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Soft-Decision-Driven Sparse Channel Estimation

and Turbo Equalization for MIMO Underwater

Acoustic Communications
Youwen Zhang, Yuriy Zakharov, Senior Member, IEEE, Jianghui Li, Member, IEEE

Abstract—Multi-input multi-output (MIMO) detection based
on turbo principle has been shown to provide a great enhance-
ment in the throughput and reliability of underwater acoustic
(UWA) communication systems. Benefits of the iterative detection
in MIMO systems, however, can be obtained only when a high
quality channel estimation is ensured. In this paper, we develop
a new soft-decision-driven sparse channel estimation and turbo
equalization scheme in the triply selective MIMO UWA. First, the
Homotopy recursive least square dichotomous coordinate descent
(Homotopy RLS-DCD) adaptive algorithm, recently proposed for
sparse single-input single-output (SISO) system identification,
is extended to adaptively estimate rapid time-varying MIMO
sparse channels. Next, the more reliable a posteriori soft-decision
symbols, instead of the hard decision symbols or the a priori soft-
decision symbols, at the equalizer output, are not only feedback
to the Homotopy RLS-DCD based channel estimator but also to
the minimum mean-square-error (MMSE) equalizer. As the turbo
iterations progress, the accuracy of channel estimation and the
quality of the MMSE equalizer are improved gradually, leading
to the enhancement in the turbo equalization performance. This
also allows the reduction in pilot overhead. The proposed receiver
has been tested by using the data collected from the SHLake2013
experiment. The performance of the receiver is evaluated for
various modulation schemes, channel estimators and MIMO
sizes. Experimental results demonstrate that the proposed a
posteriori soft-decision-driven sparse channel estimation based on
the Homotopy RLS-DCD algorithm and turbo equalization offer
considerable improvement in system performance over other
turbo equalization schemes.

Index Terms—A posteriori soft-decision, a priori soft-decision,
channel estimation, DCD iterations, Homotopy iterations,
multiple-input multiple-output (MIMO), recursive least-squares
(RLS), sparse channel, turbo equalization, underwater acoustic
communication.

I. INTRODUCTION

In recent years, the terrestrial wireless communication has

made great achievements, However, wireless communication

underwater, more specifically, the underwater acoustic com-

munication, is still facing significant challenges incurred by

the harsh underwater acoustic propagation environment [1]–

[8]. Unlike the terrestrial radio channel, the UWA channel

is featured by frequency-dependent limited bandwidth, long
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delay spread and rapid time variation due to severe Doppler

effects (caused by the low speed of sound in water), leading

to relatively low data rates in a range between a few bits/s

(bps) to several tens of kbits/s (kbps) and often unsatisfied

performance. The UWA channel has been regarded as one of

the most difficult channels for communications [8], [10].

Generally, two families of modulation techniques, single-

carrier modulation and multicarrier modulation, are widely

investigated in UWA communications [10], [12]–[14]. These

two types of modulation have their own advantages and

disadvantages in combating the distortions incurred by the

UWA channel. Single-carrier modulation schemes with time-

domain equalization techniques enjoy high spectral efficiency

and robust performance at the cost of a high receiver com-

plexity due to the fast time-varying long multipath spread

and Doppler spread [1], [9]–[11], [19]–[21]. Multicarrier mod-

ulation schemes, such as the orthogonal frequency-division

multiplexing (OFDM), have a substantial advantage in com-

bating long multipath spread with a relatively low-complexity

equalization by utilizing the cyclic prefix (CP). Unfortunately,

the block-wise processing used in OFDM systems usually

requires the assumption of time-invariant or quasi-static chan-

nel. In rapidly varying UWA channels, the severe intercarrier

interference (ICI) due to the Doppler spread significantly

degrades the performance of OFDM systems [12], [13], [15],

[17], [18]. On the other hand, the high peak-to-average power

ratio (PAPR) is another problem in OFDM systems, especially

for battery-powered underwater platforms [16].

To boost the throughput and robustness of communications

over time-varying triply (space-time-frequency) selective un-

derwater acoustic channels, the MIMO transmission coupled

with turbo equalization (TEQ), i.e. iterative equalization and

decoding, has been recently recognized as a powerful and

promising solution for UWA communications [19]–[23], [25]–

[27], [31]–[38]. Usually, the TEQ can be performed in either

time or frequency domain according to the requirements to the

receiver structure and computational complexity. In this work,

we focus on the single-carrier UWA communication with time-

domain TEQ [19]–[22], [25]–[27], [35]–[37]; for details on the

frequency-domain TEQ for single-carrier or OFDM systems,

we refer the reader to [27], [31]–[34]. There have emerged

many time-domain TEQ schemes in the field of UWA com-

munications. The TEQ schemes with the linear structure have a

suboptimal performance, but relatively low complexity. They

generally fall into two classes: 1) the direct-adaptive based

TEQ (DA-TEQ), with direct application of adaptive filters to
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the received signal to estimate the transmitted symbols [20]–

[23], [25], [35]–[37], and 2) the channel-estimate based TEQ

(CE-TEQ), with explicit channel estimation performed firstly,

and then the TEQ coefficients determined from the channel

estimate [20], [38].

As shown in many research works in the field of UWA

TEQs, the channel estimation errors in CE-TEQs and the

adaptive filter adjustment errors in DA-TEQs have a sig-

nificant impact on the performance of receivers [20], [36]–

[38]. In [20], the behavior of both CE-TEQ and DA-TEQ

based on the Least Mean Square (LMS) adaptive algorithm

in the presence of channel estimation errors and adaptive

filter adjustment errors were compared by theoretical analysis,

simulation and processing the experimental data. The data

reuse and fixed taps sparsification techniques were used to

improve the convergence of the LMS algorithm. For both

single-input multi-output (SIMO) and MIMO configurations,

extensive at-sea experiments have shown that, in some setups,

the DA-TEQ scheme outperforms the CE-TEQ scheme, which

is a counterintuitive and contradicts to the theoretical analysis

and simulation. In [21], an LMS-based DA-TEQ scheme for

high order modulations (up to 32QAM) coupled with the

symbol-based timing recovery and Doppler compensation was

proposed for highly-mobile SIMO UWA communications. At-

sea experiments show that data rates up to 20 kbps can be

achieved with a satisfied performance for relative velocities

up to 2 m/s. Further results with higher data rates up to 24

kbps over ranges greater than 1 km are presented in [22].

In [23], an DA-TEQ scheme with sparsity-aware Improved

Proportional Normalized LMS (IPNLMS) adaptive filter [7],

[24] for the SIMO setup shows an improved performance

compared to the LMS based DA-TEQ. In [25], the authors

developed a soft adaptive turbo equalizer that incorporates the

soft information from the decoder into the adaptation loop. In

the context of DA-TEQ, the recursive expected least squares

(RELS) adaptive algorithm, which could take advantage of the

soft information as opposed to the hard information, is used

in the turbo equalizer. Unlike the works conducted in [20]–

[23], a priori soft-decisions (SDs) from the decoder are also

feedback to update the adaptive filter coefficients, leading to a

performance robust to the error propagation (EP) incurred by

the hard decision feedback. In [38], an CE-TEQ scheme with

iterative channel estimation and turbo equalization for MIMO

UWA communication was proposed. By utilizing the IPNLMS

algorithm that takes the channel sparsity into account instead

of the LMS or block-wise least squares (LS) algorithms in

the iterative channel estimation, the conclusion that the CE-

TEQ scheme definitely outperforms the DA-TEQ is verified

by experimental results. These at-sea experimental results are

consistent with the theoretical analysis and simulation results

presented in [20]. In [37], an efficient DA-TEQ scheme for

MIMO UWA communications was proposed. Different from

existing DA-TEQ schemes, the a posteriori soft-decision of

the TEQ output is feedback to the adaptive filter and SIC.

To cope with the slow convergence that is inherent in NLMS

and IPNLMS algorithms, the same data reuse technique as in

[20] was embedded in the turbo iteration loop. Experimental

results demonstrate superiority of the a posteriori SDs in TEQ

schemes against utilizing the hard decision or the a priori
SDs. Built on the above insight, the LMS-type or enhanced

LMS-type adaptive algorithms were widely used in these DA-

TEQ and CE-TEQ schemes due to their low complexity. The

slower convergence speed of LMS-based algorithms, however,

limits their application in the rapid time-varying MIMO UWA

channels. It is well known that recursive least squares (RLS)

adaptive algorithms provide significantly faster convergence at

the expense of a higher complexity when compared to LMS

adaptive algorithms [20].

