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Diffusing-Wave Spectroscopy (DWS) extends dynamic light scattering measurements to samples
with strong multiple scattering. DWS treats the transport of photons through turbid samples as a
diffusion process, thereby making it possible to extract the dynamics of scatterers from measured
correlation functions. The analysis of DWS data requires knowledge of the path length distribution
of photons traveling through the sample. While for flat sample cells this path length distribution can
be readily calculated and expressed in analytical form, no such expression is available for cylindrical
sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat
sample cells. Here we show how DWS measurements, in particular DWS-based microrheology
measurements, can be performed in standard dynamic light scattering setups that use cylindrical
sample cells. To do so we perform simple random walk simulations which yield numerical predictions
of the path length distribution as a function of both the transport mean free path and the detection
angle. This information is used in experiments to extract the mean-square displacement of tracer
particles in the material, as well as the corresponding frequency-dependent viscoelastic response.
An important advantage of our approach is that by performing measurements at different detection
angles, the average path length through the sample can be varied. Using measurements on a
single sample cell, this gives access to a wider range of length and time scales than obtained in a
conventional DWS setup. Such angle-dependent measurements also offer an important consistency
check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even
though the respective path length distributions are very different. We validate our approach by
performing measurements both on aqueous suspensions of tracer particles and on solid-like gelatin
samples, for which we find our DWS-based microrheology data to be in very good agreement with
rheological measurements performed on the same samples.

PACS numbers: 47.57.-s, 46.35.+z, 78.35.+c, 07.60.-j

I. INTRODUCTION

Since its development in the 1980’s, Diffusing-Wave
Spectroscopy (DWS) [1–3] has proven to be an important
and versatile tool for studying the dynamics, mechanics
and structure of a wide range of soft materials. [4–11]
By taking advantage of the fact that the transport of
photons through an optically turbid sample can be de-
scribed as a diffusion process, DWS extends Dynamic
Light Scattering (DLS) measurements to the highly mul-
tiple scattering regime. It thus enables access to the
dynamics of a material at very short time and length
scales. The method is particularly useful when combined
with the concept of microrheology, where information on
the dynamics of tracer particles added to a material are
used to extract information on the material’s viscoelas-
tic properties. [12–16] However, the proper analysis of
any DWS measurement requires detailed knowledge of
the path length distribution P (s) for photons traveling

∗Electronic address: H.M.Wyss@tue.nl; URL: http://www.mate.
tue.nl/~wyss

through the sample to the detector. For a number of sam-
ple geometries and experimental situations, the calcula-
tion or estimation of P (s) has been described in previous
studies, including for the situation of backscattering from
a flat sample cell of infinite thickness, or for transmission
through cone-plate cells or flat circular cells of finite di-
ameter and thickness. [9, 17, 18] Importantly, for sample
cells in the shape of a flat slab of thickness L, infinitely
extended in height and width, P (s) can be expressed in
analytical form, and the analysis of DWS data is there-
fore straightforward. [3, 17]
For the cylindrical sample cells used in conventional dy-
namic light scattering setups, however, an analytical ex-
pression for P (s) is not available. DWS measurements
are therefore usually performed in dedicated instruments
that use flat sample cells.

In this paper, we show how DWS-measurements can be
performed in a standard dynamic light scattering setup,
using cylindrical sample cells. We perform simple numer-
ical random walk simulations to account for the propa-
gation of photons through a cylindrical cell and describe
how this information is used to obtain the mean-square
displacement of tracer particles from the temporal au-
tocorrelation functions determined in experiments. We
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further show that by performing measurements at dif-
ferent detection angles, the range of accessible time and
length scales can be extended; this is in analogy to stan-
dard DWS measurements employing a range of different
cell thicknesses. Importantly, our approach also provides
a valuable consistency check, especially in the context
of microrheology, since measurements taken at different
detection angles should yield the same viscoelastic re-
sponse, even though the corresponding correlation func-
tions must be very different due to the variation in ge-
ometry and average path length.
In analogy to a conventional DWS measurement, the

transport mean free path l⋆ is determined by a calibration
measurement on tracer particles of well known uniform
size, suspended in a Newtonian liquid of known viscos-
ity; the expected single particle dynamics is thus known
a priori. Alternatively, the transport mean free path can
also be directly determined from the measured scatter-
ing intensity as a function of angle, I(θ) if an initial
experimental calibration is combined with results from
our simple numerical calculations. In the highly multiple
scattering limit, and in the absence of absorption in the
sample, I(θ) is well approximated by a function that de-
pends only on l⋆, on the corresponding calculated path
length distribution P (s), and on a constant βexp that is
determined by the experimental setup.
We thus demonstrate that standard goniometer light

scattering setups can be successfully used for DWS mea-
surements. Compared to dedicated DWS setups, our
method has the advantage of being able to reliably deter-
mine the transport mean free path l⋆ as well as to extend
the range of accessible length and time scales, using only
a single cylindrical sample cell.
We illustrate and test the use of our approach by per-

forming DWS-based microrheology measurements on a
typical solid-like soft material, gelatin, and find the re-
sulting frequency-dependent viscoelastic moduli to be in
very good agreement with separately performed rheolog-
ical measurements.

II. EXPERIMENTAL: MATERIALS AND
METHODS

A. Background on DLS, DWS, and microrheology

Standard static and dynamic light scattering experi-
ments are limited to samples that exhibit very little mul-
tiple scattering, with the overwhelming majority of de-
tected photons having been scattered only a single time
within the sample. A typical setup for such single scat-
tering experiments uses a cylindrical sample cell that is il-
luminated by a laser, as shown schematically in Fig.1(A).
The detector, typically comprising an optical fiber that is
coupled to a photomultiplier tube, can be positioned at a
range of detection angles θ, corresponding to scattering
wave vectors q(θ) = 4πn

λ sin(θ/2), where n is the refrac-
tive index of the sample and λ is the wavelength of the

1
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y

FIG. 1: (Color online) Schematic experimental setup for typ-
ical dynamic light scattering measurements. (A) Standard
dynamic light scattering (DLS) setup employing a cylindrical
sample cell and a goniometer, which enables accessing dif-
ferent scattering angles θ. (B) Diffusing-Wave Spectroscopy
(DWS) setup in transmission geometry. The pathways of pho-
tons are well-described by a random walk of step size l⋆. (C)
Schematic of random walk simulations in a cylindrical geome-
try. The detection angle θ is defined as for conventional DLS;
here it determines the distance L(θ) between the points of en-
try and exit of detected photons. (D) Expected distribution
p(z) of the z coordinate where a photon exits the cylinder; a
fraction αz (marked area) reaches the detector.

laser in vacuum. For single scattering, the fluctuations in
the detected intensity, which reflect the dynamics of the
scatterers, are then quantified by the temporal intensity
autocorrelation function

g2(t) =
< I(t̃+ t)I(t̃) >t̃

< I(t̃) >t̃
2 , (1)

where t is the lag time and the brackets < .. >t̃ indicates
a time-average over all times t̃. The field autocorrelation
function g1(t), measured at a wave vector q, reflects the
temporal fluctuations of the electric field. It can be re-
lated, via the so-called Siegert relation to the intensity
correlation function, as g1(t) ≈

