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We determine the retarded and advanced Green’s functions and Hadamard parametrices in curved
spacetimes for linearized massive and massless gauge bosons and linearized Einstein gravity with
a cosmological constant in general linear covariant gauges. These vector and tensor parametrices
contain additional singular terms compared with their Feynman/de Donder-gauge counterpart. We
also give explicit recursion relations for the Hadamard coefficients, and indicate their generalization
to n dimensions. Furthermore, we express the divergence and trace of the vector and tensor Green’s
functions in terms of derivatives of scalar and vector Green’s functions, and show how these relations
appear as Ward identities in the free quantum theory.

I. INTRODUCTION

A central notion in quantum field theory in a curved
spacetime M is that of Hadamard states [1–3]. These
are a class of quantum states which exhibit physically
reasonable properties, e.g., finite expectation values and
fluctuations of the stress tensor, and they can be char-
acterized by their singularity structure. For instance, the
Minkowski vacuum, thermal states in Minkowski space
and the Bunch–Davies states for free fields in cosmologi-
cal spacetimes are Hadamard states, as well as all states
which are obtained by applying smeared field operators
to those states.

The short distance behavior of any Hadamard state
is described by a Hadamard parametrix H(x, x′). This
is a bi-solution of the corresponding field equation with
a smooth source, which is defined locally and geomet-
rically. That is, H(x, x′) is defined for all x′ in a con-
vex normal neighborhood of x, and only depends on the
geometry of M in this neighborhood. In particular, it
does not describe the two-point function of any particu-
lar preferred state, but instead specifies the singular part
that any such state must have. Hadamard parametri-
ces are used to define renormalized composite operators
using the point-splitting method [4–6], which includes
the renormalized stress tensor for scalars, spinors, vec-
tors, gravitons and p-forms [7–16], in particular its trace
anomaly [6, 17, 18], and the calculation of chiral anoma-
lies [19–22]. More generally, they play a crucial role in
constructing the local and covariant time-ordered prod-
ucts on curved spacetimes [23–26], which form the basis
of renormalized perturbation theory on arbitrary (glob-
ally hyperbolic) curved backgrounds.

However, so far the treatment of theories with local
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gauge symmetry, namely Yang-Mills theories and lin-
earized Einstein gravity, has been mostly restricted to
special gauges: Feynman gauge in the case of Yang-
Mills and de Donder gauge for linearized gravity. In
these gauges, the equation of motion (EOM) is nor-
mally hyperbolic, i.e., the second derivatives only ap-
pear in form of the wave operator ∇2 ≡ gµν∇µ∇ν . On a
globally hyperbolic Lorentzian manifold, normally hyper-
bolic operators have a well-posed Cauchy problem (see,
e.g., Ref. [27]), and consequently there exist unique re-
tarded and advanced Green’s functions and correspond-
ing Hadamard parametrices. In more general gauges, the
differential operators appearing in the EOM contain sec-
ond derivatives other than ∇2, and are only Green hy-
perbolic [28, 29]. For Green hyperbolic operators, while
uniqueness of Green’s functions still holds, their existence
is not guaranteed.

The main aim of the present article is to construct ex-
plicit Green’s functions and the corresponding Hadamard
parametrices in curved spacetimes for vector gauge
bosons and linearized Einstein gravity with a cosmolog-
ical constant in general linear covariant gauges. For the
vector theory, there is a family of linear covariant gauges
with parameter ξ ∈ R

1, in which the differential operator
appearing in the EOM reads

Pµν
m2,ξ ≡ gµν

(

∇2 −m2
)

−Rµν − ξ − 1

ξ
∇µ∇ν , (1)

where we have included a mass term m2 arising from
spontaneous symmetry breaking. Because of the last
term, this operator is not normally hyperbolic for gen-
eral ξ, but only for ξ = 1 (the Feynman gauge). For
linearized gravity, there is a two-parameter family of lin-
ear covariant gauges parametrized by ξ, ζ ∈ R with the

1 While the limit ξ → 0 is not defined for the differential operator,
it exists for the Green’s function (29), as is well known.
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corresponding operator Pµνρσ
ξ,ζ given in Eq. (38). Again,

this operator is not normally hyperbolic in general, and
only in the gauge ξ = ζ = 1 (the de Donder gauge) the
existence of Green’s functions is guaranteed2.

For practical calculations it is important to know the
vector and tensor Green’s functions and Hadamard para-
metrices with arbitrary ξ and ζ, since the calculations
may considerably simplify in certain gauges. For exam-
ple, in Landau gauge ξ → 0 (and ζ → ∞ for the tensor
case) the divergence of the Green’s function or Feynman
propagator vanishes, and the gauge ξ → 0, ζ → n/2
(where n is the dimension of M) presents advantages in
AdS/CFT calculations [30]. Moreover, keeping the gauge
parameters arbitrary serves as a consistency check of
gauge-fixing independence in practical calculations, since
all terms depending on ξ or ζ must cancel out in the final
results for physical quantities.

Let us explain our general strategy by considering the
massive Proca operator [31]

Pµν
m2,∞ = gµν

(

∇2 −m2
)

−Rµν − ∇µ