In this paper, motivated by the works in [27], [37], [38], we

propose a soft-decision-driven iterative channel estimation and

turbo equalization CE-TEQ scheme for single carrier MIMO

UWA communications. As compared to existing works, our

main contributions are summarized below:

1) A low complexity RLS-type algorithm for SISO s-

parse system identification with Homotopy, dichoto-

mous coordinate descent (DCD) and reweighting itera-

tions, exponential-weighted Homotopy RLS-DCD (EW-

HRLS-DCD) algorithm [28], [29], is extended to esti-

mate time-varying sparse MIMO UWA channels. The

proposed adaptive channel estimator based on the EW-

HRLS-DCD algorithm, can capture the inherent sparsity

of the MIMO UWA channel, leading to significant

improvement in the performance compared with the

classical RLS algorithm and other sparse RLS algo-

rithms [30]. Its complexity is only linear in the length of

the estimated channel. The proposed estimator is based

on DCD iterations well suited to implementation on real-

time platforms with finite precision such as the DSP and

FPGA platforms.

2) More reliable a posteriori soft decisions, instead of

the hard decisions or the a priori soft decisions, from

the equalizer output are incorporated into the proposed

EW-HRLS-DCD-based channel estimator and MMSE

equalizer. The proposed TEQ significantly outperforms

existing TEQs based on the LMS-type algorithms in-

cluding those with data reuse and soft-decisions. Note

that the data reuse techniques will incur a high process-

ing latency if the total number of repetition for data reuse

is large.

3) The performance of the proposed receiver was tested in

the SHLake2013 lake trial, at a communication distance

of 2 km. We show that the proposed scheme can achieve

a substantial performance gain over the IPNLMS- and

RLS-based TEQ schemes for all MIMO setups. For

an 2 × 4 MIMO configuration with QPSK modulation,

the proposed scheme can successfully retrieve 136 data

packets out of 144 with a 20% training overhead. For

an 2 × 8 MIMO configuration with 8PSK modulation,

the best detection performance can be achieved by

the proposed scheme, while the IPNLMS-based scheme

experiences the convergence problem and can not obtain

a satisfying performance.

The remainder of the paper is organized as follows. In

Section II, the time-varying frequency-selective MIMO system

model is presented. In Section III, the channel estimation
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based on the conventional RLS algorithm for MIMO systems

is reviewed. A new low-complexity sparse MIMO channel

estimator, based on the exponential-weighted Homotopy RLS-

DCD adaptive filtering, is proposed by solving a sequence

of auxiliary normal equations instead of solving the standard

normal system utilized in the conventional RLS algorithm.

Section IV presents an iterative MIMO receiver with channel

estimation and equalization driven by the a posteriori soft

decisions. The complexity of proposed channel estimator is

presented in Section V. Section VI demonstrates the per-

formance of the proposed scheme by experimental results.

Conclusions are drawn in Section VII.

Notation: Matrices and vectors are represented by bold let-

ters in capital cases and small cases, respectively. X ∈ CN×M

denotes a complex-valued (N ×M) matrix, where C repre-

sents the complex field; the operators X∗, XT, X†,X−1, |X|,
‖X‖F denote the complex conjugate, transpose, Hermitian

transpose, inverse, determinant, and Frobenius norm of X, re-

spectively. The vectorisation operator vec[X] creates a column

vector by stacking all columns of X in a left-to-right fashion.

R and R+ denote the set of real numbers and Nonnegative sets

of real numbers, respectively. The empty set is represented

by ∅. An m-dimensional identity matrix is denoted by Im.

The ℓp vector norm is defined as ‖x‖p = (
∑

i |xi|p)
1/p

,

where xi are elements (entries) of x. CN (µ,Σ) represents a

multivariate complex-valued Gaussian distribution with mean

µ and covariance Σ. I and Ic denote the support of non-zero

elements and its complement. ℜ{·} denotes the real part of a

complex number. E{·} denotes the mathematical expectation.

II. MIMO SYSTEM MODEL

We consider an N ×M MIMO with bit-interleaved cod-

ed modulation (BICM) single-carrier UWA communication

system in which N transducers are used at the transmitter

and M hydrophones are used at the receiver. The structure

of the transmitter considered here is shown in Fig. 1. The

binary information sequence stream {an}Nn=1 represents the

input bits to the N parallel transmit branches. On the n-

th transmit branch, the information bits an are encoded

by a rate Rc channel encoder, producing the encoded bit

sequence bn. The n-th random interleaver Πn is used to

permute the encoded bits bn, producing the interleaved and

encoded bits cn. For a digital modulation scheme with a

constellation size of 2J , every J interleaved bits from cn,

cn,k , [c1n(k) c2n(k) · · · c
J
n(k)], c

j
n(k) ∈ {0, 1}, are mapped

to 2J -ary constellation set A = {α1, α2, · · · , α2J}, producing

one modulation symbol xn(k). In the following, we denote

xn(k) as a symbol transmitted by the n-th transducer at time

k.

Encoder
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Fig. 1. The block diagram of the transmitter architecture. {Πn}Nn=1
denote

N interleavers.

The frequency-selective channel is modeled by a sample-

space tapped delay line. We assume that the maximum mul-

tipath delay in symbol intervals is at most P . At time k, the

equivalent discrete-time baseband signal received on the m-th

hydrophone is given as

ym(k) =

P−1
∑

p=0

N
∑

n=1

hp
m,n(k)xn(k − p) + ηm (k) , (1)

where hp
m,n (k) ∈ C represents the p-th tap of the length-

P equivalent channel impulse response between the n-th

transducer and the m-th hydrophone at time instant k, and

ηm(k) is the additive noise modeled by zero-mean complex

Gaussian circulary symmetrical random variable and received

at the m-th hydrophone at time k. The signal vector received

by M hydrophones, y(k)
∆
=[y1(k), y2(k), . . . , yM (k)]T , can be

represented as

y(k) =

P−1
∑

p=0

Hp(k)x(k − p) + η(k), (2)

where

x(k)
∆
= [x1(k), x2(k), . . . , xN (k)]T ∈ C

N×1 (3)

η(k)
∆
= [η1(k), η2(k), . . . , ηM (k)]T ∈ C

M×1 (4)

Hp(k)
∆
=











hp
1,1(k) hp

1,2(k) · · · hp
1,N (k)

hp
2,1(k) hp

2,2(k) · · · hp
2,N (k)

...
...

. . .
...

hp
M,1(k) hp

M,2(k) · · · hp
M,N(k)











∈ C
M×N , (5)

η(k) is the noise vector with covariance E{η(k)η†(k)} =
σ2
ηIM . One can further rewrite the received signals as

y(k) = H(k)χ(k) + η(k) (6)

where

H(k)
∆
= [H0(k),H1(k), . . . ,HP−1(k)] ∈ C

M×L (7)

χ(k)
∆
= [xT (k),xT (k − 1), . . . ,xT (k − P + 1)]T (8)

∈ C
L×1 (9)

with L = NP . At time k, the transmitted signal vector, χ(k),
is formed by stacking the past P − 1 symbols together with

the current signal vector x(k).

III. MIMO CHANNEL ESTIMATION

A. Structure of Adaptive MIMO Channel Estimation

The (N×M ) MIMO channel is modeled as (NM ) finite im-

pulse response (FIR) filters [35], [38]. Fig. 2 depicts the gener-

al structure of MIMO channel estimation based on adaptive al-

gorithms. At the n-th transmit branch, the n-th training signal

vector is defined as xn(k)
∆
= [xn,k, xn,k−1, . . . , xn,k−P+1]

T ,

where k is the time index during the adaptive channel estima-

tion. x(k)
∆
= [xT

1 (k),x
T
2 (k), . . . ,x

T
N (k)]

T
is the concatenated

training signal vector of all the N branches.

An adaptive N×M MIMO channel estimation problem can

be transformed into M equivalent adaptive N × 1 multi-input
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Fig. 2. Structure of adaptive N ×M MIMO channel estimation.

single-output (MISO) channel estimation problems. At the m-

th hydrophone, a priori error of adaptive channel estimator,

em(k), is represented as em(k) = ym(k)−x†(k)ĥm(k) given

the received signal ym(k) and training signal vector x(k).
Depending on various design criteria such as the complexity

and tracking performance, many adaptive algorithms can be

adopted to find the estimate ĥm(k). The adaptive MIMO

channel estimators presented in following subsections are all

based on the structure shown in Fig. 2.

B. Conventional RLS Algorithm

At time instance k, the task of the channel estimator is

to estimate the time-varying channel matrix H(k) by using

known training symbols and the received signal [39], [41],

[42]. The RLS algorithm is one of the well-known adap-

tive algorithms. Generally, the RLS-type algorithms fall into

two classes according to the adopted window function: the

exponential-weighted RLS (EW-RLS) algorithms and sliding-

window RLS (SW-RLS) algorithms [39]. Here, we consider

the EW-RLS algorithms since they have lower complexity.