√

(g2(t)− 1) /β, where β
is the coherence factor, [19] a constant that depends on
the experimental setup. For a Gaussian distribution of
displacements ∆r, the field correlation function g1(t) is
directly linked to the dynamics of scatterers in the sam-
ple, as

g1(t) = e−
q2

6 〈∆r2(t)〉, (2)

where
〈

∆r2(t)
〉

is the time-dependent mean-square
displacement of scatterers in the material. For the sim-
plest example, where the scatterers are uniformly sized
particles suspended in a Newtonian liquid, the particles
undergo ideal Brownian motion, and thus

〈

∆r2(t)
〉

=
6Dt, where D is the particle diffusion coefficient in 3 di-
mensions. For this case, the field correlation function
has a single exponential form, g1(t) = e−Γt, where the
q-dependent decay rate Γ = Dq2 is set by D.
Diffusing-Wave Spectroscopy (DWS) is an extension

of dynamic light scattering measurements to the highly
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multiple scattering regime. A typical experimental setup
for DWS is shown in Fig.1(B). In contrast to conven-
tional DLS measurements, this technique requires that
photons are scattered many times, before they reach the
detector. For this highly multiple scattering regime, the
propagation of photons through the sample can be ade-
quately described as a simple diffusion process, where the
details of each single scattering event are no longer rele-
vant. This photon diffusion processes can be accounted
for by a single parameter, the so-called transport mean
free path l⋆. This characteristic length scale is defined as
the average distance a photon travels in the sample be-
fore its direction of propagation is randomized. The path
of photons through the sample can thus be approximated
as an ideal random walk with step size l⋆. For such a ran-
dom walk the path length of photons, and the number
of randomizing scattering events, is no longer uniform,
as is the case for single scattering. Instead, the correla-
tion function measured in an experiment is determined
by contributions from all path lengths s weighted by the
path length distribution P (s), as

g1(t) =

∫ ∞

0

P (s)e−
k0

2

3 〈∆r2(t)〉s/l⋆ds, (3)

where k0 = 2πn/λ is the magnitude of the photon wave
vector in the sample and s/l⋆ reflects the number of ran-
domizing scattering events experienced by a photon with
path length s. [3] The basis for this simple form of Eq.3 is
that each of the approximately s/l⋆ randomizing scatter-
ing events contributes to a change of this particular pho-
ton path by a squared distance of

〈

∆r2(t)
〉

, leading to
a partial decorrelation of g1(t). The cumulative decorre-
lations from all these randomizing scattering events thus
lead to the functional form in Eq.3. Knowledge on the
path length distribution P (s) is therefore essential in the
analysis of DWS measurements; without such knowledge
the measured correlation functions cannot be related to
the dynamics of the scatterers. The path length distri-
bution depends sensitively on the geometry of the sam-
ple cell used in the experiment. For sample cells in the
shape of a flat slab, infinitely extended in both height and
width, P (s) can be expressed in analytical form as a func-
tion of l⋆ and the thickness L of the sample cell. [3, 17]
This is one of the main reasons why DWS measurements
have typically relied on measurements performed in ded-
icated instruments, employing flat sample cells.
Such dedicated DWS instruments can also offer other

important advantages, in particular for measurements on
solid-like, nonergodic samples, where the measured, time-
averaged correlation functions are not representative of
the ensemble-averaged dynamics of the sample. [20]
Methods for acquiring ensemble-averaged correlation
functions in DWS measurements include the use of
double-cell techniques, where either an ergodic sample
with slow dynamics [21] or a slowly rotating opaque
disc [22] is placed in front of the sample cell. Both these
techniques create a slow randomization of the incoming

photon paths, resulting in an ensemble-averaging of the
collected temporal correlation functions. Either transla-
tions of the sample cell or rotations of an opaque disc
can also be employed for ensemble-averaging using echo
techniques, [23] yielding ensemble-averaged correlation
functions at long time scales and with excellent statis-
tics. [22, 24] While these ensemble-averaging techniques
could in principle also be incorporated into a standard
goniometer setup, we choose an alternative method, so-
called Pusey-averaging. This method uses the measured
time-averaged correlation function and the measured
ensemble-averaged scattered intensity together with a
simple theoretical treatment to provide the ensemble-
averaged correlation function. [25, 26]
The ensemble averaged scattering intensity 〈I〉e can be

readily acquired in separate intensity measurements dur-
ing which the sample is rotated; the measured dynamics
is perturbed by the motion of the sample, but the average
scattering intensity is still properly ensemble-averaged.
Using the ratio of the ensemble-averaged to the time-

averaged scattering intensities Y =
〈I〉

e

〈I〉
t

, the ensemble-

averaged field autocorrelation function g1(t) can then be
estimated as a function of the time-averaged correlation
function as

g1(t) =
Y − 1

Y
+

1

Y

[

g̃2(t)− σ2
]

1

2 , (4)

where g̃2(t) = 1 + g2(t)−1
β is the time-averaged inten-

sity autocorrelation function normalized by the coherence
factor β, which is obtained from the separate ensemble-
averaged measurements, and σ2 = g̃2(0)−1 characterizes
the short-time intercept of g̃2(t).
We can now use the resulting ensemble-averaged field

autocorrelation function g1(t) to extract viscoelastic
properties of the sample, using the microrheology con-
cept [7, 12]. To do so, we employ the local power-law
approximation developed by Mason et al [15, 16]. In
brief, the method is based on the assumption that the
Stokes-Einstein relation, which links the thermal motion
of particles in a Newtonian liquid to the viscosity of the
surrounding liquid, can be generalized to viscoelastic ma-
terials with frequency-dependent linear viscoelastic mod-
uli. The approximation also neglects inertial effects on
the motion of the probe particles, which is justified for
most soft materials at frequencies below ≈ 1 MHz.
By describing the time-dependent mean square dis-

placement as a local power-law around each data point,
the magnitude of the frequency-dependent complex mod-
ulus can be expressed in analytical form as

|G⋆(ω)| ≈ kBT

πa 〈∆r2(1/ω)〉Γ(1 + α(1/ω))
, (5)

where a is the particle radius, kBT the thermal en-

ergy, α(t) =
∂ ln(〈∆r2(t)〉)

∂ ln(t) is the logarithmic slope of the

mean-square displacement as a function of lag time, and
Γ denotes the gamma function.
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B. Sample preparation

Polystyrene particles (micromod Partikeltechnologie
GmbH, Germany) coated with a grafted layer (Mw =
300 g/mol) of poly(ethylene glycol) were used as tracer
particles in the DWS measurements. The diameter of
the particles is 1 µm and they are provided suspended
in water at a concentration of 5 wt%. The test samples
with tracers in water are prepared by mixing the stock
particle suspension with deionized water (Milli-Q water,
σ > 18MΩ · cm at 25 C), to obtain the desired tracer
particle concentrations Ctracer. To study the effect of the
transport mean free path l⋆, which is expected to scale
as l⋆ ∝ 1/Ctracer, we prepare a series of samples with
particle concentrations ranging from Ctracer ≈ 0.3 wt%
to 5 wt%.
The aqueous gelatin gel is prepared by mixing water

with 5 wt% gelatin powder (type A, from porcine skin,
Sigma, USA) and 1.25 wt% of tracer particles at elevated
temperatures of ≈ 60◦C. The mixture is homogenized
for 30 minutes using a magnetic stirrer, transfered to
the cylindrical sample cell used in the experiment, and
subsequently allowed to cool down to room temperature.

