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ABSTRACT

The Navier-Stokes equations written in the vector potential can be recast as the
nonlinear Schrödinger equations at imaginary times, i.e. the heat equations with
a potential term, using the Cole-Hopf transform introduced in Ohkitani(2017). On
this basis, we study two kinds of Navier-Stokes flows by means of direct numerical
simulations. In an experiment on vortex reconnection, it is found that the potential
term takes large negative values in regions where intensive reconnection is taking
place, whereas the signature of the nonlinear term is more broadly spread. For de-
caying turbulence starting from a random initial condition, such a correspondence
is also observed in the early stage when the flow is dominated by vorticity layers. At
later times, when the flow features several tubular vortices, this correspondence be-
comes weaker. Finally, a similar set of transformations is presented for the magneto-
hydrodynamic equations, which reduces them to a set of heat equations with suitable
potential terms, thereby obtaining new criteria for the regularity of their solutions.

KEYWORDS

Navier-Stokes equations; Cole-Hopf transform; Feynman-Kac formula; Duhamel
principle

1. Introduction

Previously in [1], the Cole-Hopf transform originally developed for the Burgers equa-
tions was extended to the Navier-Stokes equations. This reduces the Navier-Stokes
equations to the nonlinear Schrödinger equations at imaginary times, i.e. to the heat
equations with a potential term (a forcing that depends on the unknowns). On a theo-
retical side, such an analogue of the transform has been found to be useful in obtaining
a known criterion for the regularity of solutions in a straightforward fashion; on a more
practical side, numerical simulations have been carried out to see how effectively the
potential term captures near-singular structures in two-dimensional turbulence. While
the mathematical formulation for such an approach has been described in any number
of spatial dimensions, the numerical experiments were restricted to two dimensions
therein.

In this paper, we present analyses of the direct numerical simulations of the three-
dimensional Navier-Stokes equations on the basis of such a formalism. In particular,
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we will study how the potential term behaves in connection with vortex dynamics,
also comparing its behaviour to that of the nonlinear term.

The rest of this work is organised as follows. In Section 2, the basic mathematical
formulation of the three-dimensional Navier-Stokes equations is described. In Section
3, the analogue of the Cole-Hopf transform is briefly recalled. Section 4 comprises the
main results, where we report our findings from direct numerical simulations. Two
cases are described: one is a computation of vortex reconnection, the other is decaying
isotropic turbulence from random initial conditions. Finally, we summarise the findings
of our work in Section 5.

2. Three-dimensional Navier-Stokes equations

We consider the incompressible Navier-Stokes equations with standard notations in
R3:

∂u

∂t
+ u · ∇u = −∇p+ ν∆u, (1)

∇ · u = 0,

u(x, 0) = u0(x),

where the velocity u = ∇ × ψ has the vector potential ψ with the gauge condition
∇ · ψ = 0. The governing equation can also be written in terms of the vorticity
ω = ∇× u, resulting in

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∆ω. (2)

Yet another form can be obtained in terms of the vector potential ψ, which is related
to the vorticity by means of ω = −∆ψ; this reads [4]

∂ψ

∂t
= T [∇ψ] + ν∆ψ, (3)

where the non-linear term is given by

T [∇ψ] =
3

4π
P.V.

∫

R3

r × (∇×ψ(y)) r · (∇×ψ(y))

|r|5
dy, (4)

with r = x−y and P.V. standing for a principal-value integral. A similar formulation
can be obtained for the system of magneto-hydrodynamic (hereafter, MHD) equations,
its derivation being presented in Appendix A.

3. Cole-Hopf transform

In this section, we recall an analogue of the Cole-Hopf transform for the
three-dimensional incompressible Navier-Stokes equations using a straightforward
component-wise extension.
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We introduce the Cole-Hopf transforms for each θj > 0,

ψj = k log θj , (j = 1, 2, 3), (5)

where 1
θ1

∂θ1
∂x1

+ 1
θ2

∂θ2
∂x2

+ 1
θ3

∂θ3
∂x3

= 0. By (3) we obtain a system of heat equations

∂θj
∂t

= ν∆θj + fj(x, t)θj , (no summation) (6)

where the potential term is given by

fj(x, t) = kTj

[
∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

]
− ν

|∇θj |
2

θ2j
, (j = 1, 2, 3). (7)

If all the components fj (j = 1, 2, 3) are bounded – that is, if
∫ T

0 supx |f(x, t)|dt <
∞ on [0, T ] – the solutions θj of (6) are smooth on the same time interval, as a result
of an application of the Feynman-Kac formula. As the potential term f controls the
regularity of solutions, it is expected that it serves as a probe for near-singularities in
the flow field. This anticipation has been justified numerically in two dimensions [1].
Here we will study whether and how the potential term can monitor near-singularities
(or extreme events) in the three-dimensional flow.