In the EW-RLS algorithm, an exponentially-weighted mean-

squared error (MSE) ε(k) is minimized as follows [39], [41],

[42]

min
Ĥ(k)

{

ε(k)
∆
=

k
∑

l=1

λk−l
∥

∥

∥
y (l)− Ĥ(k)χ(l)

∥

∥

∥

2

2

}

(10)

or is given by (11), shown at the bottom of the next page. We

define

Y(k)
∆
= [y(1),y(2), . . . ,y(k)] ∈ C

M×k (12)

Λ(k)
∆
= diag

[

λk−1, λk−2, . . . , λ0
]

∈ R
k×k (13)

X(k)
∆
= [χ(1),χ(2), . . . ,χ(k)] ∈ C

L×k (14)

The matrix Λ(k) provides the exponential windowing. To

accommodate the time-varying channel, the RLS forgetting

factor λ, which controls the trade-off between the good track-

ing ability and the noise sensitivity, must be taken in (0 1].
In practice, the forgetting factor should be adjusted under

different channel conditions such as the channel coherence

time and Signal-to-Noise ratio (SNR) [1], [39].

With the direct block-wise LS solution, at time k, the

channel estimate is given by [42], [43]

Ĥ(k) = Y(k)Λ(k)X†(k)
(

X(k)Λ(k)X†(k)
)−1

(15)

Since the direct matrix inverse operation is adopted in the

direct LS solution, the complexity of the block-wise LS

channel estimation algorithm is O(L3), i.e., it is prohibitively

high, especially for UWA channels with long delay spreads.

However, the EW-RLS algorithm can calculate the solution

using recursions as follows [39], [41], [42]:

ζ(k) =
1

λ
Φ(k − 1)χ(k) ∈ C

L×1 (16)

e(k) = y(k)− Ĥ(k − 1)χ(k) ∈ C
M×1 (17)

Φ(k) =
1

λ
Φ(k − 1)−

ζ(k)ζ†(k)

1 + ζ†(k)χ(k)
∈ C

L×L (18)

Ĥ(k) = Ĥ(k − 1) +
e(k)ζ†(k)

1 + ζ†(k)χ(k)
∈ C

M×L (19)

with Ĥ(0) = 0M×L and Φ(0) = δIL, where δ > 0 is a

regularization parameter.

Since Φ(k) in (18) is computed recursively thus avoiding

the direct matrix inversion, the EW-RLS complexity is reduced

from O(L3) to O(L2) arithmetic operations per sample [39].

C. Recursive Solution of RLS Normal Equations for MIMO
Channel Model

Most conventional RLS or fast RLS algorithms are based on

the matrix inverse, which results in the problem of numerical

instability when implemented with finite precision [39]. In

[44], to overcome the high complexity and numerical insta-

bility problems, a new formulation of the RLS problem in

terms of a sequence of auxiliary normal equations with respect

to increments of the filter weights was developed to find a

solution to the normal equation given by

H(k)R(k) = B(k) (20)

where R(k) = χ(k)Λ(k)χ†(k) and B(k) = y(k)Λ(k)χ†(k)
are the L × L autocorrelation matrix of the input signal and

M × L matrix of cross-correlation between the input signal

and desired signal, respectively. The matrices R(k) and B(k)
are known, whereas the matrix H(k) should be estimated.

Let at time k − 1 a system of equations H(k − 1)R(k −
1) = B(k − 1) be approximately solved, and the approximate

solution is Ĥ(k − 1). Denote

C(k−1|k−1) = B(k−1)−Ĥ(k−1)R(k−1) ∈ C
M×L (21)

and

C(k|k − 1) = B(k)− Ĥ(k − 1)R(k) ∈ C
M×L (22)

as residual matrices for the solution Ĥ(k − 1). The notation

C(j|k − 1) indicates that the residual matrix corresponds to

R(j) and B(j) at time instant j ≥ k−1, whereas the solution

Ĥ(k − 1) corresponds to the system H(k − 1)R(k − 1) =
B(k − 1) at time instant k − 1 [44].
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For the convenience of following derivation, we denote

∆R(k) = R(k) − R(k − 1), ∆B(k) = B(k) − B(k − 1),
and

∆H(k) = H(k)− Ĥ(k − 1). (23)

With the previously obtained solution Ĥ(k − 1) and the

residual matrix C(k|k − 1), our purpose is to find a solution

Ĥ(k) of (20). The equation (20) can be rewritten as
[

Ĥ(k − 1) + ∆H(k)
]

R(k) = B(k) (24)

Hence, the system of equations with respect to the unknown

matrix ∆H(k) is represented as

∆H(k)R(k) = C(k|k − 1). (25)

Instead of solving the original problem (20), we can find a

solution ∆Ĥ(k) of the auxiliary system of equations (25),

where

C(k|k−1) = C(k−1|k−1)+∆B(k)−Ĥ(k−1)∆R(k) (26)

and an approximate solution of the original system (20) is

obtained as

Ĥ(k) = Ĥ(k − 1) + ∆Ĥ(k). (27)

For the EW-RLS problem, the L×L matrix R(k) and M×L
matrix B(k) can be recursively updated as [39]

R(k) = λR(k − 1) + χ(k)χ†(k) ∈ C
L×L, (28)

B(k) = λB(k − 1) + y(k)χ†(k) ∈ C
M×L, (29)

where k > 0, R(0) = ̺IL, and ̺ is a small positive number

for regularization of the adaptation at the initial stage.

The residual matrix C(k|k − 1) in equation (26) can be

efficiently updated using the following relationship [44]

C(k|k − 1) = λC(k − 1|k − 1) + e∗(k)χT (k), (30)

where e(k) = y(k) − Ĥ(k − 1)χ(k) is the M × 1 a priori
estimation error vector.

D. Homotopy RLS-DCD Algorithm for Time-varying MIMO
Sparse Channel Estimation

Time-varying multipath UWA communication channels of-

ten exhibit sparsity, i.e., the most entries in H(k) are close

to zero [45]. With a priori information on the sparsity, some

channel estimators can obtain improved performance in terms

of channel tracking and computational complexity [20], [23],

[37], [38], [45], [46].

Compressive sensing based sparse channel estimation tech-

niques [47] are widely used in UWA communications [48], but

the prohibitive computational complexity limits their applica-

tion in MIMO UWA systems [49]. Recently, many adaptive

algorithms have been developed to deal with sparse recovery

problems. Unfortunately, most of these adaptive algorithms

for UWA channel estimation have either a good performance

but with a high complexity of at least O(L2), e.g. RLS-type

algorithms, or a low complexity of O(L) but with a low

performance, e.g. LMS-type algorithms.

Here, we introduce a recently proposed algorithm, named

as the exponentially-weighted Homotopy RLS-DCD algorithm

[28], and extend it for estimation of time-varying MIMO

sparse channels. Assume that the channel is sparse, i.e. the

number S of non-zero taps in hp
m,n (k) , p = 0, · · · , P − 1,

satisfies S ≪ P . A sparse approximation to the UWA channel

response H(k) can be obtained by solving the following

optimization problem:

min
Ĥ(k)

∥

∥

∥
vec

[

Ĥ(k)
]∥

∥

∥

0
, s.t. ε(k) ≤ ǫ (31)

where ǫ is a small positive constant, which controls the

estimation error. The non-convexity of above optimization

problem results in intractable computations. A convex relax-

ation provides a viable alternative to the non-convex problem,

whereby the ℓ0-norm,

∥

∥

∥
vec

[

Ĥ(k)
]
∥

∥

∥

0
is replaced with the ℓ1-

norm

∥

∥

∥
vec

[

Ĥ(k)
]∥

∥

∥

1
. Various adaptive filters can solve this

problem in a computationally efficient way [50]–[52].

The adaptive filter finds a complex-valued tap-weight matrix

Ĥ(k), which, at every time instant k, minimizes the cost

function ε′(k):

min
Ĥ(k)

{

ε′(k)
∆
=

1

σ2
ε(k) +fp

[

Ĥ(k)
]

}

, (32)

where the first term of ε′(k) is the LS error of the solution

and the second term fp

[

Ĥ(k)
]

is a penalty function that

incorporates a priori information on the solution [52]:

fp

[

Ĥ(k)
]

= τ
∥

∥

∥
wT (k)vec

[

Ĥ(k)
]∥

∥

∥

1
(33)

where the vector w contains ML positive weights wj(k) which

are updated during the adaptation as [53]

wj(k) =
1

|hj(k − 1)|2 + ς
, (34)

ς > 0 is an adjusted parameter, hj(k − 1) is the j-th element

in the estimated channel vector vec(Ĥ(k − 1)). The positive

scalar τ in (33) is a regularization parameter that controls the

balance between the LS fitting term and the penalty term in

(32).

