

This is a repository copy of *Comparative mitogenomic analysis of three species of periwinkles: Littorina fabalis, L. obtusata and L. saxatilis.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/126368/

Version: Accepted Version

Article:

Marques, J.P., Sotelo, G., Larsson, T. et al. (3 more authors) (2017) Comparative mitogenomic analysis of three species of periwinkles: Littorina fabalis, L. obtusata and L. saxatilis. Marine Genomics, 32. pp. 41-47. ISSN 1874-7787

https://doi.org/10.1016/j.margen.2016.10.006

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	MANUSCRIPT TYPE: Regular Research Paper
2	
3	TITLE: Comparative mitogenomic analysis of three species of periwinkles: Littorina fabalis, L.
4	obtusata and L. saxatilis
5	
6	ACCEPTED VERSION. For the final produced version from Marine Genomics see
7	https://www.sciencedirect.com/science/article/pii/S1874778716301337
8	
9	AUTHORS: João P. Marques ^{a,*} , Graciela Sotelo ^{a,*} , Tomas Larsson ^b , Kerstin Johannesson ^c , Marina
10	Panova ^{c,#} , Rui Faria ^{a,d,e#}
11	
12	^a CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório
13	Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
14	joao.marques@cibio.up.pt; gsotelo.fdz@gmail.com
15	^b University of Gothenburg, Department of Marine Sciences, Box 460, SE-405 30 Gothenburg, Sweden.
16	tomas.larsson@marine.gu.se
17	^c University of Gothenburg, Department of Marine Sciences, Tjärnö, SE-452 96 Strömstad, Sweden.
18	kerstin.johannesson@marine.gu.se; marina.panova@marine.gu.se
19	^d IBE, Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health
20	Sciences, Pompeu Fabra University, Doctor Aiguader 88, 08003 Barcelona, Spain. rui.faria@upf.edu
21	^e Animal and Plant Sciences, University of Sheffield, Shjeffield, United Kingdom.
22	r.macieiradefaria@sheffield.ac.uk
23	
24	*Equal contribution
25	
26	[#] Corresponding authors: Rui Faria - CIBIO/InBIO Centro de Investigação em Biodiversidade e
27	Recursos Genéticos – Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão,
28	Portugal. Phone: +351-252660406; Fax: +351-252661780; E-mail: rui.faria@upf.edu; Marina Panova
29	- University of Gothenburg, Department of Marine Sciences, Tjärnö, SE-452 96 Strömstad, Sweden.
30	Phone: +46-317869623; Fax: +46-317861333; E-mail: marina.panova@marine.gu.se.

31 Abstract

The flat periwinkles, Littorina fabalis and L. obtusata, offer an interesting system for local adaptation and ecological speciation studies. In order to provide genomic resources for these species, we sequenced their mitogenomes together with that of the rough periwinkle L. saxatilis by means of next-generation sequencing technologies. The three mitogenomes present the typical repertoire of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a putative control region. Although the latter could not be fully recovered in flat periwinkles using short-reads due to a highly repetitive fragment, in L. saxatilis this problem was overcome with additional long-reads and we were able to assemble the complete mitogenome. Both gene order and nucleotide composition are similar between the three species as well as compared to other Littorinimorpha. A large variance in divergence was observed across mitochondrial regions, with six- to ten-fold difference between the highest and the lowest divergence rates. Based on nucleotide changes on the whole molecule and assuming a molecular clock, L. fabalis and L. obtusata started to diverge around 0.8 Mya (0.4 - 1.1 Mya). The evolution of the mitochondrial protein-coding genes in the three Littorina species appears mainly influenced by purifying selection as revealed by phylogenetic tests based on d_N/d_S ratios that did not detect any evidence for positive selection, although some caution is required given the limited power of the dataset and the implemented approaches. Keywords: annotation, assembly, Gastropoda, mtDNA divergence, selection

59 1. Introduction

Gastropods of the genus Littorina comprise interesting models for local adaptation and ecological
speciation research (Johannesson, 2003), as illustrated by the many studies on ecotype evolution in the

62 rough periwinkle L. saxatilis (Olivi, 1792) (e.g. Butlin et al., 2014; Johannesson et al., 2010; Rolán-

63 Alvarez et al., 2004). Similarly, the flat periwinkles L. obtusata (Linnaeus, 1758) and L. fabalis

64 (Turton, 1825), two sister species that started to diverge around 1 million years ago (Mya)

65 (Tatarenkov, 1995), present important ecological differences that presumably have played a key role in

66 their diversification (Reid, 1996; Williams, 1990). Notably, shared mitochondrial haplotypes suggest

67 that mitochondrial DNA (mtDNA) introgression has occurred between the two species (Kemppainen

68 et al., 2009). However, with the exception of one marginal population, contemporary hybridization has

69 not been supported by nuclear markers (Carvalho et al., 2016; Kemppainen et al., 2009 and references

70 therein). Because mtDNA introgression is known to distort phylogenetic relationships between taxa

71 (e.g. Melo-Ferreira et al., 2012) and introgressed mtDNA haplotypes can be a source of material for

72 adaptation in the receiver species (Llopart et al., 2014), identifying the causes of the different patterns

observed with mtDNA and nuclear markers is fundamental to understand the evolutionary history offlat periwinkles.

75

76 The fact that the mitochondrial genome (mitogenome) is haploid, together with its large copy-number 77 in the cell, a high mutation rate (relative to the nuclear genome), and absence of (or reduced) 78 recombination, contribute to make mtDNA the marker of choice in phylogenetic and phylogeographic 79 analyses (see Ballard and Whitlock, 2004 and references therein). Nonetheless, not all mtDNA regions 80 are equally informative as substitution rates vary enormously across the mitogenome (e.g. Castellana 81 et al., 2011; Simon et al., 1994). Classifying mtDNA regions according to those rates (i.e. from most 82 conserved to hypervariable) can thus help a more informed selection of suitable mtDNA markers to 83 address phylogenetic questions at different depths in a specific taxonomic group.

84

Many phylogenetic and phylogeographic studies assume that mtDNA variation is essentially neutral.
However, there is evidence showing that some mtDNA mutations can be adaptive (e.g. Castellana et

al., 2011; Jacobsen et al., 2016 and references therein), and this can mislead mtDNA-based inferences 87 88 on populations' demography and history (Bazin et al., 2006). Therefore, it is important to assess if 89 mtDNA evolution in a given group is neutral or has been shaped by selection. Although disentangling 90 these hypotheses remains a difficult task, advances in sequencing technologies now allow the analysis 91 of complete mitogenomes in a more cost-effective manner and thus the identification of the genetic 92 differences between species across the entire molecule, including putative adaptive mutations. 93 Capitalizing on recent efforts to increase the genomic resources in these species, here we sequenced 94 the mitogenomes of L. fabalis and L. obtusata, together with L. saxatilis (outgroup), with the goals of: 95 i) characterizing their structure and composition, ii) estimating species divergence across different 96 genes, and iii) detecting positive selection based on patterns of codon evolution. This comparative 97 analysis of the three species provides useful information to guide the choice of mtDNA markers for 98 further phylogenetic and phylogeographic studies in Littorina.

