. In a subsequent series of experiments with infants within the first year 

of life (Werker & Tees, 1984) it was found that most 6- and 8-10-month-olds could 

discriminate the non-native contrast from Hindi and a new pair of unfamiliar consonants 

from Thompson (or Nthlakampx), while most 10- to 12-month-olds could not. Werker 

and Tees concluded that a ‘selective tuning of initial sensitivities in accordance with a 

                                                 
1
 Note that not all contrasts show this trajectory: Some sounds (notably, fricatives) are 

not well discriminated in early infancy (Aslin & Pisoni, 1980; but see Tsao et al., 2006), 

others are discriminated at an early age but show later enhancement in the ability to 

discriminate them (e.g., /r/ vs. /l/, see Kuhl et al., 2006). Aslin and Pisoni (1980) 

describe several possible developmental consequences of the interaction between 

infants’ perceptual abilities at birth and the language input that they receive. We limit 

ourselves here to discussing cases in which a decline is seen. 
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specific phonology...occurs at about the age that the child is beginning to understand 

and possibly produce sounds appropriate to his/her native language’ (1984, p. 62). 
 

This reorganization, currently referred to as ‘perceptual narrowing’ (Kuhl, 2004), leads 

to a decline in the discrimination of non-native consonant contrasts. As indicated above, 

parallel results have been obtained in a variety of behavioral studies using non-native 

phonetic consonant contrasts from languages such as Hindi, Japanese, Mandarin, 

Spanish, Swedish and Zulu (for a summary, see Werker & Tees, 2002) as well as in 

neural imaging studies (using Event Related Potentials: Rivera-Gaxiola, Klarman, 

Garcia-Sierra & Kuhl, 2005a, Rivera-Gaxiola, Silva-Pereyra & Kuhl, 2005b), which 

have yielded similar results. The age at which the decline occurs, toward the end of the 

first year, is consistent across all of these studies. The decline for non-native vowels 

occurs much earlier, according to some studies. For example, Polka and Werker (1994) 

showed a decline for English infants’ discrimination of non-native German vowels 

between 6-8 months of age (see also Bosch and Sebastián-Gallés, 2003; Tsuji and 

Cristia, 2014), but other studies paint a more nuanced picture, with no decline at all by 

age 12 months (Polka & Bohn, 1996), or a decline followed by a recovery of the ability 

to detect the contrast by age 12 months (in bilingual infants: Bosch and Sebastián-

Gallés, 2003). 

 

In this study, however, we will focus on findings regarding the decline in discrimination 

for consonants, which has aroused less controversy. This decline can be understood to 

be the result of early language learning experience leading to category learning. Taking 

an exemplar model perspective on language learning, we can think of early perceptual 

abilities as engaging a parametric phonetic level of perception (see Pierrehumbert, 

2003), which is graded, continuous, multidimensional and multimodal and which does 

not as yet involve any categories. Infants listening in this way are able to distinguish 

between sounds that are different in their auditory properties, even if the differences are 

small. At this early stage, infants can be seen as ‘universal’ listeners, not because they 
somehow anticipate (or ‘possess’ or ‘know’) all the possible sound contrasts, but 
because they do not listen for contrast or categories at all. Further language exposure 

will teach the infants which differences they can ignore or forget – namely, differences 

that play no functional or phonemic role in the native language.  

 

Putting it simply for the sake of exposition, we can assume that if two sounds contrast in 

a language (i.e., if they are distinct phonemes), their phonetic realization will be 

bimodally distributed (Maye et al., 2008; Pierrehumbert, 2003). This leads infants to 

form separate phonetic categories, one for each of the sounds. When the speech sounds 

do not contrast, input speech is likely to provide a broader or unimodal range of 

variation. Various studies have provided evidence of such learning. For example, Maye 

et al. (2002) presented 6- and 8-month old infants with a continuum from prevoiced to 

voiceless unaspirated alveolar stops; one group received unimodal exposure, the other 

group bimodal exposure. At both ages, only the infants given bimodal exposure 

discriminated the stops successfully when tested later, showing that two separate 

phonetic categories were formed only in that condition.
2
  

                                                 
2
 It should be noted, however, that there is no information as to the way the infants 

perceived the continuum prior to their exposure to either of the conditions. This makes 

the interpretation of category formation in this study inconclusive. We thank an 

anonymous reviewer for pointing this out. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836047/#B9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836047/#B43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836047/#B43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836047/#B9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836047/#B9
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Category learning can influence the way speakers discriminate both native and non-

native language contrasts. We take the representations of sounds to be built from 

multiple exemplars organized in a multidimensional network, with denser and sparser 

areas, or with different exemplars and different areas more or less strongly connected to 

others. The dense areas, or densely connected clusters, are categories. The sparser ones 

are either category peripheries or lie outside of any category (see Iverson and Kuhl, 

1995). In such a framework, we can expect the categorizations of sounds to show effects 

of prototypicality, centrality, and fuzzy boundaries. And such effects have indeed been 

found for vowels. Vowel categories are understood to be built around prototypes 

(Grieser & Kuhl, 1989) and to have graded membership and fuzzy boundaries (Taylor, 

2008). Kuhl and her colleagues (Grieser & Kuhl, 1989; Kuhl 1986, 1991) have 

proposed that discrimination is affected by the relationship between the ‘most typical’ 
(prototypical) tokens of a given category and the less typical ones. That is, for vowel 

categories some areas in the perceptual space serve as ‘category centers’, providing a 
reference point for generalization to novel exemplars. In a test of adult perception of 

differences between the within-category exemplars of the vowel /i/ adults rated different 

variants of the stimuli on ‘goodness’ (defined as sounding ‘natural’). The variants near 

the center received significantly higher rankings than the variants near the category 

boundary. The same stimuli were then used to test two groups of 6-month-olds. One 

group was tested on discrimination between the ‘good’ /i/ and its variants, based on the 

adult judgment scores, and the other on the ‘poor’ /i/ and its variants. Infants 

discriminated significantly more often between the non-prototypical than between the 

prototypical exemplars. Thus, the stimuli that adults ranked as good exemplars of the 

category resulted in greater infant generalization to other members of the same vowel 

category than the stimuli that adults ranked as poor. Kuhl and colleagues interpreted 

these results as suggesting that the prototype serves as a perceptual ‘magnet’ for the 

sound category; that is, it ‘pulls’ other stimuli towards it, effectively shortening the 

perceptual distance between them. (In its latest version, this model is called the Native 

Language Magnet theory expanded, or NLM-e: Kuhl et al., 2008.)  

 

Similar to Kuhl’s model, the Perceptual Assimilation Model (PAM: Best, 1993) 
describes a process by which listeners perceptually assimilate non-native sounds 

(whether vowels or consonants) to their own phonemic inventory, based on their 

experience with the native language; non-native sounds are categorized or identified in 

relation to where they fall within the network of native language sounds. According to 

this model, whether infants do or do not distinguish between non-native sounds has to 

do with whether those sounds fall near a native category prototype, near its periphery, 

between categories, or completely outside the area of what counts as language sounds 

(as in the case of clicks, which are perceived as ‘non-assimilable’ by listeners in whose 
native language they lack segmental status). In the case of PAM, the dimensions 

according to which similarity or distance is computed are articulatory. (Best, 1993, 

assumes that what listeners perceive in listening to speech sounds are the articulatory 

gestures that underlie their production.) Given that the parametric space we described 

earlier is multimodal, this does not change the developmental picture we are describing 

here but only enriches it.  

 

Another finding that can be explained within the framework of exemplar models is that 

of order-related asymmetry in discrimination between more prototypical and less 

prototypical tokens within a vowel category (such asymmetries have been reported for 
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native language vowel contrasts for adult speakers: Cowan and Morse, 1986; Iverson & 

Kuhl, 1995; Repp, Healy, & Crowder, 1979). In a study of vowel discrimination in 

infants (Polka & Werker, 1994) an asymmetry was found in which a given direction of 

change ([y] preceding [u] and [ʏ] preceding [ʊ]) was discriminated better by English 

infants than the reverse order. That is, 6-8-month-old infants discriminated the vowels 

only when the ‘non-prototypical’ (non-English-like) front-rounded vowel was presented 

before the ‘prototypical’ (English-like) back-rounded vowel. The authors first attributed 

the results to the magnet effect: [u] and [ ʊ] are the more familiar vowels for English 

listeners, while [y] and [ʏ] are non-native; thus, as an anchor point [u] pulled in the 

perception of the following [y], resulting in assimilation when it was presented first.  