The Homotopy algorithm minimizes the cost function ε′(k)
in (32). A set of homotopy iterations is performed for exponen-

tially decreasing values of the regularization parameter vector

τ : τ ← γτ , where γ is the decreasing factor and must be taken

in (0, 1). If γ is close to one, a large number of homotopy

iterations are needed, which result in a high complexity. In

order to reduce the complexity of adaptive filtering based on

the Homotopy algorithm, it is enough to perform only one

homotopy iteration. For further reduction in the complexity,

DCD iterations are used [44], [54].

min
Ĥ(k)

{

ε(k)
∆
= tr

[

(

Y(k)− Ĥ(k)X(k)
)

Λ(k)
(

Y(k) − Ĥ(k)X(k)
)†
]}

(11)
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TABLE I
EXPONENTIAL-WEIGHTED HOMOTOPY RLS-DCD ADAPTIVE ALGORITHM FOR MIMO CHANNEL ESTIMATION

Input: χ, y, τ , M , L, λ, γ, Mb , Nu, ε

Output: Ĥ(k),C(k|k)

Step Initialization: Ĥ(0) = 0, {Im = ∅}Mm=1, C(0|0) = 0, B(0) = 0, R(0) = εIL, W(1) = 1M×L

for k = 1 to K % loop for K received symbols

1 R(k) = λR(k − 1) + χ(k)χ†(k)

2 B(k) = λB(k − 1) + y(k)χ†(k)

3 d(k) = Ĥ(k − 1)χ(k)

4 e(k) = y(k)− d(k)

5 C(k|k − 1) = λC(k − 1|k − 1) + e∗(k)χT (k)

6 for m = 1 to M % loop for M hydrophones

7 τm = maxj |cm,j |, 1 ≤ j ≤ L

8 t = argminj∈Im
1
2 |hm,j |

2Rj,j + ℜ{h∗
m,jcm,j} − τmwm,j |hm,j|

9 if 1
2 |hm,t|

2Rt,t + ℜ{h∗
m,tcm,t} − τmwm,t|hm,t| < 0

9.1 Remove the t-th element from Im(Im ← Im \ t)

9.2 cm(k|k − 1) = cm(k|k − 1) + hm,tR
(t)(k)

end if

10 t = argmaxj∈Icm

(|cm,j |−τmwm,j)
2

Rj,j

if |cm,t| > τmwm,t

11 Include the t-th element into the support (Im ← Im ∪ t)

end if

12 ⊛ Update the regularization parameter: τm ← γτm

13 ⊛ Approximately solve the equation (25) by using the LS-ℓ1 optimization on the support Im using the ℓ1-DCD algorithm

14 ⊛ Update the weight matrix W(k) using equation (34)

end for

end for

In a DCD iteration, the previously obtained solution Ĥ(k−
1) is used as a warm-start for minimizing the cost ε′(k) at

time k. This minimization is equivalent to minimization [52]

1

2
∆H(k)R(k)∆H†(k)−ℜ{C(k|k − 1)∆H†(k)}

+τ |Ĥ(k)|WT (k)
(35)

with respect to the matrix ∆H(k), where W ∈ R
M×L
+ is a

weight matrix formed by reshaping the ML×1 vector w, and

C(k|k − 1) is given by (30).

The cost function in (32) is minimized using the leading ℓ1-

DCD algorithm from [28]. In the leading ℓ1-DCD algorithm,

a criterion for terminating computations in every Homotopy

iteration is a maximum number of DCD updates Nu. Typically,

Nu is set to a small value for limiting the complexity of the

algorithm [44].

Table I shows the EW-HRLS-DCD adaptive algorithm for

time-varying MIMO channel estimation, where cm(k|k−1) is

the m-th row of the matrix C(k|k− 1), cm,j is the j-th entry

of the vector cm(k|k−1), hm,j is the entry of channel matrix

Ĥ(k− 1) in the m-th row and j-th column, wm,j is the entry

of weight matrix W(k) in the m-th row and j-th column, and

τm is the m-th element of vector τ .

IV. PROPOSED CE-BASED SOFT DECISION TURBO

EQUALIZATION FOR MIMO SYSTEMS

In this section, we propose an iterative sparse channel

estimation and equalization driven by the a posteriori soft-

decision symbols for time-varying MIMO UWA communica-

tion system.

The proposed iterative receiver is shown in Fig. 3. It

consists of the MIMO MMSE linear equalizer (LE), itera-

tive MIMO adaptive channel estimator, soft-input soft-output

(SISO) demappers, deinterleavers, SISO mappers, interleavers

and MAP decoders. The iterative MIMO adaptive channel

estimator provides an estimate of channel matrix, Ĥ, noise

covariance vector σ̂ and phase vector θ̂ driven by the training

symbols X, hard decision Q(X̂) and a posteriori soft decision

X̃; the phase vector θ̂ is updated by an embedded second-order

phase-locked loop (PLL) as used in [1], [45]. The MIMO TEQ

applies a MMSE equalizer, and then hard or soft decisions

of the equalized symbols are fed to the SISO demappers or

the iterative MIMO adaptive channel estimator, respectively.

The SISO demappers output the extrinsic information of

the transmitted bits {LE
e {cn}}

N
n=1, which is then passed to

the de-interleavers and treated as the a priori information

{LD
a {bn}}Nn=1 for the MAP decoder. Finally, the MAP de-

coders output extrinsic information {LD
e {bn}}Nn=1, which is

further fed back to the equalizer as the a priori information

{LE
a {cn}}

N
n=1 of the transmitted bits. After several turbo

iterations, the MAP decoders output estimates of transmitted

bits {an}Nn=1.

A. Received Signal Model for MIMO Equalization

In the following, we assume the symbol rate sampling. Let

Lf and Lp be the length of the noncausal and causal parts of

the equalizer, respectively. In order to perform the equalization

and estimate the transmitted symbols at time k, we consider

an observation window containing Lp+Lf +1 received signal

vectors, i.e., y(k−Lp), · · · ,y(k+Lf ). The received data can
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Fig. 3. Block diagram of iterative N ×M MIMO receiver coupled with adaptive sparse channel estimator.

be written as [20], [56]

rk = Hksk + nk (36)

where Hk is given by (37), shown at the bottom of the next

page, and

rk =
[

yT (k + Lf ), · · · ,y
T (k − Lp)

]T
, (38)

sk =
[

xT (k +Kf + Lf ), · · · ,x
T (k −Kp − Lp)

]T
,(39)

nk =
[

ηT (k + Lf ), · · · ,η
T (k − Lp)

]T
. (40)

The channel length is P = Kp + Kf + 1, where Kf and Kp

are the length of precursor and postcursor parts of the channel

response, respectively. For convenience, we will denote K =
N(Kp + Kf + Lp + Lf + 1) the overall length of the vector

sk and L = M(Lp +Lf + 1) the overall length of the vector

rk. The noise vector nk is assumed to be zero-mean complex

Gaussian, i.e., nk ∼ CN (0, σ2
nIL). The Hk is a block channel

matrix made up of Hp(k) defined in (5), hence, the size of

Hk becomes L×K.