- 99
- 100

101 **2. Materials and methods**

102 2.1 Sample collection, laboratorial procedures and sequencing

103 Littorina fabalis (of the ME ecotype sensu Carvalho et al., 2016) and L. obtusata were collected from 104 two distinct localities (Póvoa de Varzim and Rio de Moinhos, respectively) in Portugal in November 105 2012 (Table 1). Snails were taken alive to the laboratory and processed as in Carvalho et al. (2016) 106 before molecular analysis. Briefly, genomic DNA was extracted from head-foot tissue using the 107 CTAB method as described in Galindo et al. (2009). DNA quality was assessed by agarose gel 108 electrophoresis and quantity was measured with Qubit using the dsDNA BR Assay Kit (Life 109 Technologies). One adult male of each species was then selected for whole-genome sequencing. The 110 two individuals have been genotyped for microsatellites by Carvalho et al. (2016) and represent 111 genetically pure L. fabalis (Portuguese cluster) and L. obtusata. Library building for Illumina 112 sequencing was carried out at CIBIO-InBIO, University of Porto (Portugal). Each sample (2 µg of 113 DNA) was subject to four cycles of fragmentation (15 secs/90 secs - ON/OFF) on mode High (H) 114 using a Bioruptor XL (Diagenode). Libraries (with individual barcodes for species) were constructed

with the TruSeq DNA PCR-Free Sample Preparation Kit (Illumina) aiming at insert size of 350bp.
Each library was sequenced in three lanes of a HiSeq1500 platform at CIBIO-InBIO in paired-end
mode (2x100bp).

118

119 Littorina saxatilis (of the Crab ecotype sensu Johannesson et al., 2010) was collected from Saltö in 120 Sweden in December 2010, and a single adult male was chosen for whole-genome sequencing (Table 121 1). DNA was extracted from fresh tissues (head-foot) using a specifically modified CTAB protocol 122 (Panova et al., 2016). DNA quality and quantity were accessed by agarose gel electrophoresis and 123 Nanodrop spectrophotometer. The L. saxatilis de novo genome sequencing was conducted as a part of 124 the IMAGO Marine Genome projects of the Centre for Marine Evolutionary Biology (CeMEB), 125 University of Gothenburg (Sweden), using both short-read (Illumina) and long-read (Pacific 126 Biosciences - PacBio) technologies (see http://cemeb.science.gu.se/research/target-species-127 imago+/littorina-saxatilis for details). Library construction and sequencing were performed by Science

128 for Life Laboratory (Sweden).

129

130 Because it was not possible to recover the complete mitochondrial sequence for flat periwinkles using 131 Illumina reads (see section 3.1), attempts to fill this gap and close the mitogenome were performed 132 with Sanger sequencing. Based on the complete mitogenome of L. saxatilis, and the almost complete 133 assemblies of the two flat periwinkle species, primers were designed on flanking genes (tRNA-Phe and 134 COX3) as well as within the non-repetitive part of the largest non-coding region, likely corresponding 135 to the control region (CR) (primer sequences are available upon request). Successful amplification was 136 obtained with PrimeSTAR GXL DNA polymerase (TaKaRa) in 50 µL reactions containing 1 µL of 137 template DNA (approx. 10 ng), 10 µL of 5x reaction buffer, 4 µL of 10 mM dNTPs (2.5 mM each), 1 138 μ L of 10 μ M forward and reverse primers and 1 μ L of 1.25 U/ μ L polymerase. PCR cycling conditions 139 consisted of 35 cycles of denaturation at 98° for 10 s, annealing at 55° for 15 s and extension at 68° for 140 10 s. PCR products were visualized in 2% agarose gels and purified with Exo I and FastAP (Thermo 141 Scientific). Sanger sequencing was performed at Macrogen Europe (Amsterdam, The Netherlands), 142 using the corresponding forward and reverse primers.

144 2.2 Assembly, validation and annotation

- 145 The partial mitochondrial sequence of L. saxatilis (GenBank accession number a.n. AJ132137.1)
- 146 was used as query in a BLASTN (Altschul et al., 1997) search using default settings against a
- 147 preliminary L. saxatilis genome assembly constructed from several Illumina libraries with insert sizes
- 148 ranging from 150bp to 6kb (http://cemeb.science.gu.se/research/target-species-imago+/littorina-
- 149 saxatilis) with SOAPdenovo2 vr240 (Luo et al., 2012). Before assembly, reads were trimmed for
- 150 quality (q>20) and length (n>35) using trim_galore v0.3.7
- 151 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and adaptors were removed using
- 152 Cutadapt (Martin, 2011) as run from within trim_galore. Contig sequences with similarity to the
- 153 partial mitochondrial sequence were extracted and re-scaffolded with SOAPdenovo2 vr240, after
- 154 processing through the SOAPdenovo2 v2.0 prepare module
- 155 (https://sourceforge.net/projects/soapdenovo2/files/Prepare/). In order to further extend this
- 156 (incomplete) assembly, PacBio read data were incorporated using the software PBJelly from PBSuite
- 157 v14.7.14 (English et al., 2012). The resulting scaffold was manually curated: circularity was
- 158 confirmed, redundant extremities were removed and nucleotide discrepancies associated with the
- 159 incorporation of PacBio reads were corrected based on Illumina contig sequences (supported by higher
- 160 coverage and lower error rate than PacBio). This final "consensus" contig was then visually inspected
- 161 by re-mapping Illumina and PacBio reads with Bowtie2 v2.2.1 (Langmead et al., 2009) and BLASTN

162 using default settings.

- 163
- 164 The inferred de novo L. saxatilis mitogenome sequence was then used as reference to map L. obtusata
- and L. fabalis reads with Bowtie2 v2.2.6; once raw reads were clipped to remove adaptors using Perl
- scripts based on Cutadapt and trimmed for quality (q>30) and length (n>50) using the script
- 167 TrimmingReads.pl from the NGS QC Toolkit (Patel and Jain, 2012). For each species, mapped reads
- 168 were retrieved and assembled with SPAdes v3.6.2 (Bankevich et al., 2012). This rendered an almost
- 169 complete mitochondrial sequence for each species, with a long repetitive part preventing the full
- 170 recovery of the putative CR (see section 3.1).

