
Supplementary Figure 1: Off-diagonal component of the in-plane magnetore-
sistance. Angular dependence of the planar Hall effect measured in one of the 17-nm-
thick device at 1.8 K, B = 9 T, and VTG = VBG = 80 V. ϕ is the angle between the current
and the field directions. Insets show the magnetic-filed dependence of the symmetric part
of Ryx measured at two different angles ϕ.

Supplementary Figure 2: Decomposition of the Planar Hall Effect signal into
symmetric and antisymmetric parts. (a) Raw Ryx data from a 17-nm device at | B |
= 9 T, VTG = VBG = 80 V, 1.8 K, and the misalignment of about 1.5◦. (b) Symmetric
and antisymmetric parts of Ryx .
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Supplementary Figure 3: Comparison of the AMR and PHE behaviors at
different gate voltages. (a1, b1, c1) Rxx(ϕ) in B = 9 T. (a2, b2, c3) Rxx(0T) and
Ryx(9T) as a function of the gate voltage measured for the out-of-plane configuration of
the magnetic field. (a3, b3, c3) RSym

yx (ϕ) in B = 9 T.
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Supplementary Figure 4: Comparison of the gate-voltage dependences of AMR
and PHE amplitudes. Both amplitudes are measured along the gating path with
VTG − VBG = −40 V in B = 9 T at 1.8 K.

Supplementary Figure 5: PHE and AMR for different mounting orientations
of the sample. (a) PHE in B = 9 T, VTG − VBG = −80 V and (b) AMR in B = 9 T,
VTG − VBG = −5 V.
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Supplementary Figure 6: Temperature dependences of MR, AMR, and PHE.
(a) MR, (b) AMR, (c) PHE, and (d) their amplitudes in B = 9 T. All measuremnets are
done on a 17-nm-thick device at VTG = VBG = 80 V.
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Supplementary Figure 7: Magnetic properties of Bi0.4Sb1.6Te3 single crystal.
(a) The temperature dependence of the mass susceptibility measured in the field of 5000
G. (b) M vs. B at 2 K.

Supplementary Figure 8: Hall resistance near the Dirac point. (a) Ryx(B)
measured at VTG = VBG = −30 V (open red circles) and −10 V (open blue squares).
Solid lines show the fits to the data with a three-band model. (b) 2D colour map of
Ryx(VTG, VBG) measured in the out-of-plane magnetic field of 1 T, showing positions
where Ryx(B) curves were taken.
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Supplementary Figure 9: Schematic drawings of the 2D gating map of
Rxx(VTG,VBG). A contour of constant Rxx is drawn for the cases of (a) independent
top and bottom surfaces, (b) electrostatically coupled top and bottom surfaces, and (c)
electrostatically coupled surfaces as in (b) with the admixture of a small contribution of
residual bulk n-type carriers.

Supplementary Figure 10: Gating and PHE in the 12-nm-thick device. (a) 3D
plot of Rxx(VTG, VBG) measured at B = 0 T. (b) Ryx vs. VTG measured at different VBG

in ±9 T field. (c) The PHE amplitude measured along the VTG = VBG path in AC and
DC measurement setups.
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Supplementary Figure 11: Self energies and density of states as function of
the chemical potential and anisotropy ε. (a1, a2, a3) The diagonal component
of self-energy Σ11(µ) for ε/η0 = 0, 2.5, 10 respectively. (b1, b2, b3) The off-diagonal
component of self-energy Σ12(µ) ∼ (Σ11(µ))2 for B = 0.25η0 and the same ε parameters.
(c1, c2, c3) Density of states. Impurity scattering dominates close to the Dirac point
which leads to distinct features in all quantities. Parameters: Λ = 10, V =

√
4π.
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Supplementary Figure 12: Conductivity for the particle hole symmetric system
ε = 0. (a) The conductivity with and without vertex corrections. Vertex corrections
approximately double the conductivity in the metallic regime but have only a small effect
near the peaks of δ(µ). (b) The dimensionless resistivity anisotropy δ(µ) = (σ⊥ − σ‖)/σ‖
with and without vertex corrections.
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Supplementary Figure 13: Averaging over impurity parameters. (a) The density
of states and (b) resistivity anisotropy δ(µ) as a function of chemical potential for a single
type of impurity with ε = 2.5η0, V =

√
4π (blue line), a Gaussian distribution of ε values

with ε̄ = 2.5η0 and width ∆ε = η0 (green, dashed), and a Gaussian distribution of V
values with V̄ =

√
4π and width ∆V = V̄ /8 (red, dashed). We see that averaging has a

negligible effect on the density of states and on the position of the peaks in δ(µ). The
peaks are, however, slightly broadened and the size of the peaks increases as impurities
with smaller ε and smaller V get magnetized more strongly, leading to enhanced spin-flip
scattering.
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Supplementary Note 1: Symmetries and topological protection in the
presence of an in-plane magnetic field.