 

However, Polka and Bohn (1996) later suggested that the anchor point plays a role 

independently of the status of a given vowel in native language phonology. In their 

study 6-8 and 10-12-month-olds from English and German families were tested on an 

English (non-German) /ɛ/-/ӕ/ contrast and a German (non-English) /u/-/y/ contrast. 

Discrimination was found to be easier from /y/ to /u/ and /ɛ/ to /ӕ/ than from /u/ to /y/ 
and /ӕ/ to /ɛ/, with age or native language not affecting the results. In another study 

(Polka and Bohn, 2011) large numbers of Danish-learning infants of 6-9 months of age 

were tested on a Southern British-English contrast, peripheral /ɑ/ vs. /ʌ/, and two native 
contrasts, /e/ vs. /ɛ/ and /e/ vs. /ø/. It was found that both younger and older children 

discriminated the non-native vowel more successfully when the less peripheral/more 

central vowel was presented first. The authors attributed the asymmetry to an innate 

perceptual bias not dependent on language experience or familiarity from the native 

language. The findings led Polka and Bohn (2011) to introduce the Natural Referent 

Vowel (NRV) model, which speculates that ‘vowels with extreme articulatory-acoustic 

properties…act as natural referent vowels…by attracting infant attention and providing 
stable perceptual forms’ (p. 474).  
 

It seems, therefore, that two types of asymmetries in segment discrimination have been 

shown to exist: one that is likely to be an outcome of biases inherent to the perceptual 

system (or to its interactions with the production system, as postulated by Stevens - e.g., 

Stevens & Keyser, 2010), and another that is the result of learning, following exposure 

to a particular ambient language. The first type of asymmetry should be evidenced from 

the earliest ages, as it is thought to be a product of the physical/perceptual mechanisms 

available to infants. The second type is likely to develop with age as a result of 

increased exposure to a given language. It is this second type of asymmetry that this 

project is focused on. 

 

Note that asymmetries in vowel perception have been investigated, based on the 

understanding that vowels are not rigidly organized into clear-cut categories (see e.g., 

Pierrehumbert, 2003). Consonants, however, have traditionally been assumed to have 

all-or-none membership or better-defined boundaries, a view which fits with the finding 

of infant categorical perception (Eimas, Siqueland, Jusczyk & Vigorito, 1971; see also 

Damper & Harnad, 2000; Livingston, Andrews & Harnad, 1998). Despite the view that 

consonants are perceived categorically, a number of studies have not only reported that 

within-category tokens may be discriminable (Miller, 1994) but also that these within-

category distinctions affect lexical processes (Dahan, Magnuson, Tanenhaus & Hogan, 

2001; McMurray, Tanenhaus & Aslin, 2002). This supports a view of consonant 

categories as built from exemplars, with the concomitant implication that the categories 
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are centered around prototypes, with graded membership and fuzzy boundaries (see also 

Pierrehumbert, 2003). 

 

McMurray and Aslin (2005) familiarized 8-month-olds with one member of each of 

several minimal pairs (e.g., pear – bear). Half the infants were familiarized with a word 

with a voiced onset stop and half with a word with an unvoiced onset stop. Infants were 

then tested on those same words, their minimal pair and a variant of the familiarized 

word whose onset, though still within the same voicing category, was shifted towards 

the other voicing category. Infant looking times showed that they distinguished not only 

between the between-category variants but also between the within-category variants. A 

sizeable body of work with adults has also provided evidence against the strong version 

of categorical perception (Carney, Widin, & Viemeister, 1977; Miller, 1997; Pisoni & 

Lazarus, 1974; Pisoni & Tash, 1974). Indeed, both Kuhl and colleagues’ NLM-e model 

and Best’s PAM refer explicitly to consonants as well as to vowels, treating them too as 

being organized into the same kinds of categories as vowels, centered around 

prototypes, with fuzzy boundaries. Taken together in the context of consonants, both 

models speculate that non-native consonant sounds are perceived in relation to their 

similarity to consonants in the native language inventory. The studies demonstrating the 

decline in discrimination for non-native contrasts have shown that any non-native 

consonant that is similar, if not identical, to a consonant in the ambient language will be 

perceptually assimilated to that close native consonant sound. In the light of NLM, the 

native language prototype may be acting as a magnet in these cases, pulling the 

perception of the non-native consonant towards itself, shortening the perceptual distance 

and leading to poor discrimination. Moreover, even when a non-native consonant pair is 

perceived as belonging to the single native category, one consonant will be perceived as 

a better fit than the other (Best, 1993). If we accept, then, that infant perception is not as 

‘categorical’ as has previously been suggested, could the asymmetries found in vowel 

perception be found in the case of consonant perception as well? That is, do infants 

show within-category order effects that might reflect prototypicality? Would infants fail 

to discriminate a prototypical exemplar from a subsequently presented less prototypical 

exemplar, but be able to discriminate the same two exemplars when they are presented 

in the reverse order? Note that there have been reports of asymmetry in discrimination 

between two consonants that are phonemically distinct in a child’s language (e.g., 
Altvater-Mackensen & Fikkert, 2010; Tsuji et al., 2015; Nam & Polka, 2016). This kind 

of asymmetry within the native language is not what concerns us here; we aim to test 

possible asymmetry in non-native consonant perception, i.e., in perception of two 

segments which may have no straight-forward mapping onto distinct native language 

categories. 

 

Two studies have reported asymmetries in non-native consonant perception, but with 

conflicting results. Kuhl et al. (2006) reported asymmetries for 6-8- and 10-12-month- 

old American and Japanese infants in response to /la/ – /ra/ stimuli. The study found a 

directional asymmetry regardless of age or language experience: Infants found it easier 

to detect a stimulus change from /la/ to /ra/ than the reverse. This type of finding is 

perhaps best explained by models which refer to a universal perceptual bias, such as 

Polka and Bohn’s Natural Referent Vowel (NRV) model (2011). In contrast, in Segal, 

Hejli-Assi, and Kishon-Rabin (2016) consonant asymmetry was found to be dependent 

on both age and native language. Segal and her colleagues tested the discrimination of 

the voicing contrast /ba/-/pa/ in Arabic-learning infants (whose native language has /b/ 

but not /p/) and Hebrew-learning infants (whose native language includes a 
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phonological contrast between /p/ and /b/) at 4-6 and 10-12 months of age. The Hebrew-

learning infants discriminated the contrast at both ages; no directional asymmetry was 

observed. On the other hand, there was a decrease in perception of the non-native 

contrast by the Arabic-learning children between 4-6 and 10-12 months of age. In 

addition, at 10-12 months of age Arabic-learning infants failed to discriminate the 

change from /ba/ to /pa/ but showed a marginally significant effect for the change from 

/pa/ to /ba/; no such asymmetries were found at 4-6 months of age. Though the effect in 

that study was only marginal, its direction was consistent with the predictions of the 

PAM model and to those of the NLM-e model in relation to vowels: For the Arabic-

learning infants, the /pa/ tokens could have been perceived as atypical examples of /ba/, 

whereas the /ba/ tokens were prototypical exemplars. As a result, when the atypical /pa/ 

was presented first, the infants discriminated between the two syllable types, but when 

the order was reversed they did not.  

 

The present study was initially designed to explore developmental change in both native 

and non-native consonant perception in infants at the end of their first year, as part of a 

longitudinal study of English-learning and Urdu-learning infants. In the course of the 

study we discovered some unexpected but intriguing signs of asymmetry in the 

perception of consonants. We therefore pursued our investigation of the issue. This 

paper will report only on the study with English-learning infants and adults tested on a 

non-native contrast from Urdu,
 3

 /tʃ/ vs. /tʃʰ/. Experiment 1 was conducted to determine 

whether there was a decline in English infants’ perception of non-native Urdu affricate 

contrast between 7-11 months of age, as reported in the literature for other non-native 

consonant contrasts. Experiment 2 tested for order effects in English infants’ 
discrimination of the non-native contrast, after a trend was observed in Experiment 1. 

Lastly, Experiment 3 was conducted on English and Urdu adults to test whether the 

order effects were maintained after infancy. Note that affricates and fricatives have been 

used in fewer studies as compared to other consonantal contrasts (Eilers & Minife, 

1975; Levitt et al., 1987; Tsao, Liu, Kuhl, & Tseng, 2000; Polka, Colantonio, & 

Sundara, 2001; Ting et al., 2006; Johnson & Babel, 2007; Beach et al., 2008), perhaps 

because several early studies conducted with young infants failed to provide evidence of 

discrimination of fricatives (Vihman, 1996). Tsao et al. (2006) is an exception; this 

investigation tested Chinese and English infants on a Mandarin affricate-fricative 

contrast /ʨʰ/ vs. /ɕ/ and showed discrimination at 6-8 months in both groups. However, 

no study to date has tested English infants on a contrasting affricate pair.   