C. Light scattering experiments

All dynamic light scattering experiments are per-
formed in a static and dynamic light scattering setup
(ALV CGS–3, ALV GmbH, Germany), equipped with a
50 mW solid state laser (λ = 532 nm) and a goniome-
ter that allows for variation of the detection angle from
θ ≈ 20 deg to θ ≈ 160 deg. Measurements are performed
in cylindrical cells with outer diameter 10 mm and inner
diameter 8.65 mm; the cell radius relevant to the propa-
gation of photons in the sample cell (see Fig.1(C)) is thus
R ≈ 4.33 mm. Measurements of 30 s duration are per-
formed at detection angles between 30 deg and 150 deg
in steps of 10 deg. To minimize the detection of stray
light, reflected from surfaces in the setup, our measure-
ments are performed in vertical-horizontal mode, with
the incoming light vertically polarized and a horizontal
polarizing filter placed in front of the detector.
For the gelatin samples we use separate experiments

on the same sample to determine the ensemble-averaged
scattering intensities 〈I〉e as well as the coherence fac-
tor β needed for the Pusey averaging method. In these
separate experiments the sample cells are slowly rotated
during data acquisition; we perform three such measure-
ments at each scattering angle, each lasting 10 seconds.
In principle, the light scattering measurements we de-

scribe in this paper could be performed with any stan-
dard goniometer setup; however, not all laser sources
that are included in standard goniometer setups may be
suitable for performing DWS measurements. In partic-
ular, as a result of the long path lengths of the pho-
tons through the sample, DWS requires a laser source
with a sufficiently long coherence length. Information

on the coherence length of a laser is difficult to obtain
from the standard information provided by manufactur-
ers, and its measurement requires complex setups only
available in specialized optics laboratories. Within the
range of concentrations studied here, the longest relevant
path lengths of photons through the samples were limited
to around 3 meters. This would be a problem for instance
if a Helium-Neon laser were used, which has a typical co-
herence length of only around 20 cm. Semiconductor
lasers, and lasers coupled into single mode fibers, how-
ever, typically have much longer coherence lengths that
can reach hundreds of meters. While we have not directly
measured the coherence length of our laser source, the
good agreement of our path length simulations with ex-
periments(see Results section) makes us confident that in
our setup the coherence length of the laser is larger than
the relevant path lengths of photons traveling through
the sample.

III. RESULTS AND DISCUSSION

A. Simulation of photon paths through the sample

To properly interpret experimental data in a setup
with a cylindrical cell, the path length distribution P (s)
of photons traveling through the sample is required both
as a function of the detection angle θ and the transport
mean free path l⋆.
To achieve this, we perform numerical simulations of

photons traveling through a cylindrical cell, assuming
that they undergo an ideal random walk with step size l⋆.
In the 2-dimensional coordinate system given in Fig.1(C),
photons are released at point (x/R = −1 + l⋆/R, y/R =
0), where l⋆ is the transport mean free path and R is the
radius of the cylindrical cell. Subsequently, each photon
is propagated in steps of l⋆/R, where each step proceeds
in a random (3D)-direction. At the point where the pho-
ton exits the cell ( x2+y2 > R2 ), we evaluate the number
M of scattering events, and record the detection event
with respect to the observed detection angle θ.
We do this by dividing the surface of the cylindrical

cell into nbins angular bins, spanning from 0 to 180 deg
(taking into account the symmetry around the x-axis).
In addition, to take into account the 3-dimensional na-
ture of photon transport in the real geometry, we consider
the fact that each realization of a 2-dimensional photon
path represents a whole range of possible 3-dimensional
paths with an identical number of scattering events M
and identical (x, y)-paths. Since in the z-direction the
photon also performs a (1-dimensional) random walk, we
can readily express the probability distribution p(z) for
the photon to end up at a position z after propagating
M random steps. What is relevant here is the fraction
of those paths that will reach the detector, as illustrated
in Fig.1(D). We assume that all photons with |z| < ∆z
are detected; in accord with the resolution of the angu-
lar bins, we set ∆z = π

2nbins

. Then, the fraction αz of
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FIG. 2: (Color online) Simulation results. (A) Path length distribution P (s) for different values of l⋆/R, calculated at a fixed
detection angle θ = 90 deg. (B) Master curve of scaled path length distributions, showing that the shapes of P (s) calculated
at different l⋆/R are similar. (C) Corresponding average path lengths s̃ as a function of l⋆/R. As expected, we find a scaling
s̃ ∝ 1/l⋆, as indicated by a power-law fit to the data (dashed line), yielding an exponent m = −0.975 ± 0.05. (D) Average
number of scattering events s̃/l⋆ as a function of the distance L(θ) between the entry and exit points of the detected photons.
The dashed lines serve as a visual reference, indicating the scaling s̃/l⋆ ∝ L(θ)2 that would be expected for an unrestricted
random walk.

contributing 3-dimensional paths is given as

αz = erf(
3∆z

l⋆
√
M

), (6)

where erf is the error function, and
√

l⋆2/3 is the effec-

tive 1-dimensional step size in the z-direction. We thus
account for diffusion in the z-direction in our statistics of
path length distributions by, instead of adding 1, adding
a contribution αz to the angular bin corresponding to
each simulated photon path: f(nbin) → f(nbin) + αz.

Each bin thus represents a detection area of surface

area Abin ≈
(

πR
nbin

)2

. The cumulative value of each angu-

lar bin, after propagating N photons and normalizing by
N , thus defines a (dimensionless) scattering intensity as

Isim := f(nbin)
N , representing the probability for a photon

to reach the detection area corresponding to bin number
nbin.
In addition to recording the angle where the photons

end up, we also record, for each angle θ(nbin), a distri-
bution of the number of scattering events, by adding a
contribution αz to a bin accounting for the number of
scattering events at each angle θ(nbin). The bins are lin-
early spaced, with bin number 100 representing a num-
ber of approximately (L(θ)/l⋆)

2
scattering events, which

corresponds to an expected average number of scatter-
ing events for a distance L(θ) between the entry point
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and the detection point of the photons.1 We use 300
bins per angle θ(nbin), thus accounting for up to 3 times
the expected typical number of scattering events; higher
numbers, while not counted, in practice are extremely
rare in our simulations and do not significantly affect the
resulting path length distributions.