An external in-plane magnetic field breaks time-reversal symmetry and allows for
backscattering of electrons at the surface, therefore partially lifting the topological pro-
tection of the material. Further crystalline symmetries which exist on average even in
a disordered sample can, however, guarantee the existence of gapless surface states for
high-symmetry surfaces [1]. In our experiment, we consider the (111) surface with rhom-
bohedral R3̄m symmetry. For a field in the [11̄0] direction and equivalent directions
obtained by 60◦ rotations around the surface normal, a mirror symmetry guarantees that
no average magnetization is generated perpendicular to the surface. We therefore ex-
pect that the system remains gapless for these specific field directions. More precisely,
the symmetry is only present on average but also this is sufficient to stabilize a metallic
surface state [1].

For other field directions parallel to the surface, by symmetry the formation of a
gapful quantum Hall state is possible and expected to happen for T = 0 in infinitely large
samples. However, for practical purposes this effect is suppressed as the magnetization
perpendicular to the surface is (by symmetry) proportional to B3

‖ . As B‖ is smaller than
all relevant microscopic energy scales, only a very small effect is expected.

Supplementary Note 2: Angular dependences of AMR and PHE.

When a resistivity anisotropy is induced by an in-plane magnetic field, the resistivity
tensor may be written in a diagonalized form by taking the magnetic-field direction as
the x′ axis of the principal coordinates:(

Ex′
Ey′

)
=

(
R‖ 0
0 R⊥

)(
jx′
jy′

)
. (1)

Here, Ex′ and jx′ are along the magnetic field, and Ey′ and jy′ are perpendicular to the
magnetic field. When one transforms this into the coordinate system fixed on the sample,
in which x is the current direction and y is the transverse direction on the film plane, the
resistivity tensor becomes(

Ex
Ey

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)(
R‖ 0
0 R⊥

)(
cosϕ sinϕ
−sinϕ cosϕ

)(
jx
jy

)
,

=

(
R‖ cos2 ϕ+R⊥ sin2 ϕ (R‖ −R⊥)cosϕ sinϕ
(R‖ −R⊥)cosϕ sinϕ R‖ sin2 ϕ+R⊥ cos2 ϕ

)(
jx
jy

)
. (2)

By setting jy = 0 as the boundary condition to represent our measurement configura-
tion, one obtains

Rxx = Ex/jx = R⊥ + (R‖ −R⊥)cos2ϕ, (3)

and
Ryx = Ey/jx = (R‖ −R⊥)cosϕ sinϕ. (4)

Here Ryx represents the planar Hall effect (PHE), which is essentially an off-diagonal
component of the in-plane magnetoresistance (Supplementary Fig. 1). An important
difference from the ordinary Hall effect is that this component is symmetric with respect
to the magnetic field, as is actually observed in our TI devices (see Supplementary Fig.
1 inset). The anisotropic magnetoresistance (AMR) manifests itself in Rxx.
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Supplementary Note 3: Spurious contribution to the angular dependence
from a sample misalignment .

An arbitrary 3D rotation is specified by an axis of rotation together with an angle of
rotation about this axis (one also needs to specify the orientation of the axis and whether
the rotation is taken to be clockwise or counterclockwise with respect to this orientation).
A counterclockwise rotation about an arbitrary unit vector u = (ux, uy, uz) by angle ψ is
given by the transformation matrix

Ru(ψ) =

 cosψ + u2
x(1− cosψ) uxuy(1− cosψ)− uz sinψ uxuz(1− cosψ) + uy sinψ

uyux(1− cosψ) + uz sinψ cosψ + u2
y(1− cosψ) uyuz(1− cosψ)− ux sinψ

uzux(1− cosψ)− uy sinψ uzuy(1− cosψ) + ux sinψ cosψ + u2
z(1− cosψ)

 .

(5)
A change of the reference frame can be quantified by a rotation about a suitable axis. In
this respect, if two frames are related by a rotation about the unit vector u by angle ψ,
a vector a = (x, y, z) in the original frame is expressed in the new frame as x′

y′

z′

 = Ru(ψ)

 x
y
z

 . (6)

Now we consider the situation of our experiment to rotate the magnetic field in the film
plane. In the actual experiment, the magnetic field is fixed in the z axis of the laboratory
frame, i.e. B = (0, 0, B), and the rotation is performed with a mechanical rotator, which
rotates the sample around the y axis of the laboratory frame. We assume that, before
any rotation (i.e. rotation angle ψ = 0), the current is along the x axis of the laboratory
frame.

Ideally, for the in-plane rotation, the x′y′ plane of the sample frame should be identical
to the zx plane of the laboratory frame. In reality, however, there is some misalignment
of the sample on the rotator, which results in the deviation of the z′ axis of the sample
frame from the actual rotation axis (y axis of the laboratory frame). This deviation can
be parametrized by using two misalignment angles; namely, rotations of the y axis of
the laboratory frame by angles δ and α around the x′ and y′ axes of the sample frame,
respectively. After these two rotations, the y axis of the laboratory frame is brought to
the z′ axis of the misaligned sample frame.

