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One Sentence Summary: Lentiviral integration is catalyzed by a higher-order multimeric 

assembly. 

 

Abstract: Retroviral integrase (IN) functions within the intasome nucleoprotein 

complex to catalyze the insertion of viral DNA into cellular chromatin. The lack of 

lentiviral intasome structural information has hampered the development of anti-HIV 

drugs and the understanding of viral resistance. Using cryo-electron microscopy, we 

now visualize the functional maedi-visna lentivirus intasome at 4.9 Å resolution. The 

intasome, which comprises a homo-hexadecamer of IN with a tetramer-of-tetramers 

architecture, harbors eight structurally distinct types of IN protomers including two 

catalytically competent subunits. The conserved intasomal core, previously observed in 

simpler retroviral systems, is formed between two IN tetramers, with a pair of C-

terminal domains from flanking tetramers completing the synaptic interface. Our 

results explain how HIV-1 IN, which self-associates into higher order multimers, can 

form a functional intasome, reconcile the bulk of early HIV-1 IN biochemical and 

structural data, and provide a lentiviral platform for structure-guided design of HIV-1 

IN inhibitors.  

 

Main Text: Integrase (IN) acts on the ends of the linear double stranded viral DNA (vDNA) 

molecule produced by reverse transcription of the retroviral RNA genome. Initially, IN 

catalyzes 3'-processing to expose 3' hydroxyl groups attached to invariant CA dinucleotides 

at the vDNA ends. Following entry into the nuclear compartment IN inserts the processed 

vDNA 3' termini across the major groove of chromosomal target DNA using the 3' hydroxyls 

as nucleophiles in the strand transfer reaction. These events take place within the intasome, a 

stable synaptic complex comprising a multimer of IN assembled on vDNA ends (1). 
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Characterization of prototype foamy virus (PFV, belonging to the spumavirus genus), Rous 

sarcoma virus (RSV, an a-retrovirus), and mouse mammary tumor virus (MMTV, a b-

retrovirus) intasomes illuminated the conserved intasome core (CIC) structure minimally 

comprising a pair of IN dimers, as in the case of the PFV intasome (2, 3), or decorated by 

flanking IN dimers in RSV (4) and MMTV (5). The architecture of the lentiviral intasome, 

the genus that includes HIV-1 and HIV-2 along with highly pathogenic animal viruses, has 

remained elusive.  

Unfavorable biochemical properties of HIV-1 IN necessitate the use of hyperactive 

and/or solubilizing mutations (6-8), which, by their nature, dramatically change the properties 

of the protein. Taking a more holistic approach, we sought to identify a lentiviral IN that is 

amenable for structural studies as a wild type protein. We discovered that the IN from maedi-

visna virus (MVV), an ovine lentivirus, displays robust strand transfer activity when supplied 

with oligonucleotides mimicking the vDNA ends in the presence of the common lentiviral 

integration host factor LEDGF (9, 10) (fig. S1). MVV IN assembled into a functional 

nucleoprotein complex that could be isolated by size exclusion chromatography (fig. S2A). In 

the presence of the essential Mg2+ cofactor, the purified nucleoprotein complex catalyzed 

strand transfer activity and could be inhibited by the HIV-1 IN strand transfer inhibitor 

(INSTI) dolutegravir (11) (fig. S2B). Sequence analysis of reaction products ascertained that 

they were formed by full-site integration – coordinated insertion of pairs of vDNA ends 

across the major groove in target DNA – leading to short duplications of target DNA 

sequences (fig. S2C). To confirm that the most commonly observed duplication size – 6 bp – 

is representative of MVV integration, we sequenced 2,526 unique integration sites in primary 

sheep cells infected with pathogenic MVV and compared them to in vitro integration sites 

obtained with purified intasomes and deproteinized sheep or plasmid DNA. Aligning the 

three sets of integration site sequences revealed symmetric and highly similar sequence 
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preferences that are fully consistent with integration of vDNA ends across 6 bp in target 

DNA (fig. S3). As expected for a lentivirus (9), MVV displayed a strong preference for 

transcription units, with 70.2% of integration sites found within predicted sheep genes, 

compared to 43.7% in the in vitro generated sample (p<10-150). 