In order to achieve good statistics in the calculated
path length distributions, the paths for a large number
of photons have to be simulated.

In the actual experiments obtaining good statistics is
usually not a problem, due to the enormous number of
photons that are propagated. In our experiments we use
a laser with 50 mW of power at a wave length of 532 nm;
this corresponds to ≈ 1017 photons entering the sample
cell, every second. Such numbers are beyond the capabil-
ity of computer simulations; in comparison, for our cal-
culations we typically simulate 109 photons propagating
through the sample, which is enough to yield reasonable
statistics, and relatively smooth calculated path length
distributions.

B. Scaling properties of P (s)

Typical obtained simulation results for P (s) are shown
in Fig.2(A); these curves are calculated at a fixed angle
θ = 90 deg for different values of l⋆/R. Interestingly,
while the average path length decreases with increasing
l⋆, the shapes of these path length distributions appear
surprisingly similar, .

In fact, we can overlay the curves from Fig. 2(A) and
create a master curve, as shown in Fig. 2(B). To obtain
this master curve, we have rescaled the path length with
a factor s̃ and multiplied the magnitude with the same
factor; it turns out that s̃ is the average path length,
defined below in Eq. 7.

Any practical use of the calculated path length dis-
tributions requires that P (s) data are available for any
arbitrary value of l⋆. To address this problem, we calcu-
late path length distributions for different values of l⋆/R
and examine the scaling properties of these path length
distributions.

In contrast to an ideal random walk, the path of pho-
tons through our cylindrical sample is constricted by the
geometry. Nevertheless, the essential scaling properties
of a random walk still hold approximately for the path
length distributions simulated here. In particular, for
an unrestricted random walk of step size l⋆, we expect
the mean square displacement

〈

∆R2
〉

to be given as
〈

∆R2
〉

= Ml⋆2, with M the number of steps. Consider-
ing the average path length

1 In the cylindrical cells studied here, the average pathlengths s̃
depend on the detection angle and are typically shorter than
estimated from s̃/l⋆ ≈ (L(θ)/l⋆)2, as seen in Fig.2(B).

s̃ :=

∫ ∞

0

sP (s)ds , (7)

we can estimate the average number of scattering
events M̃ to travel to a point at distance L(θ) from the

origin to be approximately given as M̃ ≈ (L(θ)/l⋆)
2
, as

would be the case for a completely unrestricted random
walk.
As the path length is s = Ml⋆, the average path length

should scale with L(θ) and l⋆ as s̃ ≈ L(θ)2/l⋆. Con-
versely, at fixed detection angle θ and thus fixed distance
L(θ), we would clearly expect a scaling of s̃ ∝ 1/l⋆.
To test this scaling, we examine the P (s) data with

respect to both l⋆ and the detection angle θ, where a
variation of the latter corresponds to a variation of the
distance L(θ) between the entry and detection points of
the photons. In Fig.2(C) we plot the average path length
s̃ as a function of l⋆/R, for simulation data calculated at
a single detection angle θ = 90 deg. Indeed, the data
is in excellent agreement with a scaling of s̃ ∝ l⋆−1;
the dashed line in Fig.2(C) shows a power-law fit to the
data, yielding an exponent of −0.975±0.05. This scaling
is a consequence of the self-similarity of random walks,
which enables us to approximate each random walk with
a “coarse grained” version of larger step size; this scaled
random walk essentially follows the same path, but, as a
result of the increased step size, exhibits a reduced con-
tour length.
In contrast to this simple scaling as a function of l⋆,

if we examine the average number of scattering events
as a function of L(θ), we find significant deviations from
the näıvely expected scaling s̃/l⋆ ∝ L(θ)2, as shown in
Fig.2(D). The symbols in this figure show the simulation
data for different values of fixed l⋆/R, and the solid lines
show the simple prediction discussed above, a power-law
with exponent 2. In hindsight, it is clear that such de-
viations should be expected, as, in contrast to the l⋆-
dependence at fixed detection angle, a variation of L(θ)
implies a significant modification of the effective sample
geometry. It is thus evident that calculations of P (s)
at different detection angles are necessary. However, the
simple scaling properties with respect to l⋆, highlighted in
Fig.2(B), can be exploited to obtain accurate path length
distributions for arbitrary l⋆-values, based on simulations
performed at a single value of l⋆/R.

C. Determination of l⋆ for samples with known
tracer dynamics

Typically, when DWS experiments are used to perform
microrheology measurements, uniformly sized tracer par-
ticles are added to the soft material of interest. If the
transport mean free path l⋆ is known, the dynamics of
these particles can be extracted, yielding direct infor-
mation on the viscoelastic properties of the surrounding
material. Vice versa, if the viscoelastic properties of the
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dotted line. The data is also in fair agreement with predictions from Mie scattering theory,[27–29] shown as a dashed line.
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βexp is determined, the measured transport mean free path l⋆ can be directly deduced from I(θ).



8

surrounding material are a priori known, then l⋆ can be
extracted from a DWS measurement. A requirement is
that the particles scatter much more strongly than the
material, ensuring that any detected dynamics are re-
lated only to the particle dynamics, and not to fluctu-
ations within the surrounding sample. If this criterion
is fulfilled, the simplest method for determining l⋆ is to
measure the scattering of uniformly sized, spherical par-
ticles, suspended in a Newtonian background liquid of
known viscosity.

To test our approach, and for calibration of the trans-
port mean free path l⋆, we here perform a series of ex-
periments using samples with different concentrations of
uniformly sized polystyrene particles (coated with poly-
ethylene glycol, Mw ≈ 300 g/mol, 1 µm diameter, pur-
chased from micromod GmbH, Germany) suspended in
water. We measure the field autocorrelation function
g1(t) of the scattered light for these samples and test
how the correlation functions predicted from our pho-
ton path simulations compare to these experimental data.
As shown in Fig.3(A-C), where we show data on a sus-
pension of particles at a volume fraction φ = 0.625%
and detection angles θ = 50 deg, 90 deg, and 130 deg,
we obtain remarkably good agreement between exper-
iments (shown as blue circles) and simulations (shown
as red lines), where l⋆ is the only adjustable parame-
ter. While the dynamics is expected to be purely Brow-
nian, with