172 The three de novo assemblies, independently implemented for each species, were then partially 173 validated by re-sequencing a total 12%-21% of the mitogenome using Sanger (partial putative CR and 174 partial COX1 and CYTB for L. saxatilis; and the same plus partial ND5 for flat periwinkles - primers 175 and conditions available upon request). Finally, the synteny revealed by the alignment of the 176 mitogenomes of L. saxatilis, L. obtusata and L. fabalis subsequently performed (see below) further 177 reassured the accuracy of the resulting sequences. 178 179 The three mitogenomes were annotated using MITOS WebServer (http://mitos.bioinf.uni-180 leipzig.de/index.py) (Bernt et al., 2013) to identify protein-coding (PCGs), ribosomal RNA (rRNAs) 181 and transfer RNA (tRNAs) genes. The tRNAs were also annotated with ARWEN v1.2 (Laslett and 182 Canbäck, 2008) and tRNAscan-SE v1.21 (Lowe and Eddy, 1997) and manually curated when 183 inconsistencies were detected between tools. Gene limits were refined by comparison with 184 orthologous mtDNA sequences of other Littorinimorpha (Cunha et al., 2009) and using BLASTX 185 (Altschul et al., 1997) against the non-redundant protein sequences database in GenBank. Repeat 186 identification was done with RepeatMasker Web Server (http://www.repeatmasker.org/cgi-187 bin/WEBRepeatMasker). Final quality control of the annotation was performed following the

188 recommendations in Cameron (2014). Graphical representation of L. saxatilis mitogenome (Figure 1)

189 was drawn with OGDRAW (Lohse et al., 2007).

190

191 2.3 Sequence analyses

192 An initial alignment of the three mitogenome sequences was obtained with ClustalW (Thompson et

al., 1994) as implemented in BioEdit v7.2.3 (Hall, 1999) and visually confirmed (Supplementary

194 Material Online). Sequence composition and divergence (p-distance) were estimated using MEGA6

195 (Tamura et al., 2013). The ratio of nonsynonymous (d_N) to synonymous (d_S) substitution rates,

196 represented as ω , was used to detect signatures of positive selection (usually inferred when $\omega > 1$) on

197 the evolution of the PCGs in each of the three Littorina lineages. To do so, we used the branch models

198 implemented in codeml in the PAMLX v1.3.1 package (Xu and Yang, 2013), which allow ω to vary

among branches in the phylogeny (Yang, 1998; Yang and Nielsen, 1998). By means of Likelihood ratio tests (LRT), the null model of a single ω was evaluated against: i) the free-ratios model where an independent ω is assumed per branch; and ii) the two-ratios model where a foreground branch (one at a time, three tests in total) is defined to accommodate a different ω respect to the rest (background branches). These analyses were performed gene by gene and also for the concatenated dataset (the 13 PCGs altogether).

205

206

207 **3. Results and Discussion**

208 3.1 Mitogenome organization and composition

209 The complete mitogenome of L. saxatilis (GenBank a.n. KU952094; 16,887bp) and the near complete 210 mitogenomes of L. obtusata (GenBank a.n. KU952093; 16,300bp) and L. fabalis (GenBank a.n. 211 KU952092; 16,318bp), all supported by a coverage > 100X and partially (12%-21%) confirmed by 212 Sanger (re-)sequencing, present the typical repertoire of 13 PCGs, 22 tRNAs, two rRNAs, and a 213 putative CR (Table 2). The repetitive content of this region (see below) did not allow its full recovery 214 for the flat periwinkles despite our additional efforts with Sanger sequencing. In contrast, the long-215 reads obtained with PacBio for L. saxatilis did span through that complex region (although it might 216 not be completely error-free as it could not be confirmed with Sanger sequencing). This could question 217 to what extent publicly available mitogenome sequences that have been reconstructed from short-reads 218 could in fact be incomplete; and suggests that long-read sequencing followed by curation and 219 validation procedures may be an efficient solution for filling gaps in repetitive regions. The PCGs 220 encompass 11,250bp, all starting with an ATG codon and ending with a TAA or TAG codon. As an 221 exception, the stop codon for ND4 differs between L. saxatilis (TAG) and L. obtusata - L. fabalis 222 (TAA) (Table 2). All tRNAs were successfully annotated, forming the typical cloverleaf structure and 223 ranging from 58 to 73bp in length. The rRNAs, 12S and 16S, are flanked by tRNA-Glu and tRNA-Leu2 224 and separated by tRNA-Val. All mitochondrial genes are encoded on the heavy (H) strand with the 225 exception of eight tRNAs (Table 2, Figure 1), and gene order is the same for the three Littorina 226 species as well as other Littorinimorpha mitogenomes except those of the superfamily Vermetoidea

227 (Cunha et al., 2009; Osca et al., 2015; Rawlings et al., 2010). The putative CR, located between tRNA-228 Phe and COX3 in the three species (Figure 1), shows two distinct parts in terms of sequence similarity 229 between species: a relatively conserved sequence on its 5' and 3' extremes (28bp and 561bp, 230 respectively) and a highly repetitive stretch in the middle (960bp in L. saxatilis, and at least 380bp in 231 L. obtusata and 398bp in L. fabalis), consisting of several motifs in tandem that vary among species. 232 The mitogenome nucleotide composition is similar between the three species, with an average of 233 30.1% A, 36.4% T, 19.0% C and 14.6% G, and a GC content ranging from 33.1% to 33.9% 234 (Supplementary Table 1), and closer to those of the genera Oncomelania, Potamopyrgus and Strombus 235 than to the remaining Littorinimorpha for which the mitogenome sequence is available (see 236 Supplementary Table 2). The whole CR presents a higher AT content than the rest of the mitogenome 237 (75.1% and 66.1%, respectively), as expected for this region (Lunt et al., 1998; Zhang and Hewitt, 238 1997).

239

Figure 1. Circular map of the L. saxatilis mitogenome (gene codes according to Table 2). The 13

241 protein-coding genes (PCGs) are represented in light grey; the 2 ribosomal RNAs (rRNAs), in dark

242 grey; and the 13 transfer RNAs (tRNAs), in black. Genes encoded in the H strand (i.e.

243 counterclockwise transcribed) are indicated outside the main circle, while genes encoded in the L

strand (i.e. clockwise transcribed) are indicated inside. The inner circle plot represents GC content(dark grey).

- 246
- 247
- 248

249 3.2 Divergence rates and selection

250 In agreement with their phylogenetic relationship, lower mitogenome sequence divergence is observed

between flat periwinkle species than between any of them and L. saxatilis. Excluding the CR, overall

- 252 nucleotide divergence is 1.0% between flat periwinkles and 3.3% between each of them and L.
- 253 saxatilis. For PCGs, nucleotide divergence ranges from 0.3% (ND3 and COX2) to 1.8% (CYTB)

254 between flat periwinkles, and from 1.9% (ATP8) to 5.4% (ND4) between these and L. saxatilis. For 255 rRNAs, nucleotide divergence is 0.6% between flat periwinkles and 1.5% (average) when compared to 256 L. saxatilis; in contrast with 3.1% and 8.9% (mean), respectively, for the CR (excluding the repetitive 257 and non-conserved part) (Figure 2). This variation in divergence across mtDNA genes/regions (with 258 rRNAs and CR among the most conserved and variable, respectively) conforms to the general trend 259 described for both invertebrates and vertebrates (Simon et al., 1994). In particular, the ratio of the 260 highest to the lowest divergence in PCGs between flat periwinkles (6.0) and between these and L. 261 saxatilis (2.5) is within the range (1.4 to 10.1) observed for other congeneric Littorinimorpha species 262 for which the mitogenome sequence is available (data not shown). This variation allows making a 263 more adequate choice of markers for future phylogenetic and phylogeographic analysis in Littorina, 264 depending on the time-scale of the questions or taxa under study. In this respect, ND4 (for coding) and 265 CR (for non-coding) seem to be among the fastest evolving genes/regions and thus useful for 266 addressing recent evolutionary questions. In contrast, ATP8 (and the rRNAs) are among the slowest 267 and consequently more suitable for assessing older evolutionary events.