A similar set of Cole-Hopf transforms can be applied to the MHD equations, result-
ing in a companion formalism; this is presented in Appendix B.

In the numerical experiments below, we simply choose k = ν. We have checked that
the numerical results remain qualitatively unaffected when we take k = cν with c 6= 1.

4. Numerical experiments

In order to study how the potential term f(x, t) behaves, we have carried out direct
numerical simulations of the 3D Navier-Stokes equations under periodic boundary
conditions.

4.1. Numerical formulation

We consider the Navier-Stokes equations in a periodic box of dimensions [0, 2π]3. We
use a standard Fourier pseudo-spectral method, employing a fourth order Runge-Kutta
iteration, to evaluate the nonlinear terms. Aliasing errors are removed by the so-called
2/3-rule.

The number of grid points considered was N = 128 and 256 in each dimension, with
the total number of points given by N3; the time step is fixed and typically chosen to
be ∆t = 2.5 × 10−3. The value of the kinematic viscosity is ν = 7.5 × 10−3. We have
used computations with N = 128 for checking numerical accuracy, but the results
presented in this work were all obtained using N = 256.

The numerical accuracy was confirmed by checking the behaviour of the energy
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spectrum

E(k) =
1

2

∑

k≤|k|<k+1

|ũ(k)|2,

where ũ(k) denotes the Fourier coefficient of the velocity. The spectrum shows an
exponential decay at large wavenumbers k, implying that the flows are well-resolved
throughout the time intervals under consideration (figure omitted).

We consider two kinds of initial conditions. In Case 1, we take a pair of orthogonally-
offset vortex tubes used in the study of vortex reconnection [7]. In Case 2, we use a
random initial condition whose energy spectrum is localised at lower wavenumbers

E(k) = ck2 exp(−k2),

with their phases randomised. We choose c to normalise the kinetic energy E(0) =
1
2

〈
|u|2

〉
= 1 initially, where the brackets denotes a spatial average.

We note that (3) can also be written as

∂ψi

∂t
= ǫlpqRjRl∂pψq(∂jψi − ∂iψj) + ν∆ψi,

=
1

2
ǫlpqRjRl(∂pψq − ∂qψp)(∂jψi − ∂iψj) + ν∆ψi, i = 1, 2, 3. (8)

Here Rj denotes the Riesz transform defined (in the whole space case) by

Rj [f ](x) =
1

π2
P.V.

∫

R3

xj − yj
|x− y|4

f(y)dy.

The Fourier transform of Rj is given by R̂j = −ikj/|k|, which is also valid under
periodic boundary conditions. Noting that ∂jψi − ∂iψj = ǫjilul, equation (8) reads:

∂ψi

∂t
= − ǫijm∂j∂l(−∆)−1(ulum) + ν∆ψi,

=Ti[∇ψ] + ν∆ψi,

which is convenient for the numerical evaluation of the nonlinear term Ti[∇ψ]. Its

Fourier transform T̂i[∇ψ] can be written as

T̂i[∇ψ] = ǫijm
kjkl
|k|2

ûlum, (9)

where k = (k1, k2, k3) 6= 0 is the wavenumber. The right-hand side of the above
expression can be evaluated by estimating the convolution products. In this work,
we solve the Navier-Stokes equations in vorticity form using a standard method and
evaluate the f and T [∇ψ] terms concomitantly with the time-evolution.
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4.2. Case 1: Reconnection of vortices

In order to understand the role played by the potential term f(x, t), we first consider
the simple initial condition of two orthogonal vortex tubes (such as the one used by
[7] in the study of vortex reconnection).

x

y

z

(a)

x

y

z

(b)

Figure 1. Isosurfaces of (a) |ω|2 (red) and (b) |f |2 (blue) overlaid on |ω|2 (red) at t = 1.25.
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Figure 2. Time evolution of Q(t) (blue, full line) and fmin (black, dot-dashed; scaled down by 10) for the
orthogonal vortex tubes initial condition.