By using Supplementary Eq. (6), the unit vector of the rotation axis [which is ey =
(0, 1, 0) in the laboratory frame] is expressed in the sample frame as

u′ =

 ux′
uy′
uz′

 =

 cosα 0 −sinα
0 1 0

sinα 0 cosα

 1 0 0
0 sinδ cosδ
0 −cosδ sinδ

 0
1
0

 =

 cosδ sinα
sinδ

−cosδ cosα

 .

(7)
Also, the magnetic-field vector in the sample frame before the sample rotation (ψ = 0) is

B′(0) =

 Bx′(0)
By′(0)
Bz′(0)

 = B

 cosα 0 −sinα
0 1 0

sinα 0 cosα

 1 0 0
0 sinδ cosδ
0 −cosδ sinδ

 0
0
1

 = B

 −sinδ sinα
cosδ

sinδ cosα

 .

(8)
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Now, when the sample is rotated clockwise by angle ψ around the axis u’ obtained in
Supplementary Eq. (7), the rotation matrix Ru′(ψ) is


cosψ + cos2δ sin2α(1− cosψ) cosδ sinδ sinα (1− cosψ)− cosδ cosα sinψ −cos2δ cosα sinα (1− cosψ)− sinδ sinψ

cosδ sinδ sinα (1− cosψ) + cosδ cosα sinψ cosψ + sin2δ (1− cosψ) −cosδ sinδ cosα (1− cosψ) + cosδ sinα sinψ

−cos2δ cosα sinα (1− cosψ) + sinδ sinψ −cosδ sinδ cosα (1− cosψ)− cosδ sinα sinψ cosψ + cos2δ cos2α(1− cosψ)

.
(9)

Finally, the magnetic-field vector in the sample frame after the sample is rotated clockwise
about the u’ axis by angle ψ is written as

B′(ψ) =

 Bx′(ψ)
By′(ψ)
Bz′(ψ)

 = B

 −cosα sinψ − sinδ sinα cosψ
cosδ cosψ

sinδ cosα cosψ − sinα sinψ

 . (10)

The magnetic-field component perpendicular to film plane, Bz′(ψ), can be written as

Bz′(ψ) = B
√

sin2δ cos2α + sin2α cos(ψ + φ), φ = arctan

(
sinα

sinδ cosα

)
. (11)

In our experiment, due to the design of the rotating sample stage, the condition α � δ
�1 holds and one may obtain

Bz′(ψ) ' B sinδ cosψ. (12)

For B = 9 T and δ as small as 0.5◦, the magnetic-field component perpendicular to
the sample surface due to the misalignment would be maximally B sin δ ≈ 78.5 mT (785
G). The ordinary orbital MR (expected for magnetic fields perpendicular to the surface)
has a quadratic field dependence in this magnetic-field range, and hence its ψ dependence
would be ∼ cos2ψ, which is indistinguishable from the AMR behaviour. On the other
hand, the ordinary Hall resistivity, caused by a misalignment, has a linear magnetic-filed
dependence and has a completely different ψ dependence (∼ cosψ) than PHE.

Supplementary Note 4: Evidence in the experimental data for sample
misalignment.

Supplementary Figure 2a shows the raw Ryx data measured in 9 T and −9 T in one of
17-nm-thick devices with an estimated misalignment angel δ of −1.5◦. The decomposition
of Ryx into symmetric and antisymmetric parts is shown in Supplementary Figure 2b.
The symmetric part (black solid line in Supplementary Fig. 2b) is the PHE signal, which
follows ∼cosϕ sinϕ dependence. Its amplitude does not depend on a misalignment angle
or a mounting configuration. The antisymmetric part (green dashed line) is an ordinary
Hall contribution, which here follows ∼sinϕ dependence. Its amplitude depends on a
misalignment angle δ as ∼sinδ. The phase is not universal and depends on a mounting
configuration as will be shown below.

Supplementary Figure 3 shows the AMR behavior (a1, b1, c1), the gate-voltage de-
pendences of Rxx(0T) and Ryx(9T) (a2, b2, c2), and the PHE behavior (a3, b3, c3),
measured in one of the 17-nm-thick devices with DC current of 30 µA. The AMR and
PHE data were taken at three different gate voltages as indicated in the central column
by vertical dashed lines. Let us first consider the development of the AMR; it is positive
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(i.e. R‖ > R⊥) at VTG = VBG = 80 V, when the charge carriers on both surfaces are
electrons. For VTG = VBG = −5 V, when the Fermi level is close to the Dirac point and
Rxx is maximal, the observed AMR is negative, similar to what was observed in Ref. [2].
Since we have top and bottom gates (and thinner samples), we can move the Fermi level
even further into the p-doped side in comparison to the measurements in Ref. [2]. At VTG

= VBG = −80 V, when the charge carriers on both surfaces are holes, the sign of AMR
changed again. If we take a look at the PHE, its amplitude never changes sign (although
it becomes close to zero near the Dirac point).