268

269 In terms of amino-acids, the total number of differences between species is quite low: 9 between flat 270 periwinkles and 40 (mean) between them and L. saxatilis. This pattern of higher amino-acid 271 divergence (p-distance) between L. saxatilis and any of the flat periwinkles than between L. fabalis 272 and L. obtusata is observed across all PCGs except ND2 (Figure 2). Divergence between L. fabalis 273 and L. saxatilis has been dated around 2.5 Mya (95% highest posterior density-HPD: 1.4 - 3.5 Mya), 274 based on partial CYTB sequences and fossil calibrations (Panova et al., 2011), and 2.83 Mya based on 275 partial 12S and 16S rRNAs and complete CYTB sequences together with fossil and geological 276 information (Reid et al., 1996). Assuming a molecular clock, this would render a divergence time 277 between L. fabalis and L. obtusata of about 0.8 Mya (0.4 - 1.1 Mya) according to differences along the 278 whole molecule (excluding the repetitive part of the CR), which is in the lower range of previous 279 estimates derived from allozymes $(1.25 \pm 0.47 \text{ Mya}; \text{Kemppainen et al.}, 2009 \text{ following Tatarenkov},$ 280 1995) or mtDNA (1.32 Mya; Reid et al., 1996).

Figure 2. Pairwise divergence across mitochondrial genes/regions among three periwinkle species: L.
saxatilis (sax), L. obtusata (obt), and L. fabalis (fab). A) Nucleotide divergence. Mean values for
protein-coding genes (PCGs) and ribosomal RNAs (rRNAs) are represented. Estimates for control
region (CR) refer to its non-repetitive part (589bp, see section 3.1). B) Amino-acid divergence.

287 No signatures of positive selection ($\omega > 1$) were detected on the mitogenome of these three Littorina 288 species. Although the null model of a single ω for all branches was rejected in two cases: the concatenated dataset with L. fabalis as foreground lineage ($\chi^2 = 4.206$, df = 1, P < 0.05) showing lower 289 290 divergence than the other lineages ($\omega_1 = 0.010$ vs. $\omega_0 = 0.035$, respectively), and the ND2 gene with L. 291 obtusata as foreground lineage ($\chi^2 = 4.261$, df = 1, P < 0.05) showing higher divergence then the other 292 lineages ($\omega_1 = 0.195$ vs. $\omega_0 = 0.023$, respectively), the ω values per branch (species) were always < 1. 293 Higher ω values (still < 1) for ND2 have been reported in several organisms, suggesting relaxed 294 purifying selection on this gene (Jacobsen et al., 2016; Sun et al., 2011). Given that the mitogenome 295 contains the code to synthetize proteins that, among other functions, play an essential role in the cell 296 energy production, pervasive purifying selection as observed here is expected.

297

298 Nonetheless, signatures of positive selection in mitochondrial genes have been found in some marine 299 animals (e.g. Foote et al., 2011; Longo et al., 2016), in some cases related with distinct metabolic 300 demands at different temperatures. At a macrogeographic scale, flat periwinkles present a largely 301 overlapping distribution across the European coast (from Norway to Portugal), therefore experiencing 302 a similar thermal regime. However, at a local scale, in tidal regions of Europe L fabalis tends to 303 occupy the lower part of the intertidal, remaining submerged most of the time, whereas L. obtusata is 304 more common in the mid to upper part of the intertidal, spending larger periods outside the water. 305 Although this could impose divergent selective pressures associated with metabolism between the two 306 species, here we did not find molecular signatures of such process. Still, the observed lack of evidence 307 for positive selection should be taken with caution. The limited number of taxa and the relatively low 308 divergence between species can result in low power of phylogenetic-based tests for selection (e.g. 309 Yang, 2002). As well, adaptation could have occurred during a short period of time in a single site 310 instead of involving multiple amino-acid substitutions on multiple sites through time (Hughes, 2007); 311 and thus the footprints of positive selection could have been masked by purifying selection (Zang et 312 al., 2005), making its detection difficult (Hughes, 2007; Nozawa et al., 2009). Finally, putative 313 haplotype(s) under selection could be circumscribed to particular geographic location(s) not 314 represented in our samples.