Inspection of the intasome by negative stain electron microscopy (EM) revealed a flat, 

two-fold symmetric molecule measuring over 20 nm in the widest dimension (fig. S4), which 

is much larger than any of the previously characterized retroviral intasomes. To determine its 

structure, we acquired images of single particles in vitreous ice using a transmission electron 

microscope equipped with a direct detector. The final structure was refined using a dataset of 

94,283 single particles to an overall resolution of 4.94 Å, with local resolution varying from 9 

Å in the periphery of the structure to ~4 Å throughout the core region (Fig. 1, figs S5-7). A 

crystal structure spanning the N-terminal and the catalytic core domains (NTD and CCD) of 

MVV IN is available (12). In addition, we determined two crystal structures spanning the 

MVV IN C-terminal domain (CTD, table S1). Sixteen MVV IN subunits and two double 

stranded DNA oligonucleotides representing the synapsed vDNA ends could be 

unambiguously placed in the electron density map (Fig. 1A, fig. S8, movie S1), consistent 

with the observed molecular mass of ~0.5 MDa for the complex (fig. S2D). 

The intasome represents a tetramer of tetramers, each comprising a pair of imperfectly 

symmetric IN dimers with CCD-CTD linkers in extended a-helical configurations that is 

strikingly similar to the HIV-1 IN dimer observed in crystals (7) (figs S9, S10A). Although 

intasome formation required the presence of LEDGF, only traces of the host factor remained 

after purification by two-stage chromatography (fig. S2A). Consequently, no density could be 

attributed to LEDGF in the structure. It is possible that the remaining LEDGF molecules are 

distributed over 16 possible binding positions on the intasome. 
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The CIC, analogous to those found in other retroviral systems (2, 4, 5), is located at 

the center of the assembly (Figs. 1B, 2, fig. S7C), and each of the four MVV IN tetramers is 

involved in its formation: core tetramers I and II contribute a CCD dimer each, while 

flanking tetramers III and IV provide a pair of synaptic CTDs that join the halves of the CIC 

structure. Approximately 20 bp of each vDNA end are well-defined in the electron density. 

The vDNA ends pass through the CIC structure approaching each other at an angle of 60°, 

with their terminal base pairs separated by IN CCD a4 helix (Fig. S10C). Each recessed 3' 

vDNA end is placed in the active site of a catalytic IN subunit (chains A and I), while the 

complementary non-transferred strand is threaded between the CCD and the synaptic CTD 

(Fig. S10C). The catalytic subunits intertwine by exchanging a pair of NTDs, with CCD-

NTD linkers crossing the synaptic interface and contacting vDNA minor grooves (Fig. 2, fig. 

S10B, movie S1). 

A layer of CTDs bridges the flanking and core tetramers of the intasome (fig. S8). 

Four pairs of CTDs belonging to the inner- and outermost IN chains of each lobe stack to 

form dimers nearly identical to those observed in MVV IN crystals and formed by the 

isolated HIV-1 CTD in solution (13) (figs S11). The b1-b2 loops of the CTD dimers from 

tetramers I and II insert into minor grooves of vDNA (fig. S10D) close to the end engaged by 

the active site of the opposing main tetramer (Fig. 1A). The interactions made across the 

synaptic interface likely ensure that a stable intasome forms only when the enzyme engages 

both vDNA ends. The NTDs from the inner core IN and one of the flanking IN lobes interact 

with the vDNA backbone (fig. S10D), forming an interface previously observed in crystals of 

the HIV-1 IN NTD-CCD construct (14) (fig. S12). 

Due to the role of DNA in synaptic interface formation, retroviral INs and closely 

related DNA transposases tend to assemble into functional multimers only in the presence of 

their DNA substrates (2, 4, 5, 15, 16). The intasome would thus be expected to contain a 
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multiple of the minimal multimeric species found in solution, and this conjecture holds true 

for characterized intasomes containing tetramers of monomers (PFV) or dimers (RSV and 

MMTV) (2, 4, 5). In contrast, HIV-1 IN forms higher-order multimers in the absence of 

vDNA (12, 17-19), and crosslinked HIV-1 IN tetramers are functional in vitro (20). 