Supplementary Figure 4 shows the gate-voltage dependences of the amplitudes of the
AMR and PHE measured along another gating path, in which we kept VTG−VBG = −40
V. Here again, the AMR shows a sign change, while the PHE amplitude remains positive.

As has been discussed in Supplementary Note 2, the contribution from the orbital MR
due to a misalignment is difficult to distinguish from the genuine AMR signal in the Rxx

data. Therefore, it is reasonable to assume that the difference in the amplitudes of the
AMR and PHE comes from the finite contribution of the orbital MR to AMR, which can
give rise to a negative total signal when the MR due to the out-of-plane field is large.

To test this assumption, we performed the following experiment: We measured the
same device twice with two different orientations of the sample on the same sample holder.
The orientations differ from each other by 90◦ rotation along the axis perpendicular to the
sample surface. The genuine signal should not depend on the orientation of the sample
mounting, while for the signal coming from a misalignment, its phase should shift by 90◦.
As can be seen in Supplementary Figure 5(a), the symmetric parts of Ryx (i.e. the genuine
PHE signals) were absolutely the same in both measurements. The antisymmetric parts
(i.e. ordinary Hall contributions) in the two measurements were indeed shifted by 90◦

relative to each other. In the results for Rxx shown in Supplementary Figure 5b, the phase
also shifts by 90◦ and the amplitude changes from negative to positive, indicating that a
major part of the signal is coming from the misalignment and the negative amplitude of
the AMR in this case is an artifact.

The temperature dependences of the MR, AMR, and PHE are also useful for distin-
guishing the genuine signal from spurious contributions. Supplementary Figure 6 shows
an example of such an examination, which was made for VTG = VBG = 80 V, when both
surfaces are filled with electrons. It turns out that the genuine magnetic-field-induced in-
plane anisotropy is not very sensitive to temperature, because the amplitude of the PHE
decreases only by a factor of two upon raising the temperature from 1.8 to 200 K. On
the other hand, the magnitude of the MR in the out-of-plane magnetic field of 9 T drops
by a factor of 10 at 50 K [see Supplementary Figure 6(d)]. The temperature dependence
of the AMR amplitude is most unusual: It initially increases with increasing temper-
ature, reaches a maximum, and then decreases after merging with the PHE amplitude
[Supplementary Figure 6(d)]. A misalignment can easily explain this behaviour: At low
temperature, the contribution from the orbital MR (which appears to be negative here) is
the largest. This contribution rapidly diminishes with increasing temperature, leading to
an apparent increase in the AMR amplitude. At about 50 K, when the spurious contribu-
tion from the orbital MR becomes negligible, the AMR amplitude reaches its maximum
and becomes identical to the PHE amplitude, as is expected from the resistivity-tensor
phenomenology.

The temperature dependence of the AMR amplitude is also useful for examining the
relevance of the weak antilocalization (WAL) effect [3]. Although the WAL effect is

13



primarily considered for magnetic fields applied perpendicular to the film plane [3], it
has been proposed that the in-plane magnetic field can still cause a WAL effect when
there is a bulk conduction channel [4]. However, one can easily infer that the possible
in-plane WAL effect has little to do with the PHE/AMR effect, because the PHE/AMR
amplitude decreases only weakly with increasing temperature (Supplementary Fig. 6d).
On the other hand, the WAL effect is expected to be diminished quickly with increasing
temperature; in particular, one would not expect the WAL effect to be effective at 200 K,
at which the PHE/AMR amplitude still keeps about 50% of its size at 1.8 K. In addition,
the magnetic-field dependence of the WAL effect [3, 4] is inconsistent with the nearly-B2

dependence of the PHE/AMR amplitude shown in Fig. 2c of the main text.

Supplementary Note 5: Magnetic properties of BST films.

The origin of the AMR and PHE in BST films could be easily understood if the
films were ferromagnetic. To check this possibility, we measured the magnetization of
our BST films, using a commercial SQUID magnetometer (Quantum Design MPMS).
All of the measured films (with thicknesses ranging from 10 to 140 nm) do not show
any magnetization above the sensitivity limit of the instrument (∼10−6 emu). This can
be easily understood by taking into considerations a tiny diamagnetic response expected
from Bi2−xSbxTe3 and the small amount of the material in a thin film, which is less than
1 µg even for the 140-nm-thick sample. As one can see in Supplementary Figure 7a, the
magnetic susceptibility of a large BST single crystal with the mass of 154 mg (and the
stoichiometry similar to the films), which we measured along the ab-plane, is only about
−3×10−7 emu g−1G−1. For a relatively large field of 5000 G, the absolute value of the
magnetization of the BST crystal reaches about 2.5×10−4 emu (Supplementary Fig. 7b),
which means that the magnetization of the BST films for similar fields will be less than
10−9 emu, i.e., well below the detection limit. On the other hand, it is well known that
ferromagnetic BST films, intentionally doped with Cr or V, are easily measurable with a
SQUID magnetometer even in samples with a low doping concentration. Therefore, we
can exclude the ferromagnetic origin of the AMR and PHE in our BST films.