316	Alternatively, positive selection could have influenced other parts of the mitogenome not tested with
317	this approach (focused on protein-coding genes). Namely, regions with potential regulatory functions
318	in the CR have been suggested as the target of selection in the mitogenome, and inclusively in
319	speciation (Burton and Barreto, 2012; Melo-Ferreira et al., 2014; Rollins et al., 2016). In particular,
320	long arrays of repeats in the CR, as those observed here, have been implicated in the regulation of
321	replication and transcription of the mitogenome (Hauth et al., 2005; Hirayama et al., 2010; Lunt et al.,
322	1998; Rand, 1993). Remarkably, although the CR for flat periwinkles is not complete, partial
323	sequences from several individuals from each species show that the repetitive motifs may differ both
324	between and within species (data not shown), suggesting rapid evolution of this part of the
325	mitogenome. Whether the repeats have a functional role in these Littorina taxa and are under selection,
326	as shown for other organisms (Hirayama et al., 2010), needs to be addressed in future studies.
327	
328	
329	4. Conclusion
329 330	4. ConclusionA remarkable variance in divergence across the mitogenome was observed for these three Littorina
329 330 331	4. ConclusionA remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat
329330331332	 4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and
 329 330 331 332 333 	 4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L. saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d_N/d_S ratios failed to
 329 330 331 332 333 334 	 4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L. saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d_N/d_S ratios failed to show evidence for positive selection in mitochondrial protein-coding genes, suggesting that evolution
 329 330 331 332 333 334 335 	4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L. saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d _N /d _S ratios failed to show evidence for positive selection in mitochondrial protein-coding genes, suggesting that evolution of these genes is mainly influenced by purifying selection. Although caution is necessary in the
 329 330 331 332 333 334 335 336 	4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L. saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d _N /d _S ratios failed to show evidence for positive selection in mitochondrial protein-coding genes, suggesting that evolution of these genes is mainly influenced by purifying selection. Although caution is necessary in the
 329 330 331 332 333 334 335 336 337 	 4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d_N/d_S ratios failed to show evidence for positive selection in mitochondrial protein-coding genes, suggesting that evolution of these genes is mainly influenced by purifying selection. Although caution is necessary in the interpretation of these results, until evidence for adaptive mitochondrial evolution is collected, neutral processes driven by demographic factors (e.g. episodes where females of the rarer species mate more
 329 330 331 332 333 334 335 336 337 338 	4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L. saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d _N /d _S ratios failed to show evidence for positive selection in mitochondrial protein-coding genes, suggesting that evolution of these genes is mainly influenced by purifying selection. Although caution is necessary in the interpretation of these results, until evidence for adaptive mitochondrial evolution is collected, neutral processes driven by demographic factors (e.g. episodes where females of the rarer species mate more frequently with males from the more abundant species than in the other direction) and subsequent
 329 330 331 332 333 334 335 336 337 338 339 	4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L. saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d _N /ds ratios failed to show evidence for positive selection in mitochondrial protein-coding genes, suggesting that evolution of these genes is mainly influenced by purifying selection. Although caution is necessary in the interpretation of these results, until evidence for adaptive mitochondrial evolution is collected, neutral processes driven by demographic factors (e.g. episodes where females of the rarer species mate more frequently with males from the more abundant species than in the other direction) and subsequent long-term backcrossing into one of the parental species are strong hypotheses to explain mtDNA
 329 330 331 332 333 334 335 336 337 338 339 340 	4. Conclusion A remarkable variance in divergence across the mitogenome was observed for these three Littorina species, with an almost ten-fold difference between the lowest and highest rates among flat periwinkles (from 0.3% - ND3 and COX2, to 3.1% - CR) and over six-fold among flat periwinkles and L. saxatilis (from 1.4% - 12S rRNA, to 8.9% - CR). Phylogenetic tests based on d _N /d _S ratios failed to show evidence for positive selection in mitochondrial protein-coding genes, suggesting that evolution of these genes is mainly influenced by purifying selection. Although caution is necessary in the interpretation of these results, until evidence for adaptive mitochondrial evolution is collected, neutral processes driven by demographic factors (e.g. episodes where females of the rarer species mate more frequently with males from the more abundant species than in the other direction) and subsequent long-term backcrossing into one of the parental species are strong hypotheses to explain mtDNA introgression in flat periwinkles.

343 Nucleotide sequence accession number

344 The project data is available at GenBank under the a.n. PRJNA314740. The sequence associated data345 are MIxS compliant.

346

347

348 Acknowledgments

- 349 We thank Juan Galindo and Sandra Afonso for technical assistance during DNA extraction and library
- 350 preparation for flat periwinkles; Mats Töpel, Magnus Alm-Rosenblad and Anders Blomberg for
- 351 bioinformatics support during genome sequencing and assembly for L. saxatilis; and Miguel Fonseca
- 352 for his comments on a previous version of this manuscript. This study was supported by European
- 353 Regional Development Fund [grant number FCOMP-01-0124-FEDER-014272], by FCT –
- 354 Foundation for Science and Technology [grant number PTDC/BIA-EVF/113805/2009], by
- 355 ASSEMBLE [grant number 227799], by the European Union's Seventh Framework Programme [grant
- number 286431], and by the Centre of Marine Evolutionary Biology and a Linnaeus grant from
- 357 Swedish Research Councils VR and Formas. RF was financed by FCT [grant number
- 358 SFRH/BPD/89313/2012] and is currently funded by the European Union's Horizon 2020 research and
- innovation programme, under the Marie Sklodowska-Curie grant agreement number 706376. GS is

360 financed by Volkswagen Stiftung [grant number 50500776].

361

362

363 **References**

- 364 Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997.
- 365 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic
- 366 Acids Res. 25 3389-3402.
- Ballard, J.W.O., Whitlock, M.C., 2004. The incomplete natural history of mitochondria. Mol. Ecol. 13,
 729-744.
- 369 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,

- 370 Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G.,
- 371 Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications
- to single-cell sequencing. J. Comput. Biol. 19, 455-477.
- 373 Bazin, E., Glemin, S., Galtier, N., 2006. Population size does not influence mitochondrial genetic
- diversity in animals. Science 312, 570-572.
- Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M.,
- 376 Stadler, P.F., 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol.
- 377 Phylogenet. Evol. 69, 313-319.
- 378 Burton, R.S., Barreto, F.S., 2012. A disproportionate role for mtDNA in Dobzhansky-Muller
- 379 incompatibilities? Mol. Ecol. 21, 4942-4957.
- 380 Butlin, R., Saura, M., Charrier, G., Jackson, B., André, C., Caballero, A., Coyne, J., Galindo, J.,
- 381 Grahame, J., Hollander, J., Kemppainen, P., Martínez-Fernández, M., Panova, M., Quesada, H.,
- 382 Johannesson, K., Rolán-Alvarez, E., 2014. Parallel evolution of local adaptation and reproductive
- isolation in the face of gene flow. Evolution 68, 935-949.
- 384 Cameron, S.L., 2014. How to sequence and annotate insect mitochondrial genomes for systematic and
- 385 comparative genomics research. Syst. Entomol. 39, 400-411.
- 386 Carvalho, J., Sotelo, G., Galindo, J., Faria, R., 2016. Genetic characterization of flat periwinkles
- 387 (Littorinidae) from the Iberian Peninsula reveals interspecific hybridization and different degrees of
- 388 differentiation. Biol. J. Linn. Soc. 118, 503-519.
- 389 Castellana, S., Vicario, S., Saccone, C., 2011. Evolutionary patterns of the mitochondrial genome in
- 390 Metazoa: exploring the role of mutation and selection in mitochondrial protein-coding genes. Genome
- 391 Biol. Evol. 3, 1067-1079.
- 392 Cunha, R.L., Grande, C., Zardoya, R., 2009. Neogastropod phylogenetic relationships based on entire
- 393 mitochondrial genomes. BMC Evol. Biol. 9, 210.
- 394 English, A.C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D.M., Reid, J.G.,
- 395 Worley, K.C., Gibbs, R.A., 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS
- 396 long-read sequencing technology. PLoS ONE 7, e47768.