〈

∆r2(t)
〉

increasing linearly with time t, due
to the broad path length distribution of photons passing
through the sample, g1(t) deviates significantly from the
single exponential decay that would be observed in single
scattering experiments. This can be more clearly seen
in Fig.3(D-F), where ln(g1(t)) is plotted as a function
of time; in such a plot an exponential decay would ap-
pear as a straight line, as illustrated by the dashed lines,
which show exponential fits to the short-time regime of
g1(t). The non-exponential shape of the data thus be-
comes evident and is captured very well by the curves
predicted from our simulations, shown as red lines. Fits
performed for the same sample, but at different angles,
should yield the same l⋆-values. Indeed, we obtain good
agreement between the l⋆-values extracted from the data
in Fig.3(A-C): we obtain l⋆ = 540 µm, l⋆ = 533 µm, and
l⋆ = 523 µm at angles of θ = 50 deg, 90 deg, and 130 deg,
respectively. In fact, we obtain good agreement between
measurements taken at different angles for all the con-
centrations studied, with volume fractions ranging from
φ = 0.313% to 2.5%. As shown in Fig.3(G), the fitted
l⋆-values as a function of θ exhibit only small variations.
Somewhat larger deviations are observed for the sample
with the lowest concentration, at the largest detection
angles. We attribute this to the fact that this sample
has the longest l⋆, combined with the shortest distances
L(θ) between entry point and exit point of the photons;
l⋆ ≈ 1 mm and L(θ) ≈ 2.2 mm and thus L(θ)/l⋆ ≈ 2.2.
In this case the path length of photons is no longer ade-
quately described as an ideal random walk.
Besides these discrepancies at small values of L(θ), the

fitted l⋆-values depend only on the volume fraction, ir-
respective of the detection angle. To examine the φ-
dependence of the data, in Fig.3(H) we plot l⋆ as a func-
tion of φ, observing approximately the expected scaling
l⋆ ∝ 1/φ, [30] as indicated by the dotted line. The data
is also in fair agreement with Mie scattering calculations
plotted as a dashed line in Fig.3(H). [28, 29] The calcu-
lations are performed using the web application available
on the website of LS Instruments, Switzerland, [27] using
as input parameters the particle size, the wavelength of
the laser λ = 532 nm, as well as a refractive index of
nPS = 1.598 for the particles and nH2O = 1.33 for water.

D. Obtaining l⋆ from intensity measurements

In the absence of absorption, the intensity detected
at each angle should be fully determined by the trans-
port mean free path of photons in the sample. While
absorption is relatively straightforward to include in the
current data analysis, here we choose to neglect its ef-
fects since absorption is relatively weak in the aqueous
samples studied; the typical absorption length is much
longer than the typical path length of photons through
the samples. As a result, after calibration using a refer-
ence sample of known dynamics, a simple measurement
of the scattering intensity at different angles on the sam-
ple of interest is sufficient for determining its l⋆. To vali-
date this, we compare the scattering intensities predicted
from the simulations with those measured in experiments
performed on our polystyrene suspensions.
In Fig.4(A) we plot the scattering intensity Isim as a

function of detection angle θ, as predicted from the pho-
ton path simulations. The shape of these curves is very
different from those typically obtained in single scatter-
ing experiments on dilute suspensions, where generally
the intensity is highest at small detection angles, corre-
sponding to low q − values. In the highly multiple scat-
tering regime, however, the intensity is generally highest
for detection points closest to the entry point of photons
into the sample, which corresponds to large θ-values.
Importantly, we find that the angular dependence of

the recorded scattered intensity for the tracer particle
suspensions agrees remarkably well with the behavior
predicted from our simulations, as shown in Fig.4(B). For
both simulations and experiments, we observe a ratio of
≈ 40 between the intensities measured at θ = 30 deg
and θ = 150 deg. Moroever, comparing Fig.4(B) with
Fig.4(A), we observe that the shapes of the simulated in-
tensity curves are very similar to those of the experimen-
tal data. In fact, the two data sets can be superposed
simply by scaling the simulated curves with one single
factor βexp, the value of which depends on experimental
parameters such as the size of the detection area, and
the distance between the detector and sample. We find
that good agreement between the measured and simu-
lated curves is obtained for a value of βexp ≈ 8 · 1010 Hz,
as shown in Fig.4(C).
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Thus, given βexp, a good estimate of l⋆ can be de-
termined for a sample of unknown properties solely by
measuring the scattered intensity at different angles.

E. Test on a viscoelastic material

Finally, we test the use of our method in the context
of microrheology, where the measured correlation func-
tions and the corresponding tracer particle mean-square
displacements

〈

∆r2(t)
〉

are used for the determining vis-
coelastic properties of a sample. As a test material we
use a common solid-like soft material, an aqueous gelatin
gel at a concentration of 5 wt%. The plateau storage
modulus of this material is on the order of 1 kPa, which
means that for the case of micron-sized tracer particles
we need to be able to access particle displacements at
sub-nanometer length scales. DWS is ideally suited for
this, since the displacements of all the tracer particles
encountered by a photon on its path through the sam-
ple cumulatively contribute to changing the total photon
path length.
We perform measurements on the gelatin sample for

detection angles ranging from θ = 30 deg to θ = 150 deg.
The sample is highly non-ergodic, as indicated by the
fact that the intercept of the measured intensity corre-
lation functions g1(t) varies significantly between mea-
surements. We therefore use the Pusey-averaging proce-
dure to obtain a good estimate of the ensemble averaged
correlation functions from the measured, time-averaged
correlation functions, as outlined in the experimental sec-
tion. As expected, and shown in Fig.5(A), the resulting
ensemble-averaged field correlation functions g1(t) vary
with the detection angle θ. These correlation functions
do not decay significantly; they reach a plateau at values
of g1(t) > 0.9 at the longest time scales accessed in the
experiments. This reflects the fact that the gelatin sam-
ple has a relatively high modulus and the thermal motion
of the tracer particles is therefore limited to short length
scales. Using the procedure outlined above, we obtain the
transport mean free path l⋆ of the gelatin sample directly
from the measured scattered intensities, using the inten-
sity scaling factor βexp as determined from the measure-
ments on our pure tracer suspensions. The mean-square
displacements of tracer particles in the gelatin sample
are obtained by numerically inverting Eq.3, using the
measured g1(t), l

⋆, and the calculated θ-dependent path
length distribution P (s) as input. The corresponding
mean-square displacements are shown in Fig.5(B). Given
the highly nonergodic nature of the sample studied, the
data taken at different detection angles are in fair agree-
ment; note that the magnitudes of the accessed particle
displacements are in the sub-nanometer range. We can
now convert these data to viscoelastic moduli, using the
microrheology concept [7, 12] and the local power-law
approximation [15, 16], developed by Mason et al. The
magnitude of the resulting complex modulus |G⋆(ω)| is
on the order of 1 kPa and depends only weakly on fre-

quency, as shown in Fig.5(C). The curves obtained for
different detection angles exhibit significant variations,
as shown in the inset, where we plot the low frequency
plateau values G⋆

p = |G⋆(ω = 5 rad/s)| as a function of
detection angle (the frequency of 5 rad/s is indicated as
a dotted line in the main plot). Since |G⋆(ω)| is approx-
imately inversely proportional to the mean square dis-
placement

〈

∆r2(t = 1/ω)
〉

, these variations in the mag-
nitude of the complex modulus directly reflect those ob-
served in the tracer mean-square displacements.
A simple error analysis (see SI) suggests that the main

sources of errors are on the one hand statistical errors in
the intensity correlation function as a result of the finite
measurement duration, and on the other hand errors in-
troduced via the Pusey averaging procedure via the error
in the intensity ratio Y = It