Supplementary Note 6: Hall resistance across the Dirac point.

While the 2D colour map of the Hall resistance vs. VTG and VBG, measured at a
constant magnetic field, gives a good general idea about the type of charge carriers on
both top and bottom surfaces, the magnetic-field dependence of Ryx, measured at specific
gate voltages, can provide useful information on their concentrations. In particular, the
value of the residual bulk conductance, which limits the gating efficiency of our devices,
is of interest. In order to estimate a residual bulk contribution to the total conductance
in our devices, Ryx(B) was measured in the out-of-plane field configuration for several
gate voltages which can bring the Fermi level across the Dirac points on both surfaces in
the 17-nm-thick device (which is discussed in the main text); for example, Supplementary
Figure 8a shows Ryx(B) measured at VTG = VBG = −10 V, where the top and bottom
surfaces are populated with electrons (open blue squares), and at VTG = VBG = −30
V, where the top and bottom surfaces are populated with holes (open red circles). The
positions on the 2D gating map, where these two curves were measured, are shown in
Supplementary Figure 8b. The change in the type of carriers across the Dirac points on
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the two surfaces is obvious from the change in the sign of the Ryx(B) slope. Moreover,
the specific shape of the Ryx(B) curve at VTG = VBG = −30 V, showing a steeper slope
at higher fields, is an indication of the presence of n-type carriers with a concentration
smaller than the concentration of p-type carriers. Fitting with a three-band model (top
surface, bottom surface, and a bulk channel), shown by solid lines in Supplementary
Figure 8a, gives the concentration of bulk electrons N3D = 6×1016 cm−3, which for a
17-nm-thick film is equivalent to ∼ 1011 cm−2. We assume that this bulk contribution is
the same for different gate voltages, at least when the Fermi level is near the Dirac points.
For the surface charge carriers, the concentration changes from nb = 2×1011 cm−2 and nt

= 5.9×1011 cm−2 on the electron side to pb = 7.5×1011 cm−2 and pt = 2×1011 cm−2 on
the hole side, where subscripts b and t refer to the bottom and top surfaces, respectively.
(Note that the measurement of a series of Ryx(B) curves at several gate voltages makes
the three-band analysis to be much more reliable than an arbitrary three-band fitting to
a single curve). Since the total change in the surface carrier concentration can exceed
± 3×1012 cm−2 at the highest gate voltages, we can conclude that the transport in our
devices is surface dominated.

In addition, the above analysis yields the information of the carrier mobility for each
channel. It is useful to note that the obtained carrier mobility of the top and bottom
surfaces were 1400 and 900 cm2/Vs, respectively, near the Dirac point. These values are
essentially the same as those of pristine BST films, which evinces that our gate fabrication
process causes no noticeable degradation in the surface states. The carrier mobility can
also be estimated in a simpler way, just from the sheet resistance and the Hall coefficient:
In our dual-gate device, the low-temperature sheet resistance Rxx was 2.73 kΩ (Fig. 1a)
and the Hall coefficient RH was 2.8×106 cm2/C at zero gate voltage (Fig. 2d); these
values give an estimate of the mobility µ = RH/Rxx = 1000 cm2/Vs, which is consistent
with the more elaborate estimate of the mobility shown above.

A small contribution of the residual bulk electrons to the transport can be also seen in
the 2D gating map of Rxx(VTG, VBG) (Fig. 1d in the main text). A schematic of the devel-
opment of such 2D map is shown in Supplementary Figure 9. In the ideal situation, when
two surfaces can be gated independently, the horizontal axis in Supplementary Figure 9a
would mark the crossing from electrons to holes on the top surface, while the vertical axis
would correspond to the crossing from electrons to holes on the bottom surface. Both axes
go through the charge neutrality point (CNP). A contour of a constant Rxx in this case
would have a broadened “+” (diamond) shape centered at CNP (Supplementary Figure
9a). If the two surfaces cannot be gated independently, which means that the top gate
will change the concentration of carriers not only on the top surface, but also somewhat
on the bottom surface (and similarly for the bottom gate), then instead of the horizontal
and vertical axes to mark the position of the crossing from electrons to holes, one will
find two lines, inclined to each other at some angle (see, for example, Fig. 1d in Ref.
[5] ). This will lead to the rotation and some distortion of the contour in the 2D map
(Supplementary Figure 9b). The residual bulk contribution (even when it is small) will
further distort the shape of the contour as shown in Supplementary Figure 9c. This is
what we observe in our dual-gated device as can be seen in Fig. 1d in the main text.
The residual bulk n-type carriers shift the boundaries of the diamond in the direction of
the left lower corner, which means that to reach the same level of the resistance as in the
ideal case, one must apply a higher negative voltage.