 

2.0 Experimental materials and methods – Pilot  

2.1 Pilot study: Materials and methods 

2.1.1 Choosing an Urdu contrast for testing with English listeners  

 

Adult English speakers were tested on Urdu minimal pairs differing in the feature of 

aspiration (e.g., /bʰʌr/ ‘to fill’ and /bʌr/ ‘groom’) and on singleton vs. geminate 

consonants, to establish which contrast was the most difficult to discriminate. The 

contrast with the largest number of incorrect responses and the longest response times 

was then tested on 7- and 11-month-olds from English-speaking homes.  

 

2.1.2 Participants 

                                                 
3
 Urdu and Hindi, despite being spoken in two different regions and having different names and 

orthography, are essentially the same language, with minor differences in lexicon but similar phonology. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773797/#R80
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773797/#R64
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773797/#R64
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Twenty adult monolingual English speakers, most of them university students (age 

range 22-26 years), were recruited for the experiment.  

 

2.1.3 Stimuli  

The stimuli included 11 Urdu consonant contrasts (differing by the presence or absence 

of aspiration) and 5 geminate-singleton contrasts; none of these contrasts exists in 

English (see Table 1). A female native Urdu speaker recorded the stimuli. We created 

25 ‘different’ word pairs (minimal pairs) and 20 ‘same’ pairs, representing 16 phonemic 

contrasts of Urdu. Each of the words was recorded with a carrier sentence ‘can you say’ 
( بولویہ  تم ). Each word was recorded three times to provide three different tokens of each 

word. 

 

Table 1 List of Urdu aspirate/non-aspirate and geminate/singleton contrasts used 

in the pilot  

Place of 

articulation 

Aspirate/non-

aspirate 

(initial only) 

Number of 

minimal 

pairs 

Singleton/geminate 

(medial only) 

Number of 

minimal 

pairs 

Bilabial /p/ - /p
h
/ 

/b/ - /b
h
/ 

2 

4 

  

Dental /t/ - /t
h
/ 

/d/ - /d
h
/ 

3 

2 

/t/ - /t:/ 

/d/ - /d:/ 

1 

1 

Post-alveolar /tʃ/ - /tʃh/ 
/dʒ/ - /dʒh

/ 

2 

2 

/tʃ/ - /tʃ:/ 1 

Retroflex /ʈ/ - /ʈh/ 
/ɖ/ - /ɖh

/ 

/ɽ/ - /ɽh
/ 

2 

2 

2 

/ʈ/ - /ʈ:/ 1 

Velar /k/ - /k
h
/ 

/g/ - /g
h
/ 

2 

2 

/k/ - /k:/ 1 

 

 

2.1.4 Method  

The adult participants were tested with an AX discrimination task using E-Prime. Each 

participant was auditorily presented with 44 pairs of Urdu words over sound-cancelling 

Bose QC-15 headphones and asked to judge whether they were the same or different, 

beginning with three practice trials. Participants were asked to press a key (‘s’) to 

indicate ‘same’, if the two sounds in a pair seemed to be identical, and another key (‘d’) 
if the sounds were judged to be different. The inter-stimulus interval between contrasts 

was one second, the intra-stimulus gap 300 milliseconds. The order of stimuli was 

randomized. Each word pair was presented once in each of four combinations: AB 

(word A followed by word B), BA, AA and BB, with no recorded token of any word 

being used more than once. In the practice trials, the participant was taken to the next 

pair only when the correct key had been pressed. The test trials then started 

automatically. As soon as the participants pressed a response key, they were passed on 

to the next trial. There was no time limit for the response. Participants were tested 

individually in a quiet computer room.  

 

3.0  Results – Pilot  
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The number of errors and response times were computed for each minimal pair and then 

averaged across all pairs of a given phonemic contrast for each participant. The results 

are summarized in Table 2. 

 

 

Table 2 Average response times and proportion of errors made by adult English 

speakers. 

  Average proportion of   

errors 

Average response 

time 

Singleton consonants /p/ - /p
h
/ 0.45 1538 

 /b/ - /b
h
/ 0.18 1425 

 /k/ - /k
h
/ 0.20 1435 

 /g/ - /g
h
/ 0.32 1560 

 /t/ - /t
h
/ 0.25 1433 

 /d/ - /d
h
/ 0.35 1388 

 /ʈ/ - /ʈh/ 0.20 1435 

 /ɖ/ - /ɖh
/ 0.25 1500 

 /tʃ/ - /tʃh
/ 0.75 1629 

 /dʒ/ - /dʒh
/ 0.37 1446 

 /ɽ/ - /ɽh
/ 0.05 1584 

Geminates /t/ - /t:/ 0.2 1553 

 /d/ - /d:/ 0.05 1522 

 /tʃ/ - /tʃ:/ 0.1 1497 

 /ʈ/ - /ʈ:/ 0.05 1437 

 /k/ - /k:/ 0.1 1405 

 

As can be seen in Table 2, the voiceless aspirated-unaspirated affricate pair /tʃ/-/tʃh/ (in 

bold) had the highest proportion of errors and the longest response times. This suggests 

that this pair was the most difficult for adult English speakers to discriminate. 

 

4.0 Discussion - Pilot 

The Urdu affricate contrast (/tʃ/-/tʃʰ/) presents a distinction that does not exist in English: 

Unaspirated /tʃ/ occurs in English but aspirated /tʃʰ/ does not. Urdu has four affricates, 

/tʃ/, tʃʰ/, /dʒ/ and /dʒʰ/, distinguished by aspiration and voicing, whereas the English 

affricates /tʃ/ vs. /dʒ/ are in principle distinguished by voicing only. To establish the 

acoustic similarities and differences between the English and Urdu affricates we 

conducted a comparative analysis of the Voice Onset Time (VOT) of the voiceless stops 

of English and the English and Urdu voiceless affricates (see Figure 1). Measurements 

were taken of the entire voiceless period, including, for the affricates, both the fricative 

energy for [ʃ] and the aspiration portion of /tʃʰ/. The onset of VOT was identified as the 

start of the release burst of /t/, and the offset as the start of periodicity in the following 

vowel. We analysed twenty tokens of word-initial /tʃ/ from each of two native speakers 

of British English and twenty tokens each of word-initial stops and affricates from each 

of the four native speakers of Urdu. The VOT shown in Figure 1 for syllable-initial 

English voiceless stops was taken from Docherty (1992: British English).  
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Figure 1 Voice Onset Times (ms) of English voiceless bilabial, dental, and velar stops 

(syllable-initial), Urdu voiceless bilabial, dental, and velar stops (word initial) and 

voiceless periods of Urdu and English voiceless affricates (word-initial). 

 

The voiceless period for the English voiceless stops is around +40 to +80 ms and for the 

voiceless affricate it is around +80 (minimum: +63, maximum: +102, SD: 12.0); the 

voiceless period for the Urdu unaspirated affricate is around +80 (minimum: +32, 

maximum: +143, SD: 29.12) and for the aspirated affricate it is around +140 ms 

(minimum: +96, maximum: +185, SD: 24.34). Thus, the voiceless period of the English 

affricate is very similar to that of the Urdu unaspirated affricate but amounts to just over 

half that of the aspirated affricate of Urdu. This might account for the adult English 

speakers’ lack of familiarity with and difficulty in discriminating the Urdu affricate 

contrast. Experiment 1 was designed to establish how English-learning infants respond 

to this unfamiliar aspirated-unaspirated contrast and to trace the expected change in 

their ability to discriminate these sounds as they approach their first birthday.  

 

5.0  Experiment 1: Is there perceptual narrowing for a non-native aspiration 

contrast in affricates? 

 

5.1 Experimental/Materials and methods – Experiment 1 

 

5.1.1 Participants 

Infants were recruited through advertisements in a local newspaper. Participants 

included 13 seven-month olds (mean age 210 days, range 204-217 days; 7 girls) and 16 

eleven-month-olds (mean age 330.6 days, range 322-343 days; 7 girls). Only infants 

who were full term and without health problems were included in the experiment. An 

additional eight infants were excluded for fussiness and crying (7) or experimenter error 

(1). All infants were from monolingual English-speaking homes in York, England. 

None had any known hearing problem.  