Similarly, MVV IN also forms tetramers and higher-order multimers in solution (fig. S2E). 

Thus, our structure explains how lentiviral INs, which are highly prone to self-associate, 

combine into the CIC structure. In lieu of the remarkable differences between intasome 

structures it would be of interest to compare quantitative proteomes of retroviral genera, 

although the number of IN molecules carried by the virus is unlikely to be limiting (21, 22). 

The structural basis for a- and b- retroviral intasomes to comprise more than the 

minimal IN dimer-of-dimers architecture is relatively short IN CCD-CTD linkers (4, 5), 

which prohibit the CTD from the core subunits to insert into the synaptic interface. In HIV-1 

and MVV IN, the CCD-CTD linkers assume a-helical conformations (7) (figs S9B, S11B), 

which likewise make it impossible for core tetramer subunits to provide the synaptic CTDs. 

Strikingly, although the linker region is the least conserved among lentiviral INs, it is 

invariably predicted to form an extended a helix (fig. S9C), arguing for conservation of the 

higher-order state of IN within lentiviral intasomes. The high stoichiometry of IN within the 

lentiviral intasome may help explain the notoriously pleiotropic phenotypes of HIV-1 IN 

mutant viruses (23). Because the 2-fold symmetric assembly contains eight structurally 

distinct IN subunits, each IN residue could play as many as eight distinct functions. The CTD 

plays the most functionally diverse roles within the intasome, contributing to intra- and inter-

tetramer interactions, as well as DNA binding.  

To visualize how the lentiviral intasome engages target DNA, we determined a cryo-

EM structure of the MVV strand transfer complex to 8.6 Å resolution (Fig. 3A, fig. S13). In 

agreement with the analogous PFV and RSV structures (3, 4), target DNA binds between the 
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halves of the CIC structure. The synaptic CTDs insert their b1-b2 loops into expanded major 

grooves, which contributes to target DNA bending (Fig. 3B). Inspection of the surface 

potential distribution on the target DNA side of the complex highlighted several patches of 

positive charge, each corresponding to the cleft at the IN CCD dimerization interface (6) 

(Fig. 3B), which was recently implicated in non-catalytic interactions with nucleosomal DNA 

in the PFV system (24). Lentiviral integration is exquisitely selective towards highly active 

and gene-rich genomic loci, a property that is explained, at least in part, by the direct 

interaction between IN and chromatin-associated LEDGF (9). The MVV intasome structure 

seems to be compatible with binding as many as 16 molecules of the host factor (fig. S14). 

The ability to form such super-multivalent interactions may facilitate the viral integration 

machinery to locate chromatin highly enriched in LEDGF and possibly other marks 

associated with transcriptional activity. The MVV intasome system described here should be 

applicable to studies of HIV-1 INSTIs (fig. S2B). Moreover, the complexity of the lentiviral 

intasome, presenting multiple IN-IN interfaces, may be exploitable in anti-HIV/AIDS drug 

development.  
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FIGURE LEGENDS 

Fig. 1: Cryo-EM reconstruction of the MVV intasome. A. Fitted intasome model color-

coded to highlight IN subunits including 12 NTDs, 16 CCDs, and 14 CTDs. Molecules of 

vDNA in dark grey are surrounded by core tetramers I and II (colored in green, light green, 

sky blue, and blue), and flanking tetramers III and IV (red, yellow, pink, and purple). B-C. 
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Views of the map in two alternative orientations. The CIC structure is highlighted with a 

black outline in panel B.   

 

Fig. 2: CIC structure in MVV and previously characterized synaptic complexes. The 

CIC in each structure is shown in color with the remainder in grey; yellow CTDs indicate 

domains donated by flanking IN subunits. 

 

Fig. 3: Target DNA binding and surface electrostatic potential distribution. A. Cryo-EM 

reconstruction of the MVV strand transfer complex at 8.6 Å resolution viewed in two 

orientations. Protein, vDNA, and target DNA are shown in white, dark grey and bordeaux, 

respectively. B. Pseudo-atomic model of the STC with the protein portion of the structure in 

space-fill mode and colored by charge.  
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