Ie
between the time-averaged

and the ensemble-averaged scattering intensities.
The total corresponding relative error in the modulus,
∆G/G, can be expressed as a function of the relative er-
rors in the intensity ratio, ∆Y/Y , and the ratio between
the probed time scale t and the measurement duration
T , as [31]

∆G

G
≈ ∆

〈

∆r2(t)
〉

〈∆r2(t)〉 ≈ ∆Y

Y
+

3

g12 ln(g1)

√

t

T
(8)

We can estimate the error in determining the in-
tensity ratio Y from the standard deviation of the
3 ensemble-averaged intensity measurements taken at
each angle as ∆Y ≈ Y · ∆Ie/Ie, where ∆Ie is taken
as the standard deviation of the 3 intensity measure-
ments, and Ie is the average ensemble-averaged in-
tensity. The relative error in the mean square dis-
placement ǫMSD = ∆(

〈

∆r2(t)
〉

)/
〈

∆r2(t)
〉

that results
from the error in Y can be estimated as ǫMSD ≈
∂
〈

∆r2(t)
〉

/∂g1(t) · ∂g1(t)/∂Y ·∆Y /Y . As ∂g1(t)/∂Y ≈
1/Y 2 and ∂

〈

∆r2(t)
〉

/∂g1(t) ≈ −
〈

∆r2(t)
〉

/[ln(g1(t)) ·
g1(t)], we find ǫMSD ≈ −

[

ln(g1(t))g1(t)Y
2
]−1 ∆Y

Y . Be-
cause the modulus |G⋆(ω)| is essentially given as the in-
verse of the mean-square displacement, it has the same
typical relative error ǫG⋆ ≈ ǫMSD. For our measurements
we find typical values ǫG⋆ ≈ 0.5, as shown in the inset of
Fig.5(C), where the corresponding errors bars are shown
for each angle.
While the magnitude of these errors is indeed signif-

icant, the observed angle-dependent variations remain
within a factor of ≈ 2 and exhibit no clear systematic
dependence on the detection angle. The latter indicates
that the observed variations are the result of random,
rather than systematic measurement errors, and thus
do not reflect a systematic issue with the data analy-
sis method. This suggests that performing an average of
the data measured at different detection angles provides
a more reliable result than data from a single detection
angle measurement. We thus average the mean-square
displacements obtained at all accessed angles, using the
inverse of the estimated error bars as weights in the av-
eraging procedure. Using this averaged data to calculate
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FIG. 5: Measurements on a solid-like, non-ergodic sample, an aqueous gelatin gel at a concentration of 5 wt% with embedded
tracer particles (1.25 wt%, a = 1 µm ). (A): Pusey-averaged field autocorrelation functions g1(t) as a function of lag time t,
measured for detection angles ranging from θ = 30 deg to θ = 150 deg. Curves are offset vertically by increments of -0.05 for
clarity. (B): Mean-square displacements extracted from the same data, plotted as a function of time, yielding fair agreement
between measurements taken at different angles. Note that sub-nanometer displacements are accessed. (C) Magnitudes of the
corresponding complex shear moduli |G⋆(ω)| as a function of frequency ω. The inset shows plateau values G⋆

p, accessed at a
frequency of 5 rad/s (indicated as a dotted line in the main plot), as a function of detection angle. Within the estimated error
bars, no strong trend in the data is observed; averaging over data from different θ thus appears justified. (D) Storage modulus
G′(ω) (solid squares) and loss modulus G′′(ω) (open squares) averaged over all measurements taken at different angles as a
function of frequency ω. Comparing these averaged moduli to results from conventional oscillatory rheology, with G′(ω) shown
as solid black circles and G′′(ω) shown as open black circles, we observe very good agreement.

the viscoelastic response of the sample we obtain an aver-
aged viscoelastic response, shown in Fig. 5(D), where we
plot the storage modulus G′ (solid squares) and the loss
modulus G′′ (open squares) as a function of frequency ω.
The oscillations observed in the data at a frequency of
≈ 50 − 200 Hz are likely the result of a mechanical dis-
turbance or vibration that we could not eliminate in our
experimental light scattering setup on this highly out-of-
equilibrium sample. The effect can be directly observed
in the measured correlation functions at the correspond-
ing time scales, as seen in Fig.5(A). For mechanically
weaker samples we have not observed these types of os-
cillations in our setup. As a result of the importance

of the time-derivative of
〈

∆r2(t)
〉

in determining the vis-
coelastic moduli, the oscillations in the g1(t)-data are am-
plified in the corresponding viscoelastic moduli. The fre-
quency range where we do not trust the data as a result of
these oscillations is indicated with a grey background in
Fig.5(D). Nevertheless, besides these oscillations, we ob-
tain very good agreement with measurements performed
using a conventional oscillatory rheometer, shown in the
same figure as solid black circles for G′ and open black
circles for G′′.
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IV. CONCLUSIONS

We have developed a simple method for properly inter-
preting dynamic light scattering data from highly mul-
tiple scattering samples using a standard dynamic light
scattering setup with a cylindrical sample geometry. By
performing ideal random walk simulations within a cylin-
drical geometry, we predict the path length distribution
P (s) of photons passing through the sample cell. This en-
ables us to extend the use of DWS measurements to stan-
dard dynamic light scattering instruments. The method
can be applied in the context of microrheology, where
the dynamics of embedded tracer particles are used to
access the frequency-dependent viscoelastic response of
soft materials.
The main strength of our approach, besides not re-

quiring a dedicated instrument, lies in the fact that by
varying the detection angle we can access a wide range
of different effective sample geometries with different av-
erage path lengths, using one single cylindrical sample
cell. This variation of the detection angle is analogous to
performing a series of conventional DWS measurements
using a series of sample cells with varying thickness or

with varying tracer particle concentrations.
We have further illustrated the usefulness of our

method for DWS-based microrheology on a soft solid,
gelatin, for which we obtain a very good agreement with
macroscopic oscillatory rheology experiments. Moreover,
data recorded for different detection angles enable an im-
portant consistency check for the microrheology measure-
ments and our results illustrate that the accuracy of such
microrheology measurements can be improved by aver-
aging over measurements obtained at different detection
angles.
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Error analysis for DWS and microrheology data

In the following we provide a brief analysis aimed at estimating the relative experimental errors associated with
our DWS-based microrheology measurements.
In DWS, the dynamics of tracer particles is quantified in terms of temporal autocorrelation functions, from which
the time-dependent mean-square displacement (