- 397 Foote, A.D., Morin, P.A., Durban, J.W., Pitman, R.L., Wade, P., Willerslev, E., Gilbert, M.T.P., da
- 398 Fonseca, R.R., 2011. Positive selection on the killer whale mitogenome. Biol. Lett. 7, 116-118.
- 399 Galindo, J., Morán, P., Rolán-Alvarez, E., 2009. Comparing geographical genetic differentiation
- 400 between candidate and noncandidate loci for adaptation strengthens support for parallel ecological
- 401 divergence in the marine snail Littorina saxatilis. Mol. Ecol. 18, 919-930.
- 402 Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program
- 403 for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
- 404 Hauth, A.M., Maier, U.G., Lang, B.F., Burger, G., 2005. The Rhodomonas salina mitochondrial
- 405 genome: bacteria-like operons, compact gene arrangement and complex repeat region. Nucleic Acids
- 406 Res. 33, 4433-4442.
- 407 Hirayama, M., Mukai, T., Miya, M., Murata, Y., Sekiya, Y., Yamashita, T., Nishida, M., Watabe, S.,
- 408 Oda, S., Mitani, H., 2010. Intraspecific variation in the mitochondrial genome among local
- 409 populations of Medaka Oryzias latipes. Gene 457, 13-24.
- 410 Hughes, A.L., 2007. Looking for Darwin in all the wrong places: the misguided quest for positive
- 411 selection at the nucleotide sequence level. Heredity 99, 364-373.
- 412 Jacobsen, M.W., da Fonseca R.R., Bernatchez, L., Hansen, M.M., 2016. Comparative analysis of
- 413 complete mitochondrial genomes suggests that relaxed purifying selection is driving high
- 414 nonsynonymous evolutionary rate of the *NADH2* gene in whitefish (*Coregonus* ssp.). Mol. Phylogenet.
- 415 Evol. 95, 161-170.
- 416 Johannesson, K., 2003. Evolution in Littorina: ecology matters. J. Sea Res. 49, 107-117.
- 417 Johannesson, K., Panova, M., Kemppainen, P., André, C., Rolán-Alvarez, E., Butlin, R.K., 2010.
- 418 Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation.
- 419 Philos. T. Roy. Soc. B. 365, 1735-1747.
- 420 Kemppainen, P., Panova, M., Hollander, J., Johannesson, K., 2009. Complete lack of mitochondrial
- 421 divergence between two species of NE Atlantic marine intertidal gastropods. J. Evol. Biol. 22, 2000422 2011.
- 423 Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., 2009. Ultrafast and memory-efficient alignment
- 424 of short DNA sequences to the human genome. Genome Biol. 10, R25.

- 425 Laslett, D., Canbäck, B., 2008. ARWEN, a program to detect tRNA genes in metazoan mitochondrial
 426 nucleotide sequences. Bioinformatics 24, 172-175.
- 427 Lohse, M., Drechsel, O., Bock, R., 2007. OrganellarGenomeDRAW (OGDRAW), a tool for the easy
- generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet.
 52, 267-274.
- 430 Llopart, A., Herrig, D., Brud, E., Stecklein, Z., 2014. Sequential adaptive introgression of the
- 431 mitochondrial genome in Drosophila yakuba and Drosophila santomea. Mol. Ecol. 23, 1124-1136.
- 432 Longo, G.C., O'Connell, B., Green, R.E., Bernardi, G., 2016. The complete mitochondrial genome of
- 433 the black surfperch, Embiotoca jacksoni: Selection and substitution rates among surfperches
- 434 (Embiotocidae). Mar. Genomics doi: 10.1111/bij.12762.
- 435 Lowe, T.M., Eddy S.R., 1997. tRNAscan-SE: A program for improved detection of transfer RNA
- 436 genes in genomic sequence. Nucleic Acids Res. 25, 955-964.
- 437 Lunt, D.H., Whipple, L.E., Hyman, B.C., 1998. Mitochondrial DNA variable number tandem repeats
- 438 (VNTRs): utility and problems in molecular ecology. Mol. Ecol. 7, 1441-1455.
- 439 Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu,
- 440 G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., Cheung, D.W., Yiu, S., Peng, S.,
- 441 Xiaoqian, Z., Liu, G., Liao, X., Li, Y., Yang, H., Wang, J., Lam, T., Wang, J., 2012. SOAPdenovo2:
- 442 an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18.
- 443 Martin, M., 2011. Cutadapt removes adapter sequences from highthroughput sequencing reads.
 444 EMBnet.journal 17, 10-12.
- 445 Melo-Ferreira, J., Boursot, P., Carneiro, M., Esteves, P.J., Farelo, L., Alves, P.C., 2012. Recurrent
- 446 introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and
- 447 coalescent simulations. Syst. Biol. 61, 367-381.
- 448 Melo-Ferreira, J., Vilela, J., Fonseca, M.M., Da Fonseca, R.R., Boursot, P., Alves, P.C., 2014. The
- 449 elusive nature of adaptive mitochondrial DNA evolution of an Arctic lineage prone to frequent
- 450 introgression. Genome Biol. Evol. 6, 886-896.
- 451 Nozawa, M., Suzuki, Y., Nei, M., 2009. Reliabilities of identifying positive selection by the branch-
- 452 site and the site-prediction methods. P. Natl. Acad. Sci. USA 106, 6700-6705.

- 453 Osca, D., Templado, J., Zardoya, R., 2015. Caenogastropod mitogenomics. Mol. Phylogenet. Evol. 93,
 454 118-128.
- 455 Panova, M., Blakeslee, A.M.H., Miller, A.W., Mäkinen, T., Ruiz, G.M., Johannesson, K., André, C.,
- 456 2011. Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution
- 457 of mitochondrial DNA lineages. PLoS ONE 6, e17511.
- 458 Patel, R.K., Jain, M., 2012. NGS QC Toolkit: A toolkit for quality control of next generation
- 459 sequencing data. PLoS ONE 7, e30619.
- 460 Panova, M., Aronsson, H.R., Cameron, A., Dahl, P., Godhe, A., Lind, U., Ortega-Martinez, O.,
- 461 Pereyra, R., Tesson, S., Wrange, A-L., Blomberg, A., Johannesson, K., 2016. DNA extraction
- 462 protocols for whole genome sequencing in marine organisms, in: Bourlat S.J. (Ed.), Marine Genomics:
- 463 Methods and Protocols. Springer, New York.
- 464 Rand, D.M., 1993. Endotherms, Ectotherms, and Mitochondrial Genome-Size Variation. J. Mol. Evol.
 465 37, 281-295.
- 466 Rawlings, T.A., MacInnis, M.J., Bieler, R., Boore, J.L., Collins, T.M., 2010. Sessile snails, dynamic
- 467 genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod
- 468 molluscs. BMC Genomics 11, 440.
- 469 Reid, D.G., 1996. Systematics and Evolution of Littorina. Ray Society, London.
- 470 Reid, D.G., Rumbak, E., Thomas, R.H., 1996. DNA, morphology and fossils: phylogeny and
- 471 evolutionary rates of the gastropod genus Littorina. Philos. T. Roy. Soc. B. 351, 877-895.
- 472 Rolán-Alvarez, E., Carballo, M., Galindo, J., Morán, P., Fernández, B., Caballero, A., Cruz, R.,
- 473 Boulding, E.G., Johannesson, K., 2004. Nonallopatric and parallel origin of local reproductive barriers
- 474 between two snail ecotypes. Mol. Ecol. 13, 3415-3424.
- 475 Rollins, L.A., Woolnough, A.P., Fanson, B.G., Cummins, M.L., Crowley, T.M., Wilton, A.N.,
- 476 Sinclair, R., Butler, A., Sherwin, W.B., 2016. Selection on mitochondrial variants occurs between and
- 477 within individuals in an expanding invasion. Mol. Biol. Evol. 33, 995-1007.
- 478 Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook. P., 1994. Evolution, weighting, and
- 479 phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase
- 480 chain reaction primers. Ann. Entomol. Soc. Am. 87, 651-701.