 

5.1.2 Stimuli 

Twelve tokens each of the words /tʃʊp/ ‘quiet’ and /tʃʰʊp/ ‘to hide’ were recorded in a 
sound-attenuated recording room by a female native speaker of Urdu. The stimuli were 
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presented to two other native speakers of Urdu for verification. An Urdu carrier 

sentence ‘can you say’ ( بولویہ  تم ) was used before each word. Spectograms and 

waveforms of a single example of each of the recorded Urdu words are shown in 

comparison with a corresponding English word, chug [tʃʊg] (in the Yorkshire accent) in 

Figures 2 and 3. There is considerable difference in the duration of aspirated and 

unaspirated affricates (Urdu voiceless aspirated affricate: 328 ms; voiceless unaspirated 

affricates, Urdu 254 ms, English, 265 ms). Also, the Urdu aspirated affricate in Figure 2 

has relatively more intense frication (the affricate portion has been marked with 

brackets) than the unaspirated affricates of either Urdu (bottom part, Figure 2) or 

English (Figure 3).  

 

 

 

{ tʃ } 
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Figure 2 Spectrograms and waveforms of the Urdu words used in the study, /tʃʰup/ (top 

two panels) and /tʃup/ (bottom two panels). The two affricates are indicated by a box. 

 { tʃʰ } 
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Figure 3 Spectrogram and waveform for English word chug /tʃʌg/. The affricate /tʃ/ is 

indicated by a box.  

 

 

All tokens from this first recording were analysed acoustically for maximum amplitude, 

mean amplitude, mean F0, max F0, min F0, range F0 and duration, using Praat version 

5.3.17. T-tests were carried out across all measures. The difference in the duration of 

tokens of the two words was statistically significant (p = .04) because the fricative 

portion of the aspirated affricates is necessarily longer than that of unaspirated affricates 

(Harris, Bell-Berti & Raphael, 1995, p. 161); no other significant differences were 

found. However, since near-significant differences were observed in F0 range between 

tokens (aspirated affricates had higher F0 values), we recorded another speaker. This 

second recording was also presented to two other native speakers of Urdu for 

verification. The analysis of this second recording again revealed near-significant 

differences for F0 range (p = .07), whereas no statistically significant differences were 

found for any other acoustic measures except duration. The near-significant difference 

in F0 range was therefore assumed to be an inherent property of the voiceless affricate 

pair in Urdu (see Table 3 for a full acoustic analysis). Six tokens of each of the two 

words that were the most similar acoustically (in maximum amplitude, mean amplitude, 

mean F0, pitch range, F0 and duration) were selected from the second recording to be 

used as stimuli. 

 

Table 3 Acoustic measures of the voiceless aspirated/unaspirated affricate contrast 

/tʃʊp/ - /tʃʰʊp/ used in the experiment (from the second speaker). The table 

presents values averaged across the six tokens of each word. 

{ tʃ } 
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S1 -  /tʃʊp/ S2 - /tʃʰʊp/ 

Max Amplitude (dB)             

  

72.28      72.14      

SD 

 

1.56 0.71 

Mean  Amplitude (dB)             

  

69.61     69.30     

SD 

 

1.89 0.77 

Mean F0 (Hz)                        

  

293.71    293.57  

SD 

 

4.35 8.53 

Max F0 (Hz)                          

  

306.39    313.16   

SD 4.05 8.37 
Min F0 (Hz)                           

  

281.02    281.21    

SD 

 

7.71 7.89 

Range F0 (Hz)                       

  

25.38  31.95  

SD 

 

3.89 7.07 

Duration (s)                        

  

0.250 0.468  

SD 

 

0.007 0.024 

 

5.1.3 Apparatus and Procedure 

Testing took place in a dimly lit three-sided booth (120 x 122 cm) with black panels in a 

soundproof room. The stimuli were presented from a Yamaha KX-390 sound player 

through loudspeakers placed on both sides of the booth. The volume was adjusted with 

the help of a Tenma 72-6635 DP level meter. The infant was seated on the mother’s lap 
approximately 45 inches from the monitor. The mother wore sound-cancelling Bose 

QC-15 headphones through which multi-talker babble created from the test stimuli was 

played to mask the auditory stimuli presented to the infants. Mothers also wore earplugs 

to enhance the masking. 

 

An experimenter sat in the control room outside but adjacent to the soundproof room. 

Stimulus presentation was controlled by a Mac OSX 10.6.8. A Sony mini DV-HC27 

video camera, hidden in the booth, recorded the infant and projected the footage onto a 

LCD Video Monitor XVIS8 in the control room, from which the experimenter could 

monitor the infant’s looking behavior. To ensure that the acoustic stimuli were 

completely masked the experimenter wore headphones delivering the same masking 

sound as used for the parents.  

 

The experiment had two phases; habituation and testing (the methodology for the 

experiment is diagrammed in Fig. 4). Only one stimulus (either /tʃʰʊp/ or /tʃʊp/) was 

presented in each phase. Six different tokens of each stimulus were placed on a loop and 

played repeatedly in both habituation and test phases. The sequence of the presentation 

of the stimuli was counterbalanced so that half of the infants were habituated to /tʃʊp/, 

the other half to /tʃʰʊp/. The inter-stimulus interval was 750 ms. The audio segments 

were presented at approximately 69 dB. Each trial began with a red light flashing on the 

monitor to attract the infant’s attention. When the experimenter judged that the infant 
was looking at the screen, a key was pressed to deliver the visual stimulus, a black and 

white checkerboard, to the testing-room monitor. At the same time, the auditory stimuli 

began playing from the two loudspeakers on both sides of the booth. The loudspeakers 
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were located at equal distances from the infant. For this reason, the sound seemed to 

surround the infant. Whenever the infant fixated the checkerboard, the experimenter 

pressed a button, releasing it only when the infant looked away. If the infant looked 

away for two seconds, the trial ended and a new trial began. Infant looking time was 

measured for the center look throughout the experiment.  

 

 
 

Figure 4 Summary of the habituation methodology used in the experiment. Each square 

represents a single trial, with time going from left to right. The looking times (in 

seconds) in the habituation and test phases are taken from one infant participant for 

illustrative purposes. The order of presentation of stimuli was reversed for half of the 

infants. Discrimination was measured by comparing the last two habituation trials and 

the first two test trials (in bold font). The infant whose times are shown here did 

discriminate, as there was a significant increase in looking times in the first two trials of 

the test phase. 

 

Habituation was defined as two consecutive trials with fixation durations below 50% of 

the mean of the two highest of the first three trials (Pegg, Werker & McLeod, 1992). 

When the child reached the planned habituation criterion the computer automatically 

shifted to the contrasting stimulus for the test phase. Infants were expected to 

dishabituate in the test trial, showing an increase in looking time to the new stimulus, if 

they had discriminated the stimulus from the contrasting one presented in the 

habituation phase. For infants who failed to discriminate between the habituation and 

test stimuli no significant change in looking time was expected. Half of the infants 
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listened to /tʃʊp/ in the habituation phase and /tʃʰʊp/ in the test phase and half heard the 

stimuli in the reverse order. The experimenter was unaware of the point at which the 

infant reached the habituation criterion. The number of habituation trials was not fixed 

in advance: Different infants received different numbers of habituation trials, depending 

upon the time they took to become habituated (with a range of 6-26 trials to habituate. 

The maximal possible number of trials to habituation was set at 40). The test phase 

continued until the infant habituated again (following Best et al., 1988; Best et al., 1995; 

Best & McRoberts, 2003). Maximal trial length was set at 30 seconds. 

 

6.0 Analysis and results –  Experiment 1  

Discrimination was assessed by comparing mean looking time over the last two 

habituation trials (pre-shift phase) to mean looking time over the first two trials of the 

test phase (post-shift phase). A significant increase in mean looking time during the 

post-shift relative to the pre-shift phase is taken as evidence that the infant has detected 

the stimulus change. A discrimination value was calculated to minimize the effect of 

individual differences in looking times. This involved dividing the mean looking time in 

the first two test trials by the sum of the mean looking time in the first two test trials 

plus the mean looking time in the last two habituation trials. The point of no 

discrimination was set at 0.5 – in other words, equal looking in the two phases. A value 

over 0.5 indicates that the infant looked more towards the stimuli in the test phase, 

which signifies discrimination. A value below 0.5 indicates longer looking in the 

habituation phase, which means that the change was not detected in the test phase.  

 

Discrimination values were calculated for each age group (see Fig. 5). An independent 

t-test showed no significant difference between the discrimination values of the two 

groups (t = 1.279, df = 27, p = 0.212, 2-tailed). Next, 1-tailed one-sample t-tests were 

run on each group to test for discrimination in that group against a maximal no-

discrimination value of 0.5. The 7-month-olds showed increased looking in response to 

the test stimuli (M = 0.628, SD = 0.148, t = 3.117, df = 12; p = 0.005), whereas the 11-

month-olds’discrimination score was not significantly above chance (M = 0.553, SD = 

0.161, t = 1.326, df = 15, p = 0.103).  