B. Linear MMSE Turbo Equalization

In practice, the channel impulse responses have to be

estimated and then are used to calculate the coefficients of

the TEQ. We denote Ĥk and Ek = Hk − Ĥk the channel

estimate and the corresponding channel estimation error, re-

spectively. Let us assume that Ek has zero mean and it is

uncorrelated with Ĥk and sk. Hence, we can rewrite (36) as

rk = Ĥksk + (Eksk + nk). Given Ĥk, the linear MMSE

estimate of xn(k) is obtained from [20], [38], [56]

x̂n(k) = f̂†n(k)
(

rk − Ĥksn(k)
)

, (41)

f̂n(k) =
(

ĤkΣn,kĤ
†
k + σ2

wIL

)−1

ĥn(k), (42)

where

sn(k) =
[

xT (k +Kf + Lf ), · · · ,x
T (k − 1), x̌T

n (k),

xT (k + 1), · · · ,xT (k −Kp − Lp)
]T

, (43)

x(k) = [x̄1(k), x̄2(k), · · · , x̄N (k)]T , (44)

Σn,k = diag(vn,1, · · · , vn,k−1, 1, vn,k+1, · · ·,

vn,K), (45)

x̌n(k) = [x̄1(k), · · · , x̄n−1(k), 0, x̄n+1(k), · · · ,

x̄N (k)]T , (46)

and where x(k) is a priori mean vector of x(k), and Σn,k

is the a priori covariance matrix of x(k). The vector ĥn(k)
is the (N(Lp + P − 1) + n)-th column of Ĥk. Hence, we

can obtain x̄n(k) and vn,k from a priori log-likelihood ratios

(LLRs) as in [56]

x̄n(k)
∆
= E(xn(k)) =

∑

αi∈A

αi · P (xn(k) = αi), (47)

vn,k
∆
= Cov(xn(k), xn(k)) =

(

∑

αi∈A

|αi|
2 · P (xn(k)

= αi))− |x̄n(k)|
2, (48)

where

P (xn(k) = αi) =

J
∏

j=1

P (cjn(k) = si,j),

=

J
∏

j=1

1/2 ·
(

1

+s̃i,j · tanh(L
E
a (c

j
n(k)/2)

)

, (49)

the bit pattern si
∆
= [si,1, si,2, · · · , si,J ] corresponds to αi ∈

A, and

s̃i,j
∆
=

{

+1, si,j = 0

−1, si,j = 1
. (50)

The extrinsic LLR for cjn(k) is given by (51), shown at the

bottom of the next page, where µ̂n(k) = f̂Hn (k)ĥn(k), and A0
j

and A1
j are the set of all constellation points such that si,j is

0 and 1, respectively [56].



SUBMISSION 2017 8

C. A Posteriori Soft Decision

After first equalization, the a posteriori soft decision x̃n(k)
of the equalized symbol x̂n(k) is available and can be calcu-

lated as [27], [37]

x̃n(k) =
∑

αi∈A

αiP

(

xn(k) = αi|x̂n(k)

)

(52)

where P

(

xn(k) = αi|x̂n(k)

)

is the a posteriori probability

of xn(k) and is given by (53), shown at the bottom of the

next page. P (xn(k) = αi) is the a priori probability and can

be calculated with the a priori LLRs from the MAP decoder

as in (49), and p (x̂n(k)) is computed with the normalization
∑2q

i=1 P

(

xn(k) = αi|x̂n(k)

)

= 1. Under the assumption of

the Gaussian distribution as in [56], the equalizer output x̂n(k)
conditioned on xn(k) = αi is given by:

p (x̂n(k)|xn(k) = αi) =
1

πδ̃2n
exp

{

−
|x̂n(k)− x̃n(k)αi|2

δ̃2n

}

,

(54)

where the a posteriori variance of xn(k) is obtained as

δ̃2n =

2Q
∑

i=1

|αi − x̃n(k)|
2P

(

xn(k) = αi|x̂n(k)

)

. (55)

Over the turbo iterations, the reliability of the a posteriori
soft decision x̃n(k) increases thus improving the accuracy of

channel estimation and also speeding up the convergence of

the channel estimator.

D. A Posteriori Soft Decision Driven Homotopy RLS-DCD
Algorithm

In the iterative channel estimation based on adaptive filter-

ing, the adaptive filter is driven by the decision error e(k). The

adaptive channel estimation algorithm aims to minimize the

variance of the decision errors, so the reliability of the decision

plays a very important role in the adaptive channel estimation.

In practice, the adaptive channel estimator generally works

under two modes: the training mode and direct-decision mode.

According to the mode, we can define three types of decision

error as following [58]

e(k) = y(k) − Ĥ(k − 1)χ(k) ∈ C
M×1, (56)

ê(k) = y(k) − Ĥ(k − 1)Q(χ̂(k)) ∈ C
M×1, (57)

ē(k) = y(k) − Ĥ(k − 1)χ̄(k) ∈ C
M×1, (58)

where χ(k) presents the perfect decision corresponding to

the training mode. The vector χ̄(k) consists of a priori soft

decisions of transmitted symbols under the direct-decision

mode, and Q(χ̂(k)) denotes the hard decision of the equalizer

output, χ̂(k). In what follows, the vectors e(k), ē(k) and

ê(k) are named the perfect decision error vector, a priori
soft decision error vector and hard decision error vector,

respectively.

In existing iterative adaptive channel estimation algorithms,

the hard decision or a priori soft decision symbols are used for

driving the estimator. In [27], [37], an efficient adaptive turbo

equalizer is proposed, where the more reliable a posteriori
soft decisions are used in the adaptive update of the channel

coefficients and for the MMSE equalizer. In order to reduce the

complexity of the adaptive turbo equalization, the equalizer fil-

ter coefficients are adaptively updated via the normalized LMS

(NLMS) [39] or the IPNLMS [24] algorithm. The DA-TEQ

scheme with the a posteriori soft decisions achieves faster

convergence and higher spectrum efficiency than schemes with

hard decision or with a priori soft decision. Inspired by [37],

here, we use the a posteriori soft decisions to drive the channel

estimator. For convenience, we define the a posteriori decision

error vector as

ẽ(k) = y(k) − Ĥ(k − 1)χ̃(k) ∈ C
M×1 (59)

where χ̃(k) is the a posteriori soft decision vector of the

equalizer output χ̂(k).
The proposed iterative channel estimator comprises the

following two stages:
1) Training Stage: The known training symbols xn(k)

within the training symbol vector χ(k) are used to estimate

the channel impulse response.
2) Direct-Decision Stage: There are no known training

symbols available at this stage. The hard-decisions of the

equalizer output x̂n(k) are usually used for tracking the

channel. However, the hard-decision is not reliable, leading

to error decisions on the transmitted symbols. Hence, the

decision errors will cause the error propagation, which can be

catastrophic for turbo equalization. Iterative channel estimators

in turbo equalization schemes mostly employ the hard-decision

or a priori soft decisions at the direct-decision stage. At the

initial stage of turbo equalization, the a priori or a posteriori
soft-decision from the decoder or equalizer is not yet available,

thus we use hard-decisions of the equalizer output as training

symbols for the channel estimation. In subsequent iterations,

the a posteriori soft decisions, which possess higher reliability

than the a priori soft decisions, are utilized.

Hk =







Hp−Kf
(k + Lf ) · · · Hp−Kp

(k + Lp) 0 0

0
. . . · · ·

. . . 0

0 0 Hp+Kf
(k − Lp) · · · Hp+Kp

(k − Lp)






, (37)

LE
e

(

cjn(k)
)

= ln

∑

θ∈A0
j
exp

(

− |x̂n(k)−µ̂n(k)θ|2

µ̂n(k)(1−µ̂n(k)) + 1
2

∑J
i=1,i6=j s̃i,jL

E
a (c

i
n(k))

)

∑

θ∈A1
j
exp

(

− |x̂n(k)−µ̂n(k)θ|2

µ̂n(k)(1−µ̂n(k)) + 1
2

∑J
i=1,i6=j s̃i,jL

E
a (c

i
n(k))

) (51)
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E. A Posteriori Soft Decision Driven Turbo Equalization

The quality of the soft decision plays a very important

role in the performance of the MMSE equalizer. The a priori
soft decisions are adopted in many adaptive turbo equalization

schemes [21], [22], [57]. With the more reliable a posteriori
soft decisions, performance of MMSE equalizer can be im-

proved [37]. The output of a posteriori soft decision driven

equalizer, x̂n(k), is obtained as

x̂n(k) = f̂Hn (k)
(

rk − Ĥk s̃n(k)
)

(60)

Here, we utilized the a posteriori soft decisions s̃n(k) =
[

x̃T (k +Kf + Lf ), · · · , x̃T (k − 1), ~xT
n (k), x̃

T (k + 1), · · · ,

x̃T (k −Kp − Lp)
]T

instead of the a priori soft decisions

s̄n,k in (41), where x̃(k) = [x̃1(k), x̃2(k), · · · , x̃N (k)]
T

when k
′

6= k for k
′

∈ [k − Kp − Lp, k + Kf + Lf ],
and ~xn(k) = [x̃1(k), · · · , x̃n−1(k), 0, x̃n+1 (k), · · · , x̃N (k)]T

when k
′

= k; obviously, x̃n(k) is excluded for avoiding self

cancellation [37].

V. COMPLEXITY COMPARISON FOR MIMO CHANNEL

ESTIMATORS

In this section, the complexity of two channel estimators,

EW-RLS and EW-HRLS-DCD, is compared. The algorithm

complexity is evaluated in terms of the number of real-valued

multiplications, additions, square-root, and division operations

per time sample.

The work [28] details the complexity of the EW-HRLS-

DCD algorithm for SISO system. According to the general

structure of adaptive MIMO channel estimator as shown in

Fig. 2, the N × M MIMO system can be treated as M
SISO systems with a channel length of L = NP each.