〈

∆r2(t)
〉

, hereafter abbreviated as MSD(t) ) of the particles can
be calculated. Using a generalized Stokes-Einstein relation, the MSD’s are then converted to viscoelastic moduli,
with the magnitude of the complex modulus |G⋆(ω)| approximately proportional to the inverse of the mean-square
displacement at a time scale t = 1/ω.
The relative error in the modulus, ∆G⋆/G⋆, is therefore in good approximation the same as the relative error in
the mean-square displacement ∆MSD/MSD. We identify two main sources of error that ultimately determine this
relative error in the measured mechanical response:
1. Statistical errors in the intensity correlation function as a result of the finite measurement duration.
2. For nonergodic samples, additional errors are introduced via the Pusey averaging procedure used to estimate
ensemble-averaged temporal autocorrelation functions. These errors are introduced via the relative error in the
intensity ratio Y = It

Ie
between the time-averaged and the ensemble-averaged scattering intensities.

a. Statistical errors in the intensity correlation function

Given a measurement duration T , the statistical error in the intensity correlation function g2(t) at lag time t can
be expressed as [31]

∆g2(t) ≈ 6

√

t

T
. (9)

Given the Siegert relation g1(t) =
√

g2(t)− 1, this translates to an error in the field correlation function g1(t) as
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∆g1(t) ≈
3

g1(t)

√

t

T
. (10)

For the purposes of this error analysis, we assume a simplified relationship between the field correlation function

g1(t) and the mean-square displacement MSD(t), g1(t) ≈ e−k2

0
/3 s̃

l⋆
MSD(t), with k0 the wave vector of the laser light, s̃

the average path length of photons, and l⋆ the transport mean free path.
We can then express the mean square displacement as MSD(t) ≈ 3l⋆ ln(g1(t)/

(

k0
2s̃
)

. With ∂MSD/∂g1 ≈ 3l⋆

k0
2s̃

1
g1

≈
MSD/(g1 ln(g1)) and ∆g1 ≈ 3

g1

√

t
T we can now express the total relative error in the complex modulus as

∆G⋆/G⋆ ≈ ∆MSD/MSD ≈ 1

MSD

∂MSD

∂g1
∆g1 ≈ 1

g1 ln(g1)

3

g1

√

t

T
(11)

b. Errors introduced during the Pusey averaging procedure

For nonergodic samples, additional errors are introduced via the Pusey averaging procedure used to estimate
ensemble-averaged temporal autocorrelation functions. These errors are introduced via the relative error in the
intensity ratio Y = It

Ie
between the time-averaged and the ensemble-averaged scattering intensities. The resulting

error in the mean square displacement is

∆MSD ≈ ∂MSD

∂g1

∂g1
∂Y

∆Y , (12)

where ∂MSD
∂g1

≈ MSD
g1 ln(g1)

, as derived above.

To arrive at an expression for the second term in Eq.12, we write down the relationship between the field correlation
function g1(t) and the intensity ratio Y as explained in the main manuscript,

g1(t) =
Y − 1

Y
+

1

Y

[

g̃2(t)− σ2
]

1

2 , (13)

where g̃2(t) = 1 + g2(t)−1
β is the time-averaged intensity autocorrelation function normalized by the coherence factor

β, and σ2 = g̃2(t)1 characterizes the short-time intercept of g̃2(t). This yields the second term in Eq.12 as ∂g1
∂Y ≈

1
Y 2

[

1−
√

g̃2 − σ2
]

, and with
√

g̃2 − σ2 ≈ 1 + Y g1 − Y , this results in

∂g1
∂Y

≈ 1− g1
Y

(14)

The total relative error introduced by the intensity ratio Y is thus

∆MSD ≈ 1− g1
g1 ln(g1)

· ∆Y

Y
. (15)

Plotting the function f(x) = 1−x
x ln(x) , we observe |f(x)| ≈ 1 for values of x close to 1. For our solid-like samples,

g1 is close to 1 at long times, and thus
∣

∣

∣

1−g1
g1 ln(g1)

∣

∣

∣
≈ 1; therefore in this case we can make the simple approximation

∆MSD
MSD ≈ ∆Y

Y .

c. Total estimated error

The total estimated error as a result of the above two main sources of error can then be written as

∆G⋆/G⋆ ≈ ∆MSD/MSD ≈ 3

g12 ln(g1)

√

t

T
+

1− g1
g1 ln(g1)

· ∆Y

Y
(16)
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Of these two contributions to the experimental error, the latter usually dominates, provided that the measurement

duration is sufficiently long, such that the factor
√

t
T becomes small enough. Nevertheless, for g1(t) sufficiently close

to 1, the term 1
ln(g1)

would become very large, and eventually lead to the first term becoming dominant.

Indeed, we expect the errors to be highest for cases where g1(t) is very close to zero (as a result of the factor 3
g12 ln(g1)

or 1−g1
g1 ln(g1)

, respectively), or very close to unity (as a result of the factor 1
ln(g1)

).

1. Code for data analysis of DWS in a cylindrical cell

a. Full codes (written in Matlab) for analyzing DWS data in a cylindrical cell

The complete numerical codes used for analyzing dynamic light scattering data using the approach outlined in the
manuscript can be obtained on the author’s website <www.mate.tue.nl/∼wyss> or on request by sending an email
to Hans Wyss at H.M.Wyss@tue.nl. Please also address any questions regarding the code and/or data analysis to the
same email address.
The specific code for the random walk simulation for calculating the path length distribution P (s) is listed below.

b. Code for calculating the path length distributions

The main code for calculating the path length distribution P (s) is a simple random walk simulation with step length
l⋆, as described in the main manuscript. Below is the C-code (and the MEX function called by our main Matlab
code) that accomplishes this task; the results are kept track of in the output array y, which for each bin corresponding
to a segment of detection angle and a segment of path length keeps track of the number of photons exiting the cell
within the corresponding angle range and within the corresponding path length range. Angular bins evenly divide
the angular space between 0 and 180 degrees; we usually choose 180 bins of 1 degree width. Path length bins are
also linearly spaced, with 300 bins total and the 100th bin corresponding to a path length of (L(θ)/l⋆)

2
in units of l⋆,

where L(θ) is the distance between the entry point and the exit point of the simulated photon, as a function of the
detection angle θ.

Listing of “pathlengthsCyl P s.c”:

1 #include ”mex . h”
2 #include <s t d i o . h>
3 #include <s t d l i b . h>
4 #include <time . h>
5 #include <math . h>
6
7 /∗
8 ∗
9 ∗ Function t ha t c a l c u l a t e s the pa t h l en g t h d i s t r i b u t i o n f o r d i f f u s i o n o f photons
10 ∗ through a c y l i n d e r
11 ∗
12 ∗/
13
14 void path lengthsCyl (double y [ ] , double x [ ] , s i z e t mrows , s i z e t n co l s )
15 {
16 int i i ,m, n , step , anglebin , Nbins , N i te r , index1 , index2 , index3 ;
17 double xx , yy , zz , dxx , dyy , dzz , l s t a r , LL , pi , de l taz , weight , d i s t ;
18
19 l s t a r=x [ 0 ] ;
20 Nbins=x [ 1 ] ;
21 N i t e r=x [ 2 ] ;
22 p i =3.14159265359;
23

mailto:H.M.Wyss@tue.nl
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24 // srand ( ( unsigned ) time ( NULL ) ) ;
25 srand ( rand ( ) ˆ time (NULL) ) ;
26
27 for (m=0;m<mrows ;m++)
28 {
29 for (n=0;n<nco l s ; n++)
30 {
31 index1=(m % mrows)+mrows∗n ;
32 y [ index1 ]=0;
33
34 }
35 }
36
37 for (n=0;n<nco l s ; n++)
38 {
39 d i s t=sq r t (