 



17 

 

Page 17 of 34 

 

 

Figure 5 Discrimination values for 7- and 11- month olds. The reference line shows the 

point of no discrimination, 0.5. Error bars: +/- 1 SE. 

 

Closer impressionistic inspection revealed that the order of presentation of stimuli 

affected the looking times of the older group of infants. Infants who heard the aspirated 

affricate first showed a longer looking time for the test stimuli, whereas infants who 

heard the unaspirated affricate first did not. To further investigate these possible order 

effects we ran exploratory one-sample 1-tailed t-tests on the discrimination scores of the 

subgroups of both younger and older infants against a maximal no-discrimination value 

of 0.5. (Note that we did not run an ANOVA on the results of Experiment 1 because 

here there was a single independent variable – age. We did not intend to look for order 

effects in this study, so did not use order as one of the independent variables.  Our 

analyses regarding order effects in this experiment were all exploratory and post-hoc. 

Order effects were tested in a planned way in Experiments 2 and 3.)  

 

Since the analyses relating to order effects were run after viewing the data had led us to 

notice what seemed like an asymmetry, the significance values calculated for these one-

sample t-tests can only be taken to indicate possible avenues for future research; they do 

not signal significance in the usual sense. In the older group the mean discrimination 

value of the infants habituated to the unaspirated stimulus and then tested on the 

aspirated stimulus was 0.509 (SD = 0.168); this proved not to be significantly different 

from no discrimination (t = 0.157; df = 8, p = .440). Only four out of nine infants 

showed discrimination by having higher looking times in the test phase as compared to 

the habituation phase. The mean discrimination value for infants with the reverse order 
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of presentation of stimuli was 0.611 (SD = 0.142); here a ‘significant’ effect was 

observed (t = 2.058, df = 6, p = 0.043): Five out of seven infants showed discrimination. 

Among the 7-month-olds, the mean discrimination value of those habituated to the 

unaspirated stimulus and tested on the aspirated stimulus was 0.631 (SD = 0.171; t = 

2.030; df = 6, p = .045), with five out of seven infants showing discrimination; the mean 

discrimination value for those habituated to the aspirated stimulus and tested on the 

unaspirated stimulus was 0.623 (SD = 0.131; t = 2.307; df = 5; p = .035), with four out 

of six infants showing discrimination. The results hint that order of presentation of 

stimuli had no effect on the 7-month-olds (see Figure 6).  

 

Two two-tailed independent t-tests (one for each age group) were run to examine 

whether there were differences in habituation times between the conditions. For the 7-

month olds there was no significant difference: Mean habituation time to /tʃʰ/ was 

111.34s, SD = 70.62 and to /tʃ/ it was 112.71s, SD = 48.89, t = -0.039, df = 11, p = .970. 

For 11-month-old infants the mean habituation time to the non-native-like /tʃʰ/, 66.60s, 

SD = 24.00 was significantly different from the habituation time to the more native-like 

/tʃ/, 102.27s, SD = 33.22, t = -2.389, df = 14, p = .032. The difference in the number of 

habituation trials for the two types of stimuli was not significant for either age group: 

For the 7-month-olds the average number of trials for habituation to /tʃʰ/ was 13.67, SD 

= 8.96, and to /tʃ/ it was 10.00, SD = 5.39, t = .911, df = 11, p = .382. For the 11-month-

olds the mean number of trials for habituation to /tʃʰ/ was 8.71, SD = 2.75 and to /tʃ/ it 
was 9.11, SD = 1.96, t = -0.337, df = 14, p = .741.  

 

 
 

Figure 6 Discrimination values for both groups of infants by order of presentation of 

stimulus. . Error bars: +/- 1 SE. 
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7.0 Discussion 

Experiment 1 was conducted to explore discrimination of a non-native aspiration 

contrast in affricates by infants from English-speaking homes. It was found that 7-

month-olds successfully discriminated the contrast whereas the 11-month-olds did not. 

(The fact that the mean discrimination values of the two groups did not significantly 

differ is not evidence of a lack of perceptual narrowing; it merely shows that the 

difference is not large. The perceptual-narrowing claim is not about older infants being 

different from younger infants, but about whether younger infants succeed in 

discriminating a contrast that older infants do not discriminate; this was tested by 

comparing each group’s discrimination value to 0.5.)  

 

Order of presentation of the stimuli was not the focus of this experiment. Further 

exploration of the results showed that order of presentation did not affect the 

performance of the younger group of infants. However, a potential trend was observed 

in the older group: Infants showed better performance when the aspirated stimulus 

/tʃʰʊp/ was presented first. On the other hand, the subgroups tested were small (8 infants 

habituated to the unaspirated and tested on the aspirated stimuli and 7 infants in the 

subgroup given the opposite order), and asymmetry was not specifically targeted in this 

experiment and was only investigated after we had already seen the results 

 

The habituation time differences between the two orders of presentations in the 11-

month-old group may be spurious: Firstly, this finding is not mirrored in the analysis of 

number of trials. Secondly, habituation is more rapid to the less familiar segment. We 

looked at length of time to habituate as an additional measure of difficulty in processing 

the novel sound but, if anything, the novel sound seems to be processed more quickly 

by the 11-month olds. This finding is hard to explain at this stage.  

 

The asymmetry hinted at in the results for our 11-month-old group suggests that the 

ability to distinguish non-native sounds may not have been lost in the older infants. 

Note that although a group size of 13-15 infants was suitable for testing perceptual 

decline in a group as a whole, it is insufficient for testing subgroups within each group. 

In addition, as mentioned above, the asymmetry we appeared to be seeing was not what 

we had set out to find. Accordingly, we decided to run Experiment 2, with larger 

subgroups at each age, in order to test specifically for order effects in English infants’ 
discrimination of the non-native Urdu affricate contrast. We expected that, as before, 

the younger group would show discrimination regardless of order of presentation of the 

stimuli whereas the performance of the older group of infants would be affected by the 

order in which the stimuli are presented.  

 

8.0 Experiment 2: Is there an order effect for the non-native aspiration contrast in 

Urdu voiceless affricates? 

 

8.1 Experimental/Materials and methods – Experiment 2  

 

8.1.1 Participants: Thirty 7-month olds (mean age 224 days, range 208-228; 17 girls) 

and thirty 11-month olds (Mean age 336 days, range 320-340 days; 14 girls) were 

recruited through advertisements in newspapers. Only full-term infants from 

monolingual homes were included in the experiment. 
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8.1.2 Stimuli: The same tokens of /tʃʊp/ and /tʃʰʊp/ were used as in Experiment 1. 

8.1.3 Procedure: The procedure was identical to that used in Experiment 1. 

 

9.0 Analysis and Results – Experiment 2 

Both the 7- and the 11-month-old groups included subgroups of 15 infants each who 

received opposite orders of presentation. Figure 7 shows clearly that order of 

presentation of stimuli had no effect on the performance of the 7-month-olds. In 

contrast, an asymmetry was observed in the case of the older group; infants showed 

discrimination only when the stimuli with the aspirated affricate were presented first.  

 

A preliminary two-tailed t-test examined the difference in habituation times between 

conditions. No significant difference was found in either age group: 7-month-olds’ 
mean habituation time to /tʃʰ/ was 101.94s, SD = 55.96, and to /tʃ/ it was 87.90s, SD = 

40.18, t = 0.789, df = 28, p = .437. For 11-month-olds mean habituation time to /tʃʰ/ was 

91.15s, SD = 46.54 and to /tʃ/ it was 79.22s, SD = 46.63, t = 0.702, df = 28 p = .489. 

The difference in the number of habituation trials was not significant for either age 

group either: For 7-month-olds the mean number of trials for habituation to /tʃʰ/was 

10.20, SD = 4.65, to /tʃ/ it was 9.00, SD = 3.76, t = 0.777, df = 28, p = .443. For 11-

month-olds the mean number of trials for habituation to /tʃʰ/ was 9.40, SD = 4.29, and to 

/tʃ/ it was 9.33, SD = 5.95, t = -0.282, p = .780). (Note that in Experiment 2, as with the 

7-month-old group in Experiment 1, we found no difference in habituation time or 

number of trials to habituation between infants exposed to the different orders. There is 

thus no indication that one of the affricates is inherently, or acoustically, more attention-

grabbing and therefore slower to lead to habituation.) 