The change of the carrier type on the two surfaces can be also seen in a distorted
“+” shape of the 2D map of Ryx(VTG, VBG) (Figs. 1f and 2e in the main text). In low
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fields, the four regions, corresponding to the different types of charge carriers on the two
surfaces as schematically shown in Supplementary Figure 8a, can be clearly distinguished
(Supplementary Fig. 8b). The shape of constant Ryx(VTG, VBG) contours on the 2D map,
which depends not only on the concentrations of carries on both surfaces, but also on
their mobilities, is dominated by the crossing of the Dirac points on the top and bottom
surfaces. Similar behaviour of the Ryx(VTG, VBG) has been also reported for a dual-gated
insulating BSTS flake in Ref. [5].

Supplementary Note 7: 12-nm-thick device.

Supplementary Figure 10 shows the data obtained on another dual-gated device, which
was made using a 12-nm-thick BST film. As can be seen from Supplementary Figures 10a
and 10b, the gating behaviour of this device is qualitatively the same as the behaviour
of the 17-nm-thick device shown in the main text: The type of charge carriers can be
changed from the n- to p-type through the Dirac points on both surfaces. Accordingly,
the PHE amplitude as a function of the gate voltage along the VTG = VBG path shows two
pronounced peaks and a minimum near the Dirac point as we observed in the 17-nm-thick
device.

Supplementary Note 8: Self-consistent T-matrix approximation.

To model scattering from a random magnetic field we consider two-dimensional Dirac
electrons coupled to impurities located at random positions Ri with the density nimp (as
in the main text):

H =
∑
k,α,β

hαβ(k)ψ†α(k)ψβ(k) +
∑
α,β

((ε− µ)δαβ −B ·σ)d†αdβ + V
∑
k,α,i

e−ik·Riψ†α(k)dα + h.c.,

(13)
where

hαβ(k) = vF(kxσy − k′yσx)αβ, (14)

is the (momentum shifted) Hamiltonian of the free Dirac fermions on the surface of the
topological insulator.
From this we can identify the Green’s function for the Dirac electrons

GD
αβ(ω) = (ω + µ− Σ(ω)− h(k))−1

αβ , (15)

where the self-energy matrix Σ(ω) is due to scattering from the impurities which have a
Green’s function (T-matrix)

T (ω) = V 2gimp
αβ (ω) = V 2(ω + µ− ε−∆(ω) + gµB[B · σ])−1

αβ , (16)

where ∆(ω) describes the hybridization of the impurity state with the continuum of
Dirac electrons. GD, gimp, Σ, and ∆ are all 2 × 2 matrices. When no magnetization of
the impurity is present (i.e. B = 0), the self-energy Σ(ω) and hybridization ∆(ω) are
diagonal in spin-space.

To calculate the self-energy and hybridization function appearing in Supplementary
Eqs. (15) and (16) we take the first order of an nimp expansion of these quantities. This
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corresponds to scattering events arising from only a single impurity. Hence, diagrammat-
ically (see below), the irreducible contributions involve only impurity lines from a single
scattering center and this approximation is known as the self-consistent T-matrix approx-
imation (SCTMA) [8]. The SCTMA becomes mathematically exact in the limit that the
ratio of the density of impurities nimp to the density of electron states ρ(µ) becomes zero.
This condition is not satisfied near the Dirac point where the density of states of the clean
system is zero and so the SCTMA is not rigorously valid here. Despite this it has been
shown that such an approximation accurately captures the qualitative physics of the a
Dirac system coupled to impurities in the metallic regime far from the Dirac as well as in
the impurity dominated regime close to the Dirac point [6].

Hence within the SCTMA the self-energy is given by

Σαβ(ω) = nimp = nimp

 + + + ...


= nimp|V |2〈gimp

αβ (ω)〉imp = ni|V |2(ω + µ− ε− |V |2
∫

dk

(2π)2
G(k, ω) + gµB[B · σ])−1

αβ ,

(17)
where the average 〈.〉imp is over the (random) positions of impurities and the hybridization
matrix is given by

∆αβ(ω) = |V |2
∫

dk

(2π)2
GD
αβ(ω,k). (18)

The Dirac Green’s function G(k, ω) appearing in the hybridization function of 〈gimp
αβ (ω)〉imp

includes Σ(ω) and so Supplementary Eq. (17) is a self-consistent equation for the self-
energy. For non-zero fields Supplementary Eq. (17) is a 2× 2 matrix equation.