(−1−cos ( p i /Nbins∗n) )∗(−1−cos ( p i /Nbins∗n) )+s i n ( p i /Nbins∗n) ∗ s i n ( p i /Nbins∗n)
) ;

40 index1=2+mrows∗n ;
41 y [ index1 ]= c e i l ( d i s t ∗ d i s t / l s t a r / l s t a r /100) ; // wr i t e column 2: the width o f

each b in ( s e t as one hundreds o f the expec ted average number o f
s c a t t e r i n g even t s . )

42 }
43
44
45 for ( i i =0; i i <N i t e r ; i i ++)
46 {
47 xx=−1+l s t a r ;
48 yy=0; zz=0;
49 s tep=1;
50 while ( ( xx∗xx+yy∗yy )<1)
51 {
52
53 // Random uni t v e c t o r o f l e n g t h l s t a r :
54 dxx=2;dyy=2; dzz=2;
55 while ( dxx∗dxx+dyy∗dyy+dzz∗dzz>1) // make sure ( dxx , dyy , dzz ) i s a

vec t o r o f random d i r e c t i o n .
56 {
57 dxx=2∗(double ) ( rand ( ) ) / (double ) (RANDMAX)−1;
58 dyy=2∗(double ) ( rand ( ) ) / (double ) (RANDMAX)−1;
59 dzz=2∗(double ) ( rand ( ) ) / (double ) (RANDMAX)−1;
60 }
61 LL=sq r t ( dxx∗dxx+dyy∗dyy+dzz∗dzz ) ;
62 dxx=dxx/LL∗ l s t a r ; dyy=dyy/LL∗ l s t a r ; dzz=dzz/LL∗ l s t a r ;
63 // Propagate by a s t ep l s t a r :
64 xx=xx+dxx ; yy=yy+dyy ; zz=zz+dzz ;
65 s tep++;
66 }
67 LL=sq r t ( xx∗xx+yy∗yy ) ;
68 xx=xx/LL ; yy=yy/LL ; zz=zz /LL ;
69 ang l eb in=c e i l ( acos ( xx ) ∗( Nbins−1)/ p i ) ;
70
71 index1=mrows∗ ang l eb in ;
72 de l t a z=pi /2/Nbins ;
73 weight=e r f (3∗ de l t a z / l s t a r / sq r t ( s tep ) ) ; // account f o r p r o b a b i l i t y in

z−d i r e c t i o n to h i t area around zz=0
74 i f ( weight==0) mexPrintf ( ” e r f : %f \n” , weight ) ;
75 y [ index1 ]=y [ index1 ]+weight ;
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76 // Update average number o f s t e p s and corresponding added we i gh t s :
77 index2=(1 % mrows)+mrows∗ ang l eb in ;
78 y [ index2 ]=y [ index2 ]+ step ∗weight ;
79 index3=f l o o r ( s tep /y [ ang l eb in ∗mrows+2])+3+mrows∗ ang l eb in ;
80 i f ( f l o o r ( s tep /y [ ang l eb in ∗mrows+2])+3<mrows)
81 {
82 y [ index3 ]=y [ index3 ]+weight ; // add va lue to b in
83 }
84
85 }
86
87 for ( ang l eb in =0; angleb in<Nbins ; ang l eb in++)
88
89 {
90 index1=mrows∗ ang l eb in ;
91 index2=(1 % mrows)+mrows∗ ang l eb in ;
92 i f ( y [ index1 ]==0)
93 {
94 //mexPrintf (” y [ index1 ] i s zero . index1 :% i y [ index1 ] : %f , y [ index2 ] :

%f \n” , index1 , y [ index1 ] , y [ index2 ] ) ;
95 }
96 i f ( y [ index2 ]>0)
97 {
98 y [ index2 ]=y [ index2 ] / y [ index1 ] ;
99 }
100 }
101
102 }
103
104
105
106
107
108 void mexFunction ( int nlhs , mxArray ∗ plhs [ ] ,
109 int nrhs , const mxArray ∗prhs [ ] )
110 {
111 double ∗x ,∗ y ;
112 double l s t a r ;
113 int Nbins ;
114 s i z e t mrows , nco l s , mrows out , n co l s ou t ;
115
116 /∗ Check f o r proper number o f arguments . ∗/
117 i f ( nrhs !=1) {
118 mexErrMsgIdAndTxt ( ”MATLAB: timestwo : invalidNumInputs ” ,
119 ”One input r equ i r ed . ” ) ;
120 } else i f ( nlhs >1) {
121 mexErrMsgIdAndTxt ( ”MATLAB: timestwo : maxlhs” ,
122 ”Too many output arguments . ” ) ;
123 }
124
125 /∗ The input must be noncomplex doub l e s . ∗/
126 mrows = mxGetM( prhs [ 0 ] ) ;
127 nco l s = mxGetN( prhs [ 0 ] ) ;
128 i f ( ! mxIsDouble ( prhs [ 0 ] ) | | mxIsComplex ( prhs [ 0 ] ) ) {
129 mexErrMsgIdAndTxt ( ”MATLAB: timestwo : inputNotRealScalarDouble ” ,
130 ” Input must be noncomplex doubles . ” ) ;
131 }
132
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133 /∗ Assign po in t e r f o r the input matrix . ∗/
134 x = mxGetPr( prhs [ 0 ] ) ;
135 l s t a r=x [ 0 ] ;
136 //x [1]= f l o o r ( Nbins ) ;
137 Nbins=x [ 1 ] ;
138
139 /∗ Create matrix f o r the re turn argument . ∗/
140
141 mrows out=303;
142 // row 0: average i n t e n s i t y f o r t h i s ang l e b in ;
143 // row 1: average path l e n g t h f o r t h i s ang l e b in .
144 // row 2: b in width f o r t h i s ang l e b in .
145 // rows 3−302: path l e n g t h d i s t r i b u t i o n f o r t h i s ang l e b in .
146 nco l s ou t=Nbins ; /∗ one column fo r each ang l e segment . The columns g i v e a

counter f o r each ∗/
147 p lhs [ 0 ] = mxCreateDoubleMatrix ( ( mwSize )mrows out , (mwSize ) nco l s out , mxREAL) ;
148
149 /∗ Assign po in t e r f o r the output matrix . ∗/
150
151 y = mxGetPr( p lhs [ 0 ] ) ;
152
153 /∗ Ca l l the pa t h l en g t h s subrou t ine . ∗/
154 path lengthsCyl (y , x , mrows out , n co l s ou t ) ;
155 }

pathlengthsCyl P s.c
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