 

An independent two-way ANOVA with age (2 levels: 7, 11 months) and order (2 levels: 

aspirated-unaspirated, unaspirated-aspirated) as the independent variables was run with 

discrimination values as the dependent variable. The main effect of age was not 

significant (df = 1; F = 2.984; p = .09). The main effect of order was significant (df = 1; 

F = 16.360; p < 0.001), with aspirated-unaspirated resulting in significantly higher 

discrimination values (M = .704) than unaspirated-aspirated (M = .591). The interaction 

between age and order was also significant (df = 1; F = 10.494; p < 0.01). To further 

investigate the interaction, we followed this ANOVA with a pair of independent t-tests 

(using the Bonferroni correction), one on each age group. For the 11-month olds there 

was a significant difference between the two orders (t = 4.326, df = 28, p < 0.001, 2-

tailed), with aspirated-unaspirated (M = .725; SD = 0.107) showing a higher 

discrimination value than unaspirated-aspirated (M = .522; SD = 0.147). However, no 

significant difference was found between the two orders with the 7-month-olds (for 

aspirated-unaspirated order: M = 0.683, SD = 0.079; for unaspirated-aspirated: M = 

0.661, SD = 0.086, t = 0.746, df = 28, p = .462, 2-tailed). Figure 7 shows clearly that the 

order of presentation of the stimuli affected only the 11-month-olds; infants showed 

discrimination only when the stimuli with the aspirated affricate were presented first.  
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Figure 7 Discrimination values of 7- and 11-month olds by order of presentation of 

stimulus.  Error bars: +/- 1 SE. 

 

 

Note that the absence of a main effect of age is due to the fact that both age groups 

(when the two orders of presentation are grouped together) showed similar 

discrimination for the test stimuli. Two one-tailed one-sample t-tests (with Bonferroni 

corrections) were run to see whether these discrimination values are significantly higher 

than no discrimination (0.5). The 7-month-olds showed a significant increase in looking 

times in response to the test stimuli (M = 0.672, SD = 0.082, t = 11.501, df = 29, p < 

0.001) as did the 11-month-olds (M = 0.624, SD = 0.163, t = 4.146, df = 29, p < 0.001). 

Finally, we ran four 1-tailed one-sample t-tests, to test whether each of the subgroups’ 
discrimination value was significantly higher than no discrimination (0.5). Both 

subgroups of 7-months olds showed discrimination: for the aspirated-unaspirated order: 

t=9.001, df = 14, p < .001 (15 out of 15 infants showed discrimination); for unaspirated-

aspirated: t = 7.233, df = 14, p < .001 (14 out of 15 showed discrimination). Among the 

11-month-olds the subgroup tested with the aspirated-unaspirated order showed 

discrimination: t = 8.164, df = 14, p < .001 (14 out of 15 infants showed 

discrimination), but the subgroup tested with the unaspirated-aspirated order did not: t = 

0.578, df = 15, p = .286 (only nine out of 15 infants showed discrimination). In total 

about two-thirds of the infants in the older group (23 out of 30) showed discrimination, 

which explains the overall significant results for this group. Thus in Experiment 2 no 

evidence of perceptual narrowing was observed for the older group taken as a whole, 
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but one of the subgroups, namely, the one tested with the unaspirated-aspirated order, 

does show perceptual narrowing.  

 

10.0 Discussion 

Experiment 2 was conducted to explore the discrimination of a non-native aspiration 

contrast in affricates by infants from English-speaking homes. The order of presentation 

of the stimuli did not affect the performance of the younger group of infants. However, 

the 11-month-olds showed better performance when the aspirated stimulus /tʃʰʊp/ was 

presented first. This suggests that the ability to distinguish non-native sounds had not 

been lost in the older infants. Note, however, that when testing a single group of 11-

month-olds in Experiment 1, we did find loss of the ability to discriminate the contrast. 

Only when we ran a group twice as big as that used in Experiment 1 and in other similar 

experiments (e.g., Werker & Tees, 2002; Best & McRoberts, 2003) did older infants 

show the ability to discriminate at the group level.  

 

In Experiment 2, the subgroup habituated to the aspirated affricate behaved similarly to 

the 7-month-olds, showing no signs of developmental decline, unlike the other 

subgroup, which was habituated to the native-like aspirated affricate. The results make 

the evidence for perceptual narrowing more complex, since the older group of infants 

showed signs of developmental decline when presented with the stimuli in one order but 

not in the other, with the very same contrast. This suggests that the perceptual 

narrowing observed in infants at the end of first year may depend upon additional 

factors beyond those considered so far. At the end of the first year infants tend to show 

a decline in the perception of non-native contrasts that are not functional in the ambient 

language. However, if at that age infants can show discrimination for the non-native 

contrast, without special training, when presented with the stimuli in a specific order, 

what does that mean for the finding of perceptual narrowing? Is perceptual narrowing 

merely a function of task characteristics? Or do the order effects found here tell us 

something about infants’ sound representations? We will come back to this in the main 

discussion. But first we test whether adult English speakers show insensitivity to the 

contrast /tʃʰ/ - /tʃ/ and whether this ‘narrowing’ of their perception is advanced to such 

an extent that they cannot discriminate between the two sounds, even when presented 

with the aspirated affricate first. In order to investigate that issue we compared the 

performance of adult English speakers to a group of native Urdu-speaking adults.  

 

11.0 Experiment 3: Is the asymmetry in discrimination for non-native consonants 

maintained in adulthood? 

 

11.1 Experimental/Materials and methods – Experiment 3  

 

11.1.1 Participants: Twenty English-speaking adults (18 British, 2 Americans) were 

recruited through word of mouth, advertising to students and staff at the Department of 

Language and Linguistic Science at the University of York and through social media. 

All participants were born and brought up in monolingual English-speaking homes and 

were studying at the University of York at the time of the experiment. The mean age 

was 26 (range 18 – 35 years). Twenty adult native Urdu speakers were recruited in 

Pakistan through word of mouth, acquaintances and social media. All were born and 

raised in Pakistan and ranged in occupation from postgraduate students to working 

professionals.  The mean age was 30 (range 25-37 years).  
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11.1.2 Stimuli: The stimuli consisted of 12 minimal pairs of Urdu words, one of which 

contains the phoneme /tʃ/ and the other the phoneme /tʃʰ/ as word onset.
4
 The stimuli 

were recorded by a female adult native-Urdu speaker. Each of the words was recorded 

within the Urdu carrier sentence ‘can you say X’.  Each word was recorded three times, 

resulting in three different tokens of each word. We created 24 ‘different’ word pairs 

(minimal pairs) – 12 with the word containing the aspirated segment first and 12 with 

the word containing the unaspirated segment first. We also created 24 ‘same’ pairs, 12 

with two different tokens of the same word, both including the unaspirated segment, and 

12 with both tokens including the aspirated segment (see Appendix for word lists). No 

token was used more than once.  

 

11.1.3 Procedure: The procedure was identical to that used in the adult pilot test. The 

participants were tested using an AX discrimination task identical to that used in the 

adult pilot.  

 

12.0 Analysis and results  

To compare the English (non-native) adult listeners to the Urdu (native) adult listeners 

we ran two mixed ANOVAs, with native language (2 levels: Urdu, English) as a 

between-participant variable, and same-different (2 levels: same, different) and order (2 

levels: aspirated first, unaspirated first) as within-participant variables. The dependent 

variables were proportion of correct responses (out of 12) in the first ANOVA and 

reaction time (RT, for correct responses only) in the second. The responses of one of the 

Urdu participants were taken out of the analysis, because the pattern of their responses 

showed that they had not engaged with the task (they responded ‘same’ to 47 out of 48 

trials). The final sample therefore included 19 Urdu participants and 20 English 

participants. In the ANOVA run on proportion of correct responses there was no main 

effect of order (F(1) = 0.038, p = .847) nor of same-different (F(1) = 0.060, p = .807). 

There was, however, a significant main effect of native language, with the mean 

proportion of correct responses for the Urdu native listeners being higher (M = .871, SD 

= .106) than that of the English listeners (M = .694, SD = .070): df = 1; F(1) = 38.022; p 

< .001.).
 
No interaction was significant. 