- 481 Sun, Y.B., Shen, Y.Y., Irwin, D.M., Zhang, Y.P., 2011. Evaluating the roles of energetic functional
- 482 constraints on teleost mitochondrial-encoded protein evolution. Mol. Biol. Evol. 28, 39-44.
- 483 Tatarenkov, A.N., 1995. Genetic divergence between sibling species Littorina mariae Sacchi, Rastelli
- 484 and L. obtusata (L.) (Mollusca: Gastropoda) from the White Sea. Ophelia 40, 207-218.
- 485 Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary
- 486 Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725-2729.
- 487 Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. ClustalW: improving the sensitivity of progressive
- 488 multiple sequence alignment through sequence weighting, position-specific gap penalties and weight
- 489 matrix choice. Nucleic Acids Res. 22, 4673-4680.
- 490 Williams, G.A., 1990. The comparative ecology of the flat periwinkles, *Littorina obtusata* (L.) and *L*.
- 491 *mariae* Sacchi et Rastelli. Field Stud. 7, 469-482.
- 492 Xu, B., Yang, Z., 2013. PAMLX: a graphical user interface for PAML. Mol. Biol. Evol. 30, 2723-
- 493 2724.
- 494 Yang, Z., 1998. Likelihood ratio tests for detecting positive selection and application to primate
- 495 lysozyme evolution. Mol. Biol. Evol.15, 568-573.
- 496 Yang, Z., 2002 Inference of selection from multiple species alignments. Curr. Opin. Genet. Dev. 12,
 497 688-694.
- 498 Yang, Z., Nielsen, R., 1998. Synonymous and nonsynonymous rate variation in nuclear genes of
- 499 mammals. J. Mol. Evol. 46, 409-418.
- 500 Zhang, D., Hewitt, G.M., 1997. Insect mitochondrial control region: a review of its structure,
- 501 evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 25, 99-120.
- 502 Zhang, J., Nielsen, R., Yang, Z., 2005. Evaluation of an improved branch-site Likelihood method for
- 503 detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472-2479.

504 Tables

Item	Description				
Organism	Littorina saxatilis	Littorina obtusata	Littorina fabalis		
MIGS data					
Investigation_type	Organelle	Organelle	Organelle		
Project_name	gO10	oM33	fPOV34		
Collection_date	2010-12	2012-11	2012-11		
Lat_lon	58.8697 N 11.1197 E	41.5667 N 8.7972 W	41.3881 N 8.7731 W		
Country	Sweden	Portugal	Portugal		
Environment	Marine: intertidal zone	Marine: intertidal zone	Marine: intertidal zone		
Isol_growth_condt	Not applicable	Not applicable	Not applicable		
Sex	Male	Male	Male		
Dev_stage	Adult	Adult	Adult		
Tissue	Head-foot	Head-foot	Head-foot		
Sequencing_meth	Sequencing by synthesis	Sequencing by synthesis	Sequencing by synthesis		
Assembly	SOAPdenovo2 vr240 + PBSuite v14.7.14	SPAdes v3.6.2	SPAdes v3.6.2		
Annot_source	BLAST + MITOS	BLAST + MITOS	BLAST + MITOS		
Estimated_size	16.887				
Biome	ENVO:00000569	ENVO:00000569	ENVO:00000569		
Feature	ENVO:00000316	ENVO:00000316	ENVO:00000316		
Material	ENVO:00002006	ENVO:00002006	ENVO:00002006		
Geo_loc_name Sweden: Saltö		Portugal: Rio de Moinhos	Portugal: Póvoa de Varzim		
Genome assembly data					
Assembly method	SOAPdenovo2 vr240 + PBSuite v14.7.14	SPAdes v3.6.2	SPAdes v3.6.2		
Assembly name	gO10	oM33	fPOV34		
Genome coverage	> 100X	> 100X	> 100X		
Sequencing technology	Illumina HiSeq + PacBio	Illumina HiSeq	Illumina HiSeq		

Table 1. Mitogenome and environmental features.

- 507 **Table 2.** Mitochondrial genome annotation for L. saxatilis, L. obtusata and L. fabalis, including
- 508 strand, length and location of each gene/region. Start and stop codons for each protein-coding gene are
- 509 also indicated.

					L. saxatilis		L. obt	usata	L. fabalis	
Gene/Region	Strand	Length (bp)	Start	Stop	Location	Intergenic nucleotides ¹	Location	Intergenic nucleotides ¹	Location	Intergenic nucleotides ¹
COX1	Н	1536	ATG	TAA	1-1536	30	1-1536	30	1-1536	30
COX2	Н	687	ATG	TAA	1567-2253	2	1567-2253	2	1567-2253	2
tRNA-Asp	Н	69			2256-2324	1	2256-2324	1	2256-2324	1
ATP8	Н	159	ATG	TAG	2326-2484	13	2326-2484	13	2326-2484	13
ATP6	Н	696	ATG	TAG	2498-3193	31	2498-3193	31	2498-3193	31
tRNA-Met	L	68			3225-3292	1	3225-3292	1	3225-3292	1
tRNA-Tyr	L	68			3294-3361	11	3294-3361	11	3294-3361	11
tRNA-Cys	L	65			3373-3437	1	3373-3437	1	3373-3437	1
tRNA-Trp	L	66			3439-3504	1	3439-3504	1	3439-3504	1
tRNA-Gln	L	58			3506-3563	11	3506-3563	11	3506-3563	11
tRNA-Gly	L	67			3575-3641	-1	3575-3641	-1	3575-3641	-1
tRNA-Glu	L	71			3641-3711	72	3641-3711	72	3641-3711	72
12S rRNA	Н	895/89 4 ²			3784-4678	-3	3784-4677	-3	3784-4677	-3
tRNA-Val	Н	68			4676-4743	-22	4675-4742	-22	4675-4742	-22
16S rRNA	Н	1415			4722-6136	-10	4721-6135	-10	4721-6135	-10
tRNA-Leu2	Н	67			6127-6193	8	6126-6192	8	6126-6192	8
tRNA-Leu1	Н	67			6202-6268	0	6201-6267	0	6201-6267	0
ND1	Н	939	ATG	TAA	6269-7207	7	6268-7206	7	6268-7206	7
tRNA-Pro	Н	68			7215-7282	2	7214-7281	2	7214-7281	2
ND6	Н	513	ATG	TAG	7285-7797	9	7284-7796	9	7284-7796	9
СҮТВ	Н	1140	ATG	TAA	7807-8946	17	7806-8945	18	7806-8945	18
tRNA-Ser2	Н	68			8964-9031	5	8964-9031	5	8964-9031	5
tRNA-Thr	L	70/713			9037-9106	8	9037-9106	8	9037-9107	8
ND4L	Н	297	ATG	TAG	9115-9411	-7	9115-9411	-7	9116-9412	-7
ND4	Н	1371	ATG	TAG/TAA ⁴	9405-10775	9	9405-10775	9	9406-10776	8
tRNA-His	Н	66			10785-10850	1	10785-10850	1	10785-10850	1
ND5	Н	1719	ATG	TAA	10852-12570	23	10852-12570	21	10852-12570	21
tRNA-Phe	Н	69			12594-12662	0	12592-12660	0	12592-12660	0
putative CR		1549 ⁵			12663-14211	0	12661-13729	0	12661-13747	0
COX3	Н	780	ATG	TAA	14212-14991	33	13730-14509	33	13748-14527	33
tRNA-Lys	Н	73			15025-15097	11	14543-14615	5	14561-14633	6
tRNA-Ala	Н	67			15109-15175	1	14621-14687	1	14640-14706	1
tRNA-Arg	Н	69			15177-15245	5	14689-14757	5	14708-14776	5
tRNA-Asn	Н	67			15251-15317	13	14763-14829	14	14782-14848	13
tRNA-Ile	Н	69			15331-15399	4	14844-14912	4	14862-14930	4
ND3	Н	354	ATG	TAA	15404-15757	-1	14917-15270	-1	14935-15288	-1
tRNA-Ser1	Н	67			15757-15823	0	15270-15336	0	15288-15354	0
ND2	Н	1059	ATG	TAA	15824-16882	5	15337-16395	5	15355-16413	5