Hence, the complexity of the EW-HRLS-DCD algorithm for

MIMO system can be easily calculated by following steps in

[28] for a SISO system. We can approximately estimate the

complexity of the channel estimator based on the EW-HRLS-

DCD algorithm for a MIMO system as presented in Table II.

In Table I, step 13 requires using the leading ℓ1-DCD

algorithm, where Mb is the number of bits used for repre-

sentation of entries in the solution vector, this defining the

accuracy of the fixed-point representation [44], and Nu is a

maximum number of DCD iterations. The update of the vector

cm(k|k − 1) in the leading ℓ1-DCD algorithm is the most

consuming part of the algorithm. The details of the involving

computation of the leading ℓ1-DCD algorithm are found in

Table II in [28], and the reader is referred to detail [52].

In overall, as shown in Table II, the EW-HRLS-DCD

algorithm requires about 32MNP+5M |I|+2M |I|(Mb+Nu)
real-valued multiplications, 25MNP +2M |I|+2M |I|(Mb+
Nu) real-valued additions, M(1+NP )+M(Mb+Nb) square-

root operations, and 2MNP −M |I| real-valued divisions.

For comparison, arithmetic operations in the conventional

EW-RLS algorithm described by equations (16)-(19) are listed

in Table III. The overall complexity of the conventional EW-

RLS algorithm roughly requires 12(NP )2 + 8MNP real-

valued multiplications, 9(NP )2 + 6MNP + M real-valued

additions, and (2M + 2NP + 1)NP real-valued divisions.

For first example, for N = 2, M = 8, P = 40, K = 6,

Nu = 4, Mb = 15, and assuming that |I| = K , we obtain

that the EW-HRLS-DCD algorithm from [52] requires about

23× 103 multiplications, 18× 103 additions, 800 square-root

operations, and 1.2× 103 divisions per time index. The same

figures for the EW-RLS algorithm are 80× 103, 61× 103, 0,

and 14 × 103, respectively. Thus, compared to the EW-RLS

algorithm, the EW-HRLS-DCD algorithm reduces the number

of multiplications by about 3.5 times, the number of additions

by about 3.4 times, and the number of divisions by about 11
times.

For another example with the parameter setup the same as in

the first example except for the length of channel P , which is

now P = 100, the EW-HRLS-DCD algorithm requires about

53×103 multiplications, 42×103 additions, 1.8×103 square-

root operations, and 3.2 × 103 divisions per time index. The

same figures for the EW-RLS algorithm are 490× 103, 370×
103, 0, and 83 × 103, respectively. Thus, compared to the

EW-RLS algorithm, the EW-HRLS-DCD algorithm reduces

the number of multiplications by about 9 times, the number

of additions by about 9 times, and the number of divisions by

about 26 times.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of a receiver

with the proposed soft-decision-driven sparse channel estima-

tion and turbo equalization scheme and compare it to other

receivers.

A. Experimental Environment

The experiment was conducted in the Songhua Lake, Jilin

province, China (SHLake2013) on Nov. 2013. The lake depth

at the experimental site is 48.6 m. Two transducers (antennas)

were deployed off a small boat and submerged at about

5 m and 6 m below the surface, respectively. During the

experiment, the small boat was drifting with an approximate

maximum speed of 0.25 m/s. The receive vertical linear array

of 48 hydrophones was moored with the first hydrophone

(closest to the lake bottom) at about 7 m above the lake

bottom, and other hydrophones evenly spaced by 0.25 m. The

communication range was about 2.1 km at the start of the

experiment.

B. Signaling and Data Structure

For MIMO transmission, two concurrent data streams with

the BICM horizontal encoding scheme were transmitted by

using two transducers. The input bits were encoded by a

P

(

xn(k) = αi|x̂n(k)

)

=
p(x̂n(k)|xn(k) = αi)

p(x̂n(k))
P (xn(k) = αi). (53)



SUBMISSION 2017 10

TABLE II
COMPUTATIONAL COMPLEXITY OF THE EW-HRLS-DCD CHANNEL ESTIMATOR

Step Multiplications (×) Additions (+) Square-roots (
√·) Divisions (÷)

1 6MNP 4MNP − −
2 4MNP 4MNP − −
3 4MNP 4MNP − −
5 6MNP 4MNP − −
7 2MNP 2MNP M −
9 M(4NP + 7|I|) M(2NP + 4|I|) M |I| −

11 2M(NP − |I|) 2M(NP − |I|) M(NP − |I|) M(NP − |I|)
13 2M |I|(Mb +Nu) 2M |I|(Mb +Nu) M(Mb +Nu) −
14 4MNP 3MNP − MNP

Total
32MNP + 5M |I| 25MNP + 2M |I| M(1 +NP )
+2M |I|(Mb +Nu) +2M |I|(Mb +Nu) +M(Mb +Nb) 2MNP −M |I|

TABLE III
COMPUTATIONAL COMPLEXITY OF THE EW-RLS CHANNEL ESTIMATOR

Equation Multiplications (×) Additions (+) Square-roots (
√·) Divisions (÷)

(15) 4(NP )2 3(NP )2 − NP

(16) 4MNP 3MNP +M − −
(17) 8(NP )2 6(NP )2 − 2(NP )2

(18) 4MNP 3MNP − 2MNP

Total 12(NP )2 + 8MNP 9(NP )2 + 6MNP +M − (2M + 2NP + 1)NP
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Fig. 4. The structure of the data streams in a two-transducer transmission in the SHLake2013 experiment.

rate Rc = 1/2 convolutional coder with generator polyno-

mial [171, 133] in octal format. The carrier frequency was

fc = 3 kHz and the symbol rate was 2 k symbols per second

(ksps). The pulse shaping filter was a square-root raised cosine

filter with a roll-off factor of 0.2 [40], leading to an occupied

channel bandwidth of about 2.4 kHz. The sampling rate was

25 kHz at the receiver end.

The data structure of the two data streams and relevant pa-

rameters are shown in Fig. 4. Preamble up-chirp and postamble

down-chirp, Doppler-insensitive waveforms, were added be-

fore and after the data burst for coarse frame synchronization

and estimation of an average Doppler shift over the whole

data burst. In order to reduce the co-channel interference, two

Gold sequences of length 511, Doppler-sensitive waveforms,

generated from preferred pairs of m-sequences [40] and added

before and after the data payload were used for coarse frame

synchronization and initial estimation of channel parameter-

s [40]. Following the frame synchronization signal is one

data packet (payload) with various modulation formats. Only

data with QPSK, 8PSK and 16QAM modulations are used

for performance evaluation, since the detection performance

is very good with the BPSK modulation. The payload is

separated from the m-sequence and up-chirp or down-chirp

signal by the gap with the duration 150 ms for avoiding the

inter-block interference. The length of each payload is 8000

symbols between two gaps. Each burst packet is transmitted

every 15 s. The entire duration of data transmission is 12

minutes. The approximate SNR, which is estimated by using

the signal part and silent part of received signal, is in the range

of 20 dB to 32 dB.

In order to show characteristics of the UWA channel during

the experiment, we use the conventional EW-RLS algorithm

to estimate the channel impulse response (CIR) over 8000

symbols with QPSK modulation as an example. In Fig. 5, the

CIR between the first transducer and last hydrophone (near the

surface) is shown in Fig. 5(a). Fig. 5(b) shows the CIR between

the second transducer and last hydrophone estimated by using

the matched filter applied to the preamble and postamble chirp

signals. In Fig. 5, we can observe that the channel multipath

spread is about 16 ∼ 20ms, corresponding to a channel length

of 32 ∼ 40 taps in terms of the symbol rate Rs = 2 ksps.

There are three clusters with high energy in the delay domain.
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Fig. 5. Examples of the CIR estimated over one burst transmission. The CIRs measured between the first transducer and last hydrophone are shown on
the top row. The CIRs measured between the second transducer and last hydrophone are shown on the bottom row. CIR is measured using: (a) and (d) the
preamble up-chirp with the correlation method; (b) and (e) the postamble down-chirp with the correlation method; (c) and (f) data signals and the classical
EW-RLS algorithm with λ = 0.997.

The arrival paths fluctuate very rapidly. It is important to notice

that the channel impulse response is sparse.

C. Performance versus the Training Overhead

In order to investigate the convergence performance of

channel estimators based on the soft decisions, we only

consider 2×4 MIMO configuration, as an example. Firstly, we

divide the whole hydrophone array into sub-arrays with four

hydrophones. In this sub-section, we consider the separation

of the 2×48 MIMO system into twelve 2×4 MIMO systems,

so for each modulation format and 12 transmitted packets we

can equivalently obtain 144 received bursts. Secondly, training

symbols are periodically inserted into the data to estimate the

fast time-varying channel. The whole payload is divided into

eight sub-blocks with Ns = 1000 symbols in each. For each

sub-block, the first Np symbols are utilized as the training

symbols and the remaining Nd = Ns − Np data symbols.