 

We followed the ANOVA with four two-tailed one-sample t-tests on the proportion of 

correct responses for each trial type, separately for each native-language group (using 

the Bonferroni correction), to assess whether each group’s performance on each type of 

stimulus was significantly different from chance (0.5). Both groups performed 

significantly better than chance on all types of trials: For the Urdu adults: Different-

Aspirated first: M = .833, SD = .171, t = 8.485, df = 18, p < .001, Same-Aspirated first: 

M = .900, SD = .149, t = 11.716, df = 18, p < .001, Different-Unaspirated first: M = 

.873, SD = .156, t = 10.445, df = 18, p < .001; Same-Unaspirated first: M = .877, SD = 

.109, t = 15.098, df = 18, p < .001. For the English adults: Different-Aspirated first: M = 

.708, SD = .147, t = 6.345, df = 19, p < .001, Same-Aspirated first: M = .679, SD = 

.158, t = 5.062, df = 19, p < .001, Different-Unaspirated first: M = .725, SD = .151, t = 

6.674, df = 19, p < .001; Same-Unaspirated first: M = .663, SD = .136, t = 5.325, df = 

19, p < .001. We ran a dˈ analysis to assess the sensitivity of the discrimination in each 

of the groups. This type of analysis combines the proportion of hits (i.e., ‘different’ 
trials receiving correct ‘different’ judgments from the participants) with the proportion 

                                                 
4
 Four additional pairs were used in the test but were later remove from the analyses, due to one member 

of the pair being a word and the other a nonword.  
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of false alarms (i.e., ‘same’ trials receiving erroneous ‘different’ judgments from the 
participants) (Keating, 2005). The dˈ analysis shows higher sensitivity on the part of the 

Urdu adults (a mean of 1.73 in the Aspirated-first condition and 1.75 in the 

Unaspirated-first condition) than the English adults (a mean of 1.57, Aspirated-first, and 

1.60, Unaspirated-first). Order of presentation has little if any effect in either group. 

 

In the ANOVA run on RTs for correct responses there was a main effect of native 

language, with Urdu native participants (M = 1188.89 ms, SD = 308.96) responding 

faster than English participants (M = 1559.58, SD = 437.16): F(1) = 9.260, p =.004) and 

of same/different, with ‘same’ trials receiving slower responses (M = 1436.90, SD = 

486.26) than ‘different’ trials (M = 1321.08, SD = 419.63): F(1) = 4.221; p = .047). 

None of the interactions were significant. 

 

12.1 Discussion 

Experiment 3 showed that native English adults do indeed show reduced sensitivity for 

the Urdu aspirated-unaspirated affricate contrast: they were both less accurate at 

discriminating the contrast and slower to respond to the stimuli than Urdu-speaking 

adults. Although they found the task difficult (as evidenced by their slow responses), 

English adults were still able to discriminate the two affricates at an above-chance level. 

This result, however, is not unlike findings regarding poor (but above chance) 

discrimination for other non-native sounds in adult listeners: Japanese listeners tested on 

the perception of English /la/-/ra/ identified the correct phoneme around 70% of the 

time (/r/ was identified correctly on 71% of trials and /l/ on 67% of trials: Hattori & 

Iverson, 2009). Low proficiency English participants, native speakers of Saudi Arabic, 

tested on perception of English phonemes identified /p/ correctly 74% of the time and 

/b/ 68% of the time (Alshangiti, 2015). When we set out to test the English adults we 

expected to find their performance to be poorer than it actually was, and we expected 

that we might see an asymmetry. As it happens, adults performed well enough on both 

orders; there was no evidence for asymmetry. However, it is possible that the AX task 

that we used was not difficult (and therefore sensitive) enough, and that a harder task, 

which would have resulted in reduced performance among the English adults, would 

have shown the advantage of one order of presentation over the other.  

 

As regards the difference in performance between ‘same’ and ‘different’ pairs in the RT 
analysis, we take this to be task-dependent: Since every pair used for judging included 

two different tokens, the members of the pair were always to some extent different from 

one another. It is therefore arguably easier for a listener to respond to this difference 

with a ‘different’ judgment than to overlook small differences between tokens and judge 

them the ‘same’. The dˈ analysis actually takes both of these types of trial into account 

and combines information about accuracy to give a sensitivity score. However, the issue 

of the different task demands in the trials involving similar vs. different stimuli is not 

directly relevant to the developmental question we are investigating here.  

 

The results from the adult study should be interpreted with caution. First, the infants and 

adults were tested on different tasks and with different stimuli. It is also possible that 

the relatively short Inter Stimulus Interval (ISI) that we used (300 ms) favours 

participants using auditory rather than phonetic processing. Repp and Crowder (1990) 

pointed out that with a short ISI listeners rely on continuous auditory information for 

comparison or identification, while with an increase in ISI, listeners rely on phonetic 

information or category labels. Our results might have looked different, therefore, had 
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we used a longer ISI. However, Tsushima et al. (2003) find asymmetry in consonant 

discrimination by adults even at very short ISI (100 ms), though only marginally at an 

ISI of 300 ms: These researchers tested Japanese adults on /b/-/v/ in an AX 

discrimination task. They found order effects, such that discrimination is better when /v/ 

is presented first than when /b/ was first (only /b/ occurs as a phoneme in Japanese). 

Therefore, whether the ISI used here was a problem or not remains unclear. Secondly, a 

considerable difference was found in adult performance between the pilot and 

Experiment 3. This difference can be interpreted in the light of other adult 

discrimination studies showing the effects of task familiarity on discrimination 

(Tsushima et al., 2003, 2005; Tsushima 2007, 2011). In Tsushima et al. (2003), order 

effects in the expected direction were systematically observed only in the pretest, which 

is comparable to our Experiment 3, but not after repeated training with the same stimuli 

over several days. The authors attributed the disappearance of the order effects after the 

pretest to participants’ increased proficiency at discriminating the contrast. In Tsushima 

(2011) Japanese adults were again tested on the /b/-/v/ stimuli, using a fixed category 

procedure (for half of the listeners /b/ always occurred first and vice versa). It was found 

that the participants in the /b/-first group were able to take advantage of the frequent 

presentation of /b/ as the first stimulus by picking up critical acoustic cues that helped in 

discrimination - and that are also used in the native language. Due to their unfamiliarity 

with the acoustic properties of /v/ the adults in the /v/-first group could not similarly 

gain from the repeated presentations. The Tsushima (2011) study found that with 

increased familiarity, this order effect not only disappeared, but was reversed (see 

Tsushima, 2007, for similar results for /l-/r/). In our study the English adults in 

Experiment 3 listened to 48 pairs of minimal pairs featuring /tʃ/-/tʃʰ/, those in the pilot to 

only 2 pairs. It is possible that in Experiment 3 the discrimination of English-speaking 

adults improved as their increased familiarity with the stimuli increased, leading to 

relatively high performance and a loss of the order effect. 

 

13.0 General Discussion 

The main goal of the study was to investigate asymmetry in English infants’ (7- and 11-

month-olds) and adults’ discrimination of a non-native Urdu contrast.  Experiment 2 

showed that the order of presentation had no effect on 7-month-olds. However, 11-

month-olds discriminated successfully only when the aspirated affricate was presented 

first. These results confirm the existence of an order effect for the older group of 

infants. As no order effect was found for the younger group, we can conclude that the 

asymmetry found in this study is not due to a universal perception bias but must be a 

consequence of learning from the input. The asymmetry for consonant perception 

(observed in Experiment 2) was not expected, since no previous studies that we are 

aware of have reported such a learning-based asymmetry for consonants (apart from 

Segal et al., which found a similar but non-significant trend).
5
 Based on previously 

published findings, we expected (in Experiment 1) to see a developmental decline for in 

discrimination of two non-native consonants that differ in Category Goodness, one 

being a good exemplar of a native sound category and the other a deviant one (based on 

                                                 
5
 Note that Mugitani et al. (2009) found a learning-based asymmetry for vowels. Interestingly, in that 

study, 18-month-olds showed an asymmetry in discriminating vowel length only when length was 

phonemically contrastive in their native language (Japanese). English-learning 18-month olds showed 

discrimination, regardless of order of presentation, even though vowel length is not contrastive in English. 

As such, this could be a case of perceptual narrowing in the opposite direction to that usually found: 

distinctions that are contrastive in the native language are not recognised, while those which are not 

contrastive are recognised. 
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Best’s 1993 taxonomy; see Kuhl , 2004; Kuhl et al., 2008; 2008; Werker et al., 1981, 

Werker & Tees, 1983, 1984). Our findings from both Experiments 1 and 2 suggest that 

the finding of a decline in perception may depend, at least in part, on the order in which 

stimuli are presented, so that the decline may be a more nuanced phenomenon than has 

generally been assumed.  