When B = 0 the angular integral over the off-diagonal components of the Dirac
Green’s function cancels in the self-consistent equation Supplementary Eq. (17), and the
off-diagonal component of self-energy Σ12 becomes zero. The remaining diagonal element
Σ11 = Σ22 is then given by [6]

Σ11(ω) = nimp|V |2
ω + µ− ε− |V |2

Λ∫
0

dk

2π

ω + µ− iδ − Σ(ω)

(ω + µ− iδ − Σ(ω))2 − v2
fk

2

−1

≈ nimp|V |2
(
ω + µ− ε+

|V |2

4πv2
f

(ω + µ− Σ(ω)) ln

(
−Λ2

(ω + µ− Σ(ω))2

))−1

,

(19)

where we have introduced a cut-off Λ due to the logarithmic behavior of the integral. At
zero frequency the equation has two distinct regimes: (i) In the metallic regime, where |µ|
is large, both real and imaginary parts of self-energy are small, Σ ∼ 1/µ. (ii) An impurity
dominated regime near the Dirac point, where the self-consistency becomes important.

Three examples of real and imaginary part of the self-energy and spectral functions
are shown in Supplementary Figure 11. The impurity dominated regime is characterized
by a large increase in the absolute value of the imaginary part of the self-energy; corre-
spondingly, due to Kramers-Krönig relation, there are two maxima in the real part of the
self-energy. These peaks are associated with dips in the spectral functions.

For the particle-hole symmetric situation, ε = 0, Supplementary Eq. (19) is purely
imaginary at the center of the impurity dominated regime at µ = 0. The energy scale

17



here, Σ(µ = 0) = −iΓ0, defines the width of this impurity dominated regime. From
Supplementary Eq. (19) we see that Γ0 is given by self-consistently solving

Γ0 =

√√√√2πnimpv2
f

ln
(

Λ
Γ0

) . (20)

For our discussion it is important to distinguish between weakly and strongly scattering
impurities. Within our model, strong impurity scattering is realized for small ε, when
scattering is approximately resonant. An inspection of the denominator in Supplementary
Eq. (19) reveals that strong, approximately resonant impurity scattering is realized for
|ε| . |V |2Γ2

0/(4πv
2
f ) = η0. In contrast, when ε � η0, scattering from off-resonance

impurities is weak.
The density of states is given by the trace of the Dirac Green’s function at zero

frequency,

ρ(µ) = − 1

π
Im

{
Tr

∫
d2k

(2π)2
G(µ,k)

}
= Im

{
2nimp|V |2

πΣ(µ)

}
, (21)

where the second line can be obtained by inserting the self-consistent equation Supple-
mentary Eq. (19) solved for the hybridization function. The density of states is also shown
in Supplementary Figure 11 for the same resonance values. From this we see that in the
metallic regime the density of states is linear, as in the clean system. However close to the
Dirac point the density of states is strongly affected by the presence of impurities with
new states created between the bounds of the regime set by the energy scale Γ0.

At finite B (taking the ‖-direction as the x-direction) the self-consistent T-matrix
equation, Supplementary Eq. (17), becomes a full matrix equation with non-zero off-
diagonals of the self-energy matrix Σ(ω) and hybridization matrix ∆(ω). This matrix
equation is now

Σ(ω) = ni|V |2
(
ω + µ−∆11(ω)− ε gµBB −∆12(ω)
gµBB −∆12(ω) ω + µ−∆11(ω)− ε

)−1

≈ Σ0(ω)1 + gµBB
Σ0(ω)2

nimp|V |2
σx,

(22)

where the last line is valid for small B and Σ0(ω) is defined using the zero-field self-
consistent equation

Σ0(ω) =
ni|V |2

ω + µ− ε−∆11(ω)
. (23)

Examples of the real and imaginary part of Σ12(ω) are shown in Supplementary Figure
11.

As discussed in the main text (see discussion below Supplementary Eq. (2) there), our
main experimental finding, the two-peak structure in the anisotropic magnetoresistance,
can be traced back to the second line in Supplementary Eq. (22): ImΣ12(µ) is proportional
to Im[Σ11(µ)2] = 2ImΣ11ReΣ11. Ultimately, this implies that the peaks in ReΣ11 lead to
peaks in the gate-voltage dependence of the anisotropy, see main text.

Note, however, that the two peaks in ImΣ12(µ) and the related two-peak structure
found in the conductivity (see main text) will vanish in a regime where all impurities
are weakly scattering. In this Born limit (reached nominally in our model for ε � η0),
where the impurity dominated regime is exponentially suppressed, Σ12(µ) is proportional
to ρ(µ) and no peaks will be visible.
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Supplementary Note 9: Conductivity within SCTMA.