Figure 1 shows (a) the isosurfaces of the enstrophy and (b) those of the potential
term |f |2 overlaid on the enstrophy at early times, t = 1.25, when the enstrophy
isosurface still closely resembles the set initial conditions. Note that the characteristics
of |f |2 are observed near and around the vortex tubes, as well as in the interacting
zone between them.

The time evolution of the enstrophy

Q(t) =
1

2

〈
|ω|2

〉
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and that of the minimum value of f

fmin(t) = min
x,j

fj(x, t)

are shown in Fig. 2. The enstrophy growth in the early stage is not monotonic, showing
instead a few local maxima. Its largest peak is reached at around t ≈ 4. This is just
preceded by the deepest minimum in fmin, which attains negative values throughout
the simulation. The enstrophy Q(t) gradually declines due to viscous effects after this
fluctuating period, which ends at t ≈ 10, while fmin steadily tends to zero as viscous
effects become dominant over non-linear ones.
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x
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(b)

Figure 3. Isosurfaces of (a) |f |2 (blue) and (b) |f |2 (blue, with transparency) overlaid on |ω|2 (red) at

t = 5.0. In (b) the |f |2 overlaid isosurface is in the mid-range.

As seen in Figure 3, the isosurfaces of (a) |f |2 at a later time t = 5.0 still resemble,
to some degree, those observed in the enstrophy, with the two vortex tubes interact-
ing. The correlation between the two quantities is more obvious in (b), showing the
isosurface of |f |2 at a specifically selected threshold, overlaid on the enstrophy at the
same time t = 5.0. The bridging phenomenon observed in |ω|2, which is well developed
at this stage, is known as a precursor for eventual vortex reconnection, see e.g. [8].
The chosen |f |2 isosurface encompasses the bridging regions and the interacting zone
between the tubes, as well as wrapping around the tubes themselves.

Similarly, Fig. 4 shows the isosurfaces for (a) |T [∇ψ]|2 and (b) those for |T [∇ψ]|2

at a specifically selected threshold, overlaid on the enstrophy at the same time t =
5.0. The isosurfaces of |T [∇ψ]|2 are seen to exhibit a dipole structure around the
vortex tubes, each one of dipole’s branches closely corresponding to the vortex tubes.
However, the overlay with the enstrophy shows that large values of T [∇ψ] are mostly
located in the dipole branches that do not correspond to the enstrophy vortex tubes,
and the distribution of T [∇ψ] appears more broadly scattered compared to that of
the potential term f .

These observations are consistent with what has been reported in the case of two-
dimensional Navier-Stokes equations [1]. There the corresponding potential term f
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(a) (b)

Figure 4. Isosurfaces of (a) |T |2 (green) and (b) |T |2 (green, with transparency) overlaid on |ω|2 (red) at
t = 5.0. In (b) the |T |2 overlaid isosurface is in the mid-range.

shows a strong correlation with thin filaments possessing large vorticity gradients,
whereas the distribution of the nonlinear term T [∇ψ] is less concentrated but scattered
outside of the coherent vortices.

4.3. Case 2: Decaying isotropic turbulence

Next we present results for the case of a random initial condition leading to decaying
isotropic turbulence. Figure 5 presents the time evolution of Q(t) and fmin; the en-
strophy is seen to increase monotonically before reaching a maximum at around t ≈ 3,
which is followed by a gradual decline. The peak in Q(t) is once again preceded by the
deepest minimum in f , which occurs at t ≈ 2.
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 0
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 0  5  10  15  20

t

Q(t)

fmin

Figure 5. Time evolution of Q(t) (blue, full line) and fmin (black, dot-dashed) for isotropic turbulent initial
conditions.