The resulting training overhead is β = Np/(Np + Nd), and

the corresponding data rate is (1 − β) × RsJNRc kbps.

The choice of Np depends on the modulation scheme as

shown in Table IV. Table IV lists two configurations with

two training overheads each. To ensure a fair comparison

between all adaptive channel estimators, the parameters for

each estimator are optimized by exhaustive search so that

the lowest possible BER is achieved. In order to reduce the

dimension of the exhaustive search, some parameters for the

MIMO turbo linear equalizer are fixed; more specifically, Kp,

Kf , Lp and Lf are set to 80, 40, 40, and 40, respectively.

These parameters can be estimated using the preamble and

postamble chirp signals. The convergence speed of the NLMS-

type algorithms is much slower than that of the RLS-type

algorithms, therefore, to improve the performance, the data

reuse technique is used in the IPNLMS channel estimator

configured as in [23], [37], [38]. The detection performance

is measured based on the number of data packets achieving a

specific BER level. Table V and Table VI show the summary

of the results for configuration C1 and configuration C2,

respectively. The performance of iterative channel estimation

based on the IPNLMS [38] and conventional EW-RLS is

also included. We can observe the following results from

Table V: 1) the performance of all schemes is improved

with iterations. However TEQs based on RLS-type algorithms

outperform the TEQ based on the IPNLMS even after the

first iteration. The performance gap between TEQs based on

RLS-type algorithms and IPNLMS is further increased for the

8PSK and 16QAM modulation schemes due to more accurate

channel estimates obtained by the RLS-type based channel

estimators; 2) the performance improvement is significant at

the first, second and third iterations; 3) the TEQ based on the

EW-HRLS-DCD algorithm outperforms the TEQ based on the

EW-RLS algorithm.

Next, we consider how the detection performance of the

TEQs is affected by the training overhead. Firstly, the similar

trends in behavior of the TEQs between configurations C1 and

C2 can be observed, but the increase in the training overhead

improves the performance of all the three TEQs. We observe

that the TEQ based on the IPNLMS algorithm is particularly

sensitive to the training overhead. A considerable performance

gain is achieved after the first iteration for all three mod-

ulation formats. On the other hand, after five iterations the

improvement for the IPNLMS algorithm is small due to the

slow convergence and limited by the fast time-varying channel
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TABLE IV
RECEIVER CONFIGURATIONS FOR THE ANALYSIS OF CONVERGENCE PERFORMANCE

Configuration Modulation Packets Sub-block (Ns) Training overhead (β) Data rate (kbps)

C1
QPSK 144 1000 20% 3.2
8PSK 144 1000 20% 4.8

16QAM 144 1000 30% 5.6

C2
QPSK 144 1000 30% 2.8
8PSK 144 1000 30% 4.2

16QAM 144 1000 35% 5.2

TABLE V
TOTAL NUMBER OF PACKETS ACHIEVING THE SPECIFIED BER LEVEL FOR CONFIGURATION C1

# of Iter.
QPSK (BER = 0) 8PSK (BER ∈ [0, 10−4]) 16QAM (BER ∈ [0, 10−3])

IPNLMS RLS HRLS-DCD IPNLMS RLS HRLS-DCD IPNLMS RLS HRLS-DCD

0 0 0 0 0 0 0 0 0 0

1 27 63 83 3 13 52 1 16 42

2 68 98 110 8 39 87 2 33 71

3 83 105 134 10 42 97 4 43 84

4 83 105 134 13 50 104 5 47 92

5 86 108 136 14 51 108 6 47 92

TABLE VI
TOTAL NUMBER OF PACKETS ACHIEVING THE SPECIFIED BER LEVEL FOR CONFIGURATION C2

# of Iter.
QPSK (BER = 0) 8PSK (BER ∈ [0, 10−4]) 16QAM (BER ∈ [0, 10−3])

IPNLMS RLS HRLS-DCD IPNLMS RLS HRLS-DCD IPNLMS RLS HRLS-DCD

0 0 0 0 0 0 0 0 0 0

1 60 79 124 7 35 71 14 31 60

2 84 92 132 14 57 105 21 46 80

3 90 105 132 18 64 120 23 50 84

4 96 113 141 20 71 122 25 50 93

5 97 113 141 20 72 123 26 51 93

(i.e. shorter channel coherence time). For example, the final

number of the packets with zero BER increases from 86 to 97

after five iterations for the QPSK modulation. With the RLS-

type based channel estimators for all modulation formats as

shown in Table VI, there is some increase in the number of

packets that achieve the target BER by increasing the number

of training symbols.

Fig. 6 details the demodulation results. As shown in the fig-

ure, the EW-HRLS-DCD based TEQ can successfully retrieve

the 141 data packets out of 144 packets for the QPSK mod-

ulation. This implies that our proposed receiver can achieve

a data rate of 3.2 kbps with a low error probability. On the

other hand, for the 8PSK case, with our receiver and 20%
training overhead, there are 122 packets with BER < 10−4,

there are 137 packets with BER < 10−4 when 30% training

overhead is used. Note that for the 16QAM modulation, the

large performance gain can be observed in terms of the total

number of the packets with BER < 10−2.

The constellation diagram is a useful tool to demonstrate

the reliability of the received and equalized symbols. The

evolutional behavior of the equalized and a posteriori soft-

decision symbols in terms of constellation diagram are shown

in Fig. 7 and Fig. 8, respectively. Results for the 16QAM

modulation in the four iterations are only presented. In Fig. 7,

for the channel estimator based on the IPNLMS algorithm,

the improvement in the quality of the equalized symbols with

iterations is little, while the improvement in quality obtained

by RLS-type channel estimators is more considerable. On the

other hand, compared to the RLS channel estimator, the EW-

HRLS-DCD channel estimator can achieve better quality of

equalized symbols with more iterations.

Fig. 8 shows the evolution of the a posteriori soft-decision

symbols. What is interesting to observe is that the soft-decision

symbols in all the three schemes can almost converge to the

ideal constellation points. For schemes based on RLS and EW-

HRLS-DCD channel estimators, these results are consistent

with the results shown in Fig. 7(b) and Fig. 7(c). From

Fig. 7(a), it is however difficult to recognize the modulation

scheme even after five iterations. Obviously, the result shown

in Fig. 8(a) is a counterintuitive from the observation in

Fig. 7(a). This appears due to inaccurate channel estimation

provided by the IPNLMS algorithm, which is catastrophic for

turbo equalization. The a posteriori soft-decision evaluated

from the equalizer based on the IPNLMS channel estimator

converges to the wrong constellation points due to the error

propagation incurred by inaccurate channel estimates. With

a high quality of channel estimation as shown in Fig. 8(b)

and Fig. 8(c), the a posteriori soft-decision symbols are

more reliable than equalized symbols due to accurate channel

estimates and the usage of the soft decoder. However, with

inaccurate channel estimates, the a posteriori soft-decision

symbols convergence to wrong constellation points due to

the error propagation in turbo iteration procedure as shown

in Fig. 8(a).

D. Performance versus MIMO size

Table VII shows three configurations of MIMO system

used to demonstrate the effect of the MIMO size on the
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Fig. 7. Constellation diagrams of the equalized symbols for one burst. Five iterations are conducted with the iterative channel estimation algorithm: (a)
IPNLMS; (b) RLS; (c) EW-HRLS-DCD.

TABLE VII
RECEIVER CONFIGURATIONS FOR THE ANALYSIS OF CONVERGENCE PERFORMANCE

MIMO (N ×M ) Modulation Packets Sub-block (Ns) Training overhead (β) Data rate (kbps)

2× 4
QPSK

144 1000
20% 3.2

8PSK 20% 4.8
16QAM 30% 5.6

2× 8
QPSK

72 1000
20% 3.2

8PSK 20% 4.8
16QAM 30% 5.6

2× 12
QPSK

48 1000
20% 3.2

8PSK 20% 4.8
16QAM 30% 5.6

receiver performance. The 2 × 48 MIMO system is grouped

into multiple smaller MIMO systems according to the number

of hydrophones, leading to 144, 72 and 48 received packets

for the 2× 4, 2× 8 and 2× 12 MIMO setups, respectively.

In Fig. 9 it can be seen that with the QPSK modulation, all

the MIMO receivers can achieve perfect data recovery with

eight or twelve hydrophones after five turbo iterations.