 

As discussed in the introduction, infants’ early experience with language input plays a 

vital role in shaping their perceptual development. If two sounds do not contrast in 

infants’ language environment, the lack of perceptual experience with the contrast 

attenuates infants’ ability to recognize it. This attenuation makes the perception of 

stimuli in the region of that particular perceptual boundary less discriminable. At seven 

months of age, prior to the time when infants’ perceptual development becomes attuned 
to the phonological categories of the ambient language, the infants in this study were 

able to discriminate the Urdu contrast. As the aspirated-unaspirated affricate contrast 

does not occur in English and infants are exposed only to unaspirated affricates, the 

input to English-learning infants likely has a unimodal distribution in this area, which 

leads to the formation, towards the end of the first year, of a broad single category for 

voiceless affricates rather than two separate categories. This native-category learning 

can make the discrimination of the non-native aspirated-unaspirated affricate contrast 

more difficult: The two phones fall within a single category for English (voiceless 

alveolar affricate) and differ in Category Goodness. Experiment 1 indeed showed the 

decline in discrimination of the contrast in 11-month-olds as a group. (Although 11-

month-old infants in Experiment 2 did, as a group, discriminate the contrast, group sizes 

were much larger than is standard for this type of experiment, where more typically N = 

15 or fewer in each age group, as in, e.g., Werker & Tees, 2002 and Best & McRoberts, 

2003). Experiment 3 showed that native English adults exhibit a perceptual decline in, 

rather than a complete loss of, the ability to discriminate the two sounds in adulthood.  

 

However, Experiment 2 showed that this picture may be too simple: At 11 months 

evidence for perceptual narrowing may or may not be found, depending not only on the 

child and his/her developmental stage but also on task characteristics. The 11-month-old 

infants showed better discrimination when the Urdu voiceless aspirated affricate – 

sufficiently different from its closest English equivalent to stand out for them – was 

played first. This finding is consistent with the perceptual magnet effect previously 

observed in within-category vowel discrimination by infants and adults, where more 

prototypical vowels act as perceptual magnets (Kuhl, 2004). Frequency of occurrence in 

the input plays an important role in shaping infant’s perceptual categories (recall the 
bimodal/unimodal effect in Maye et al., 2002 and 2008). The voiceless period for 

English  /tʃ/  (+83 ms) is very close to that of the Urdu voiceless unaspirated affricate 

(+80 ms) but is half the duration of the Urdu voiceless aspirated affricate /tʃʰ/ (+140 

ms). In terms of frequency of exposure, then, English-learning infants would have heard 

many affricates similar to the unaspirated Urdu affricates but few if any affricates 

similar to the Urdu aspirated one. When the 11-month-olds heard the familiar or 

prototypical (unaspirated) affricate in the habituation phase, this may have activated 

various familiar exemplars, since English has many words starting with /tʃ/; this should 

result in strong activation of that phonetic category. Arguably as a result of this, when 

the non-prototypical affricate /tʃʰ/ was played after the prototypical affricate /tʃ/ it was 

assimilated to that category, blocking discrimination. On the other hand, when the 

unfamiliar or non-prototypical (aspirated) affricate was played first, it likely failed to 

activate any familiar exemplars very strongly or it may have activated exemplars of 
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different kinds, belonging to no one category. The infants would have been unable to 

relate it straightforwardly to anything they had heard before. Thus it presented a sharp 

contrast to the native-like affricate /tʃ/ that followed, facilitating discrimination of the 

test stimuli.  

 

Although categorical perception is assumed to obtain for consonants – as opposed to 

gradient perception for vowels – there is evidence against strong categorical perception 

in consonants (as discussed in the Introduction). Moreover, fluent speech contains a mix 

of central exemplars (prototypes) and not-so-typical exemplars, such that consonants 

may vary with speaker, context and co-articulatory effects (Howell, 1983; Nartey, 1984; 

Nittrouer & Studdert-Kennedy, 1987; Guenther, 1995; Suzuki, Kitamura, Masaki & 

Michi, 2001; Kleber, Harrington, & Reubold, 2011). In particular, VOT varies for stops 

in word-initial position as a function of the following vowel and listeners have to adjust 

their VOT boundaries in relation to this interaction (MacKain, 1982). Inference and 

prediction must play an important role in word or phoneme identification, given that 

listeners typically have no problem recognizing phonemes, even if the speakers fail to 

generate all the expected attributes (Medin & Barsalou, 1987). A clearly produced /b/ 

and a poorly produced /b/ will both be perceived as /b/ due to this interplay of inference 

and prediction. Exemplars of many consonantal categories vary along a critical 

continuum (like VOT), with the category membership of exemplars near the boundary 

being less strong and clear than that of exemplars close to the center or prototypes (see 

Grieser & Kuhl [1989] for a detailed discussion of how infants organize speech 

categories around [vowel] prototypes). Infants might react differently to consonant 

tokens near to vs. far away from the center of a category. Experiment 2 provides 

evidence in this regard by showing that the consonants presenting prototypical values 

acted as perceptual magnets in a perception test, assimilating neighboring exemplars. In 

contrast, consonants at the extreme end of the range, when presented first, aided 

discrimination.  

 

Based on the three studies reported here the results appear to reflect a learning-based, 

language-specific effect, not a universal bias. The 7-month-olds showed no order effect 

for the non-native affricate contrast; only the 11-month-olds showed such an effect. No 

difference was found in the habituation time or number of trials to habituation between 

infants exposed to the two different orders in either age group in Experiment 2. This 

might suggest that there is nothing inherent to the affricate contrast to make one 

member acoustically more salient and thus easier for infants to habituate to. Moreover, 

in Experiment 3 with adults no order effects were observed in either the native Urdu or 

the English group, contrary to what would be expected in relation to a universal bias, 

although we realize that the adult study may have been insufficiently sensitive to 

capture any asymmetry. In future work it would be important to test a native-language 

control group, i.e., Urdu infants, on the Urdu affricate pair.   

 

Asymmetries have been reported in a number of non-linguistic stimulus domains, such 

as line orientation and numbers (Rosch, 1975) and geometric figures and country 

concepts (Tversky & Gati, 1978), but no study other than that of Kuhl et al. (2006) has 

reported significant evidence for asymmetry in non-native consonant perception in 

infants. Kuhl et al. (2006) found asymmetries in consonant perception for /l/ and /r/ 

when testing Japanese and English infants. However, that study found asymmetry for 

both younger and older infants, regardless of native language. Their findings cannot, 

therefore, be traced to native-language learning leading to the attenuation of sensitivity 
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to non-native contrasts, and accordingly they are not directly relevant to the issue of 

perceptual narrowing. They are more in line with the Polka & Bohn (2011) model of 

perceptual asymmetry due to universal perceptual biases. Our results and those of Segal 

et al. (2016) are the only ones we are aware of that show asymmetry in consonant 

perception under conditions in which asymmetry is seen in the older but not in the 

younger group tested. Table 2 compares the findings of Kuhl et al. (2006), Segal et al. 

(2016) and the present study. 

 

Table 4 Comparison of present study findings with other studies on non-native 

consonant asymmetry 

 Manner of 

articulation 

Direction 

of 

asymmetry 

Asymmetry observed for 

   Native
a
 

 

Non-native 

   Younger Older Younger Older 

Kuhl et 

al. (2006) 

sonorants /lа/ - /rа/  Yes Yes Yes Yes 

Segal et 

al.  

(2016) 

obstruents /pа/ - /bа/ No No No Yes 

Dar et al. 

(present 

study) 

obstruents /tʃʰ/  /tʃ/ -- -- No Yes 

       

a 
 -- indicates variable was not tested  

 

 

 

14.0 Conclusions 

The findings of the present study do not challenge studies showing perceptual 

narrowing in infants. Rather, the results suggest that each consonantal contrast may 

have its own developmental story, and that the narrowing observed in infant speech 

perception tasks depends to some extent on the particular task and the particular 

contrast.  

 

A number of interesting questions remain. In the present study the presentation of /tʃʰ/ in 

the first phase aided the English-learning infants’ discrimination, but can similar results 
be obtained with infants from Urdu-speaking homes? It remains for future studies to test 

Urdu-learning infants on the affricate contrast /tʃ/ - /tʃʰ/. The age effect is yet another 

issue: Are the asymmetries maintained at later stages for the contrasts that do not 

become functional in the native language? If not, at what age do they disappear? The 

findings of an order-effect in infant non-native consonant discrimination opens up new 

lines of research, which may shed new light on adult as well as infant processing of 

consonants.  
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Appendix: List of words used in Experiment 3 

 

Unaspirated Aspirated 

tʃa:l tʃʰa:l 

tʃa:p tʃʰa:p 

tʃak tʃʰak 

tʃal tʃʰal 

tʃoti tʃʰoti 

tʃiɽna tʃʰiɽna  

tʃi:n tʃʰi:n 

tʃo n tʃʰo n 

tʃour tʃʰouɽ 
tʃup tʃʰup 

tʃupkay tʃʰupkay 

tʃu:na tʃʰu:na 

 