In the early stages, the flow field consists of vorticity layers as seen in Fig 6, showing
the isosurfaces of (a) enstrophy |ω|2 and |f |2 and (b) enstrophy |ω|2 and |T [∇ψ]|2
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at time t = 1.25. The isosurfaces of |f |2 show a close correlation to those of the
intense enstrophy in (a), whereas those of |T [∇ψ]|2 are more broadly scattered between
vorticity layers in (b). Those features are similar to the results from Case 1.
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Figure 6. Isosurfaces of (a) |ω|2 (red) and |f |2 (blue) and (b) |ω|2 (red) and |T |2 (green) for t = 1.25. The
isosurface used for |ω|2 is the same, but different angles are used to better reveal the correlations with |f |2

and |T |2.
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Figure 7. Isosurfaces of (a) |ω|2 (red) and |f |2 (blue) and (b) |ω|2 (red) and |T |2 (green) for t = 10.0. The
isosurface used for |ω|2 is the same, but different angles are used to better reveal the correlations with |f |2

and |T |2.

In the late stage of decaying isotropic turbulence, it is generally understood that
the flow consists of vorticity tubes rather than vorticity layers. In Fig. 7, which shows
isosurfaces for the same quantities as in Fig. 6 but for a later time t = 10.0, the
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isosurfaces of the enstrophy indeed appear to be tube-like rather than layer-like. In
this instance, some of the isosurfaces of the potential term |f |2 appear in the vicinity
of high enstrophy regions, but not all, meaning that the correlation between the two
quantities is weaker than in Fig. 6. A substantial decay has taken place by t = 10, where
Q(t) has decreased by a factor of two and fmin(t) by a factor of three. This explains
why a weaker correlation between |ω|2 and |f |2 is observed. The |T |2 isosurfaces, on
the other hand, remain scattered around regions with intense vorticity.

5. Summary

By recasting the Navier-Stokes equations as the heat equations with the potential term
f , we have studied the role played by the potential term in the characterisation of the
flow fields. In view of the fact that the potential term controls regularity properties
of solutions, it is expected that the f term can monitor near-singular behaviour in
turbulent flows. We have hence studied how the potential term behaves by direct
numerical simulations. It is found that the components of f tend to take negative
values, reducing the value of θ, and thus making ψj = k log θj potentially near-singular.
In this paper such an expectation has been demonstrated in the sense that they do
detect regions of intensely interacting vorticity and their proximity.

In one experiment where the orthogonal vortex tubes initial condition is used, we
found that the bridging phenomenon in a process of vortex reconnection is well cap-
tured by the large (negative) value of f , and a strong correlation is observed between f
and the enstrophy, while the non-linear term T [∇ψ] appeared more scattered around
the vorticity. A temporal analysis also revealed that the largest (most negative) value
of f shortly precedes the maximum in the enstrophy Q(t), again indicating that they
are strongly correlated.

The other experiment used random initial conditions leading to decaying turbulence;
in this case, during the early developing stages, regions possessing large |f | values are
strongly correlated with vorticity layers. Later, after the turbulence has well-developed,
such a correlation between f and vorticity – which now predominantly features vortex
tubes, rather than sheets – has weakened due to the diminishing importance of the
nonlinear term against the viscous dissipative term. The behaviour of the potential
term f is different from that of the nonlinear term T [∇ψ], whose correlation with
the enstrophy is instead found to be weaker in both conditions at all times, its values
being scattered around the enstrophy. Once again, the temporal evolution of f and
Q(t) showed the largest (most negative) value of the former being closely followed by
the maximum enstrophy value, before this declined gradually.

It is of interest to study whether this method can be used as identification of extreme
events in turbulence at much higher Reynolds numbers.
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Appendix A. MHD equations written in vector and magnetic potentials

In standard notations, the MHD equations take the following form:

∂u

∂t
+ u · ∇u = −∇p+ J ×B + ν△u, (A1)

∂B

∂t
+ u · ∇B = B · ∇u+ η△B, (A2)

∇ · u = ∇ ·B = 0,

u(x, 0) = u0(x), B(x, 0) = B0(x),

where J = ∇×B. Equation (A1) can be rewritten as

∂u

∂t
= u× ω + J ×B −∇

(
p+

|u|2

2

)
+ ν△u,

by ∇ |u|2

2 = u · ∇u+ u× ω, and it follows that

∂ω

∂t
= ∇× (u× ω) +∇× (J ×B) + ν△ω.