For the 8PSK modulation, the IPNLMS-based MIMO re-

ceiver improves the performance with more hydrophones, but

it cannot achieve the zero BER performance. The main reason

is that the demodulation for a higher modulation order requires

a higher accuracy of channel estimation, which cannot be

provided by the IPNLMS algorithm. However, the zero-BER

detection is achieved by MIMO receivers with both RLS-

and EW-HRLS-DCD-based channel estimators, in the 2 × 12
configuration.

In Fig. 9(c), detection results are shown for the 16QAM

modulation. Generally, the performance of all channel estima-

tors keeps improving with more hydrophones. For the 2 × 8
MIMO setup, 2, 8 and 12 error free packets of 72 packets

are received with IPNLMS, RLS and EW-HRLS-DCD based

receiver, respectively. There are 36, 59 and 64 data packets

out of 72 packets with BER < 10−2 for these estimators,

respectively. With the 2 × 12 MIMO configuration, there are

33, 46 and 48 data packets out of 48 packets with BER < 10−2

for the three estimators, respectively.
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Fig. 8. Constellation diagrams of the a posteriori soft-decision symbols for one burst. Five iterations are conducted with the iterative channel estimation
algorithm: (a) IPNLMS; (b) RLS; (c) EW-HRLS-DCD.

E. Comparison between Hard-decision and Soft-decision driv-
en Turbo Equalization

As shown in many research works [20], [23], [31], [37],

[38], [57], [58], the quality of the output of turbo equalizer

with high order modulation is very sensitive to the channel es-

timation errors or misadjustment errors produced by a specific

adaptive algorithm. On the other hand, the hard decision of the

equalizer output detriments the quality of channel estimation

and MMSE equalizer due to the error propagation.

Since the true CIRs are not known for the experimental

data processing, we can not evaluate the accuracy of channel

estimation with various feedback information in terms of MSE.

In order to quantify the performance gain brought by channel

estimators with different feedback, in [21], the behavior of

turbo receiver was investigated in terms of decision-directed

mean squared error (DD-MSE) at the output of equalizer ver-

sus the number of iterations. The DD-MSE can be estimated

adaptively as follows [21], [37]:

εk+1
MSE = γεkMSE + (1− γ)|ek|

2, (61)

where the forgetting factor γ is set to 0.99. The error ek can

be replaced by ê(k), ē(k), or ẽ(k) corresponding to the hard

decision error, a priori soft decision error, or a posteriori soft

decision error defined as in (57), (58) and (59), respectively.

It is noted that ek is replaced by the hard decision error due

to unavailable a priori information from decoder at the initial

turbo iteration.

From the analysis in the previous subsections, with a small

MIMO size, the TEQs based on the IPNLMS algorithm

experience problems for high order modulation due to the error

propagation. Therefore, the comparison between the proposed

TEQ and the hard decision based TEQ is limited to the 2× 8
MIMO with 8PSK modulation. In addition, we only choose

those packets, which do not experience convergence problem

by using all the three channel estimators, for fair benchmark

in following analysis.

Fig. 10 depicts the DD-MSE for the three channel estimators

and for the hard-decision and a posteriori SD feedback.

Clearly, for all the estimators, the TEQ with the a posteriori
SD outperforms that with the hard-decisions. With the a poste-
riori SD, the IPNLMS based channel estimator approximately

obtains 4 dB DD-MSE gain, the RLS based channel estimator

approximately obtains 7 dB DD-MSE gain, the EW-HRLS-

DCD based channel estimator approximately obtains 7 dB
DD-MSE gain with respect to that with the hard-decision

feedback. On the other hand, comparison of the three channel

estimators shows that the smallest DD-MSE is achieved by

the EW-HRLS-DCD algorithm with the a posteriori SD.

Finally, Fig. 11 demonstrates the performance of TEQs

with three channel estimators versus the number of turbo
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Fig. 6. Performance of the 2 × 4 MIMO system after 5 iterations for (a)
configuration C1; (b) configuration C2.

iterations in terms of the percentages of packets with different

BERs. In overall, all the three channel estimators with SD

feedback can dramatically improve the performance of the

turbo receiver, while a limited improvement is achieved by

TEQs with channel estimators driven by the hard decision.

The best performance is achieved by the TEQ with the SD-

driven EW-HRLS-DCD based channel estimator; this is due

to the reliable SD feedback and exploitation of sparsity of the

UWA channel. The most of the performance gain is obtained

after three iterations for all the receivers, and the improvement

is negligible after the fifth iteration. For the IPNLMS-based

TEQ after the fifth iteration, there are 27 data packets with

zero BER out of the total 72 packets if the SD feedback

is used, while there are only 9 zero-BER data packets for

the hard decision feedback. For the RLS-based TEQ after the

fifth iteration, there are 54 zero-BER data packets for the SD

feedback, while there are 38 zero-BER data packets for the

hard decision feedback. For the EW-HRLS-DCD-based TEQ

after the fifth iteration, there are 61 zero-BER data packets

for SD the feedback, and only 40 zero-BER data packets for

the hard decision feedback. As opposed to the RLS- and EW-

  I
P

N
LM

S
 

  I
P

N
LM

S
 

  I
P

N
LM

S
 

  R
LS

 

  R
LS

 

  R
LS

 

  H
R

LS
-D

C
D

  H
R

LS
-D

C
D

  H
R

LS
-D

C
D

 2x4  2x8 2x12
QPSK

0

20

40

60

80

100

P
er

ce
n

ta
g

e 
o

f 
 p

ac
ke

ts
 in

 t
h

e 
B

E
R

 r
an

g
e 

(%
)

 0 (0,10-4] (10-4,10-3] (10-3,10-2] (10-2,10-1] (10-1,1]

(a)

  I
P

N
LM

S
 

  I
P

N
LM

S
 

  I
P

N
LM

S
 

  R
LS

 

  R
LS

 

  R
LS

 

  H
R

LS
-D

C
D

  H
R

LS
-D

C
D

  H
R

LS
-D

C
D

 2x4  2x8 2x12
8PSK

0

20

40

60

80

100
P

er
ce

n
ta

g
e 

o
f 

 p
ac

ke
ts

 in
 t

h
e 

B
E

R
 r

an
g

e 
(%

)

 0 (0,10-4] (10-4,10-3] (10-3,10-2] (10-2,10-1] (10-1,1]

(b)

  I
P

N
LM

S
 

  I
P

N
LM

S
 

  I
P

N
LM

S
 

  R
LS

 

  R
LS

 

  R
LS

 

  H
R

LS
-D

C
D

  H
R

LS
-D

C
D

  H
R

LS
-D

C
D

 2x4  2x8 2x12
16QAM

0

20

40

60

80

100

P
er

ce
n

ta
g

e 
o

f 
 p

ac
ke

ts
 in

 t
h

e 
B

E
R

 r
an

g
e 

(%
)

 0 (0,10-4] (10-4,10-3] (10-3,10-2] (10-2,10-1] (10-1,1]

(c)

Fig. 9. Performance of the 2×4, 2×8 and 2×12 MIMO after 5 iterations
with modulation: (a) QPSK, (b) 8PSK and (c) 16QAM.

HRLS-DCD-based channel estimators, no matter what kind

of feedback is taken by the TEQ with the IPNLMS-based

channel estimator, it always suffers from the convergence

issue due to the short training sequence and fast time-varying

UWA channel. However, the proposed EW-HRLS-DCD based

channel estimator efficiently deals with this problem.

VII. CONCLUSION

In this paper, we have proposed and investigated a novel

turbo equalizer for MIMO UWA systems with single-carrier
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Fig. 10. DD-MSE of the equalizer output after first and fifth iteration. (a)
IPNLMS, (b) RLS, (c) EW-HRLS-DCD.

modulation. A novel sparse adaptive filtering algorithm recent-

ly proposed for single input single output systems, and based

on Homotopy iterations, DCD iterations, and reweighting, has

been extended to efficiently estimate the fast time-varying

sparse MIMO underwater acoustic channels. The reliable a
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Fig. 11. Detection performance of the TEQs with the hard-decision and the
a posteriori SD after first, third and fifth turbo iterations for the 2×8 MIMO
setup: (a) IPNLMS, (b) RLS, (c) EW-HRLS-DCD.

posteriori soft decisions, instead of traditional a priori soft de-

cisions or hard decisions, are feedback to the channel estimator

and MMSE equalizer, leading to better accuracy of channel

estimation and better performance of MMSE equalizer in
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the proposed turbo MIMO equalizer. Through the experiment

conducted in Songhua Lake in 2013, we have verified that the

proposed turbo equalizer significantly outperforms the existing

schemes based on the IPNLMS algorithm and conventional

RLS algorithm with a lower complexity and better BER

performance.
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