- 510 ¹Values are relative to the next gene; negative values represent overlapping nucleotides;
- 511 ²Length for L. saxatilis: 895bp; for L. obtusata and L. fabalis: 894bp;
- 512 ³Length for L. saxatilis and L. obtusata: 70bp; for L. fabalis: 71bp;
- 513 ⁴Stop codon for L. saxatilis: TAG; for L. obtusata and L. fabalis: TAA;
- 514 ⁵Length for L. saxatilis (single complete sequence in the dataset)

516 Supplementary Tables

- 517 Supplementary Table 1. Nucleotide composition of the L. saxatilis (sax), L. obtusata (obt) and L.
- 518 fabalis (fab) mitogenomes. CR: control region; PCGs: protein-coding genes; rRNAs: ribosomal RNA
- 519 genes.

Species	Region	Length (bp)	AT%	A%	Τ%	G%	C%
sax		16887	66.9	30.4	36.5	14.1	18.9
obt	Full sequence	16300	66.3	29.9	36.4	14.7	19.1
fab	r un sequence	16318	66.2	29.9	36.3	14.9	18.9
		Average	66.5	30.1	36.4	14.6	19.0
sax		15927	66.2	29.6	36.6	14.8	19.0
obt	– Full sequence without repetitive region of CR	15000	66.3	29.6	36.7	14.8	18.9
fab		15920	66.2	29.5	36.7	14.9	19.0
		Average	66.2	29.5	36.7	14.8	19.0
sax	- Full sequence without CR	15338	66.1	29.3	36.8	15.0	18.9
obt		15331	66.2	29.3	36.8	15.0	18.8
fab			66.1	29.3	36.8	15.1	18.8
		Average	66.1	29.3	36.8	15.1	18.8
sax			68.3	36.0	32.3	8.8	22.9
obt		589	68.6	35.3	33.3	9.7	21.7
fab	CK without repetitive region		68.6	35.0	33.6	9.3	22.1
		Average	68.5	35.4	33.1	9.3	22.2
sax			65.0	27.1	38.0	14.9	20.1
obt	DCC-	11250	65.1	27.1	38.0	14.9	20.0
fab	rtus		64.9	27.0	37.9	15.0	20.0
		Average	65.0	27.1	38.0	14.9	20.0
sax			69.2	36.3	32.9	16.0	14.8
obt	rRNAs	2307	69.1	36.2	32.9	16.2	14.8
fab	111100		69.3	36.4	32.8	16.0	14.8
		Average	69.2	36.3	32.9	16.0	14.8

520

521

522

525 Supplementary Table 2. Littorinimorpha mitogenomes available in GenBank by August 2016

526 besides Littorina. For each species, taxonomic position at the level of superfamily, together with

527 GenBank accession number, length of the full sequence and nucleotide composition are indicated.

Species	Superfamily*	GenBank a.n.	Length (bp)	AT%	Α%	Т%	G%	С%
Ceraesignum maximum	Vermetoidea	NC_014583	15 578	59.4	22.6	36.8	25.4	15.2
Cymatium parthenopeum	Tonnoidea	NC_013247	15 270	69.1	30.9	38.2	16.0	14.9
Dendropoma gregarium	Vermetoidea	NC_014580	15 641	60.3	24.7	35.6	22.5	17.1
Eualetes tulipa	Vermetoidea	NC_014585	15 078	62.2	26.5	35.7	22.4	15.5
Galeodea echinophora	Tonnoidea	NC_028003	15 388	70.9	32.1	38.8	14.5	14.5
Naticarius hebraeus	Naticoidea	NC_028002	15 384	72.7	31.8	40.9	14.7	12.7
Oncomelania hupensis	Truncatelloidea	NC_012899	15 182	67.3	30.0	37.3	16.7	16.0
Oncomelania hupensis hupensis	Truncatelloidea	NC_013073	15 186	67.3	29.9	37.4	16.7	15.9
Oncomelania hupesnsis robertsoni	Truncatelloidea	NC_013187	15 191	67.2	29.6	37.6	16.9	15.9
Potamopyrgus antipodarum	Truncatelloidea	NC_020790	15 110	66.0	28.6	37.4	17.2	16.8
Potamopyrgus estuarinus	Truncatelloidea	NC_021595	15 120	66.3	28.3	38.0	17.6	16.2
Strombus gigas	Stromboidea	NC_024932	15 461	65.8	28.7	37.1	17.6	16.6
Thylacodes squamigerus	Vermetoidea	NC_014588	15 544	60.6	25.6	35.0	20.9	18.4
Tricula hortensis	Truncatelloidea	NC_013833	15 179	73.0	32.5	40.5	14.3	12.7

528 *according to GenBank

530 Additional files for Supplementary Material Online:

- 531 File name: Littorina_spp_mitogenome_ClustalW_alignment.fas
- 532 File format: FASTA

533 Description: Mitogenome alignment of L. saxatilis, L. obtusata and L. fabalis sequences based on

534 ClustalW, arranged as in Table 2 (from COX1 to ND2). The repetitive region of the CR is not included

because it was not considered for divergence estimates, but it will be located between positions 12692

536 and 12693 of the current alignment.

537

538

539

⁵²⁹