The DC conductivity is given by the Kubo formula [8]

σαβ(µ) = lim
Ω→0

1

Ω

∫
d2k

(2π)2

∫ ∞
0

dt eiΩt Tr〈[Ĵα(t), Ĵβ(0)]〉, (24)

where the current operator for spin-momentum locked surface states is given by J=e∂H
∂k

=
evF (σy,−σx). Ignoring for the moment vertex corrections (see below), the conductivity
at T = 0 is given by

σαβ0 (µ) = lim
Ω→0

Im

{
nF(ω + Ω)− nF(ω)

Ω
Π0(ω + Ω)

}
= −Im

{∫
dω

iπ

∂nF(ω)

∂ω

∫
d2k

(2π)2
Tr〈ĴαG(k, ω)ĴβG†(k, ω)〉

}
= −Im

{
e2v2

F

iπ

∫
d2k

(2π)2
Tr〈σαG(k, µ)σβG†(k, µ)〉

}
.

(25)

Additional terms of the form 〈ĴαGĴβG〉 and 〈ĴαG†ĴβG†〉 will be present but are equal for
σ‖ and σ⊥ and so do not contribute to the anisotropy in MR. This is because ImΣ12 always
has the same sign for these terms and so can be completely eliminated by a shift in ky.
In all three types of terms ReΣ12 can also be eliminated in a similar manner and so does
not contribute to the AMR. The resulting difference in conductivity can be interpreted
in terms of the ratio between spin-flip and non-spin-flip scattering (see main text).

For the particle-hole symmetric system (i.e. ε = 0), the conductivity at the Dirac
point within the SCTMA is e2/2π2. This is a quarter the value found in graphene (which
has an additional two valley and spin degrees of freedom) within the same approximation
[6].

The vertex corrections to the conductivity of graphene vanish for short-ranged impu-
rities [6]. The locking of spin and momentum for surface states of topological insulators
implies that impurity scattering is always angular dependent. This implies that vertex
corrections do not vanish in this case and have to be taken into account within the self-
consistent T-matrix approximation. Within the SCTMA framework, vertex corrections
are obtained from a sum of ladder diagrams [8, 6],

= + + + ... (26)

Fortunately, it is not necessary to solve an integral equation to resum the vertex corrections
within our model. Instead, one can use the following trick: All k summations can directly
be done by defining the 4× 4 matrices

M(ω,Ω) =

∫
d2k

(2π)2
G(k, ω + Ω)⊗G†(k, ω) (27)
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and
T (ω,Ω) = T (ω + Ω)⊗ T (ω), (28)

where ⊗ is the Kronecker product. Within this space the Pauli-matrices in the current
vertex map to column vectors and Supplementary Eq. (26) can be written in terms of a
geometric series of 4× 4 matrices

σαβ(µ) = lim
Ω→0

Re

{
e2v2

F

∫
dω

π

∆nF(ω)

Ω
σα.(M+ nimpMTM+ ...).σβ

}
= lim

Ω→0
Re

{
e2v2

F

∫
dω

π

∆nF(ω)

Ω
σα.(M.(14 − nimpTM)−1).σβ

}
.

(29)

To be precise, the formulas given above are only complete when one calculates the
anisotropy of the resistivity, σ⊥ − σ‖. Otherwise one has also to include extra isotropic
contributions arising from contributions where either G† is replaced by G or G by G†, see
discussion below Supplementary Eq. (25).

We would like to emphasize that the limit Ω→ 0 has to be taken with some care (i.e.
only at the very end of the calculation) in this Dirac system. This is related to the fact
that for finite magnetization 〈Ĵx〉(µ) 6= 0 even for vanishing electric field.

As can be seen from Supplementary Figure 12, the vertex corrections approximately
double the conductivity in the metallic regime far from the Dirac point, but for the ratio
δ(µ) = (σ⊥− σ‖)/σ‖ the vertex corrections cause only a small reduction in the vicinity of
the peaks.

In reality the topological insulator surface may contain different types of impurities
described, for example, by a distribution of parameters V and ε. To check the robust-
ness of our description of the experiment, we therefore show in the following that such
distributions do not affect our conclusions.

Within the SCTMA, the average over parameters can directly be implemented by
averaging over ε and/or V in Supplementary Eq. (17). To perform this averaging we
assume that the distribution of parameters is described by a Gaussion distribution n(ε, V )
with averages ε̄ and V̄ , widths ∆ε and ∆V , and

∫
n(ε, V ) dε dV = nimp. To calculate vertex

corrections, Supplementary Eq. (28) has to be replaced by

T (ω,Ω) =

∫
dε dV

n(ε, V )

nimp
T (ω + Ω)⊗ T (ω). (30)

Supplementary Figure 13 shows the results of both V and ε averaging. We see that the
distribution has no effect on the position of the peaks in δ(µ), which are only slightly
broadened. The height of the peaks in increased due to the enhanced magnetic scattering
arising from impurities with smaller ε and V . Most importantly, averaging over impurity
distributions does not affect our interpretation of the anisotropic magnetoresistance put
forward in the main text.
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