By inverting the Laplacian operator and using the relation ψ = −△−1ω, we have

∂ψ

∂t
= −△−1∇× (u× ω)−△−1∇× (J ×B) + ν△ψ,
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or

∂ψ

∂t
= T [∇ψ]− T [∇A] + ν△ψ, (A3)

where u = ∇×ψ and B = ∇×A. The definition of T [∇ψ] remains the same as for
the Navier-Stokes equations.

On the other hand, (A2) is equivalent to

∂B

∂t
= ∇× (u×B) + η△B,

from which it follows that

∂J

∂t
= −△(u×B) +∇ (∇ · (u×B)) + η△J .

Again, by inverting the Laplacian, we find

∂A

∂t
= u×B −△−1∇ (∇ · (u×B)) + η△A,

that is,

∂A

∂t
= (∇×ψ)× (∇×A) + S[∇ψ,∇A] + η△A, (A4)

where ω = −△ψ and J = −△A. The integral operator S[∇ψ,∇A] is defined by

S[∇ψ,∇A] = (−△)−1∇(∇ ·w),

where w = u × B. For its explicit representation, we recall the following dipole-
potential formula, where φ is a solution of △φ(x) = f(x). It reads

∂2φ

∂xi∂xj
=
f(x)

3
δij +

1

4π
P.V.

∫ (
δij

|x− y|3
−

3(xi − yi)(xj − yj)

|x− y|5

)
f(y)dy,

which is obtained by taking the second-order derivatives of the Newtonian potential.
Taking f = −w, we find

Si = −wi(x)−
1

4π
P.V.

∫ (
wi(y)

|x− y|3
−

3(xi − yi)(xj − yj)wi(y)

|x− y|5

)
dy.

Finally, we note that in terms of ∇ψ and ∇A, we can write

wi = ǫijk(ǫjlm∂lψm)(ǫkpq∂pAq) =
1

2
ǫkpq(∂kψi − ∂iψk)(∂pAq − ∂qAp).

Appendix B. Cole-Hopf transform for MHD equations

We consider Cole-Hopf transforms ψj = k log θj and Aj = l logχj (j = 1, 2, 3), where
k and l are constants. Equation (A3) is equivalent to
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∂θj
∂t

= ν△θj + fj

[
∇θ

θ
,
∇χ

χ

]
θj , (no summation) (B1)

where we have defined

fj

[
∇θ

θ
,
∇χ

χ

]
≡ kTj

[
∇θ

θ

]
− ν

|∇θj |
2

θ2j
+
l2

k2
Tj

[
∇χ

χ

]
, (j = 1, 2, 3). (B2)

Here, for simplicity, we have introduced the following abbreviations:

∇θ

θ
≡

{
∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

}
,

∇χ

χ
≡

{
∇χ1

χ1
,
∇χ2

χ2
,
∇χ3

χ3

}
.

Furthermore, (A4) can be rewritten as

∂χj

∂t
= η△χj + gj

[
∇θ

θ
,
∇χ

χ

]
χj , (no summation), (B3)

where

gj

[
∇θ

θ
,
∇χ

χ

]
= kSj

[
∇θ

θ
,
∇χ

χ

]
+k (∇× log θ)× (∇× logχ)|j−η

|∇χj |
2

χ2
j

, (j = 1, 2, 3),

(B4)
with the following abbreviation

(∇× log θ)× (∇× logχ)|j ≡ ǫjkl(ǫkpq∂p log θq)(ǫlmn∂m log θn).

It is straightforward to derive regularity criteria for solutions of the MHD equations;
if the following conditions

∫ T

0
sup
x

|f(x, t)|dt <∞ and

∫ T

0
sup
x

|g(x, t)|dt <∞

are satisfied, then the solutions are regular on [0, T ]. In fact, under the conditions of
boundedness for f and g, they serve as martingales and the conclusion follows by
applying the Feynman-Kac formulas to (B1, B3). Note that, in standard variables, the
above conditions correspond roughly to

“

∫ T

0
(‖u‖2∞ + ‖B‖2∞)dt <∞” and “

∫ T

0
‖u‖∞‖B‖∞dt <∞”,

respectively. It may be of interest to derive these more directly from the MHD equa-
tions. See, e.g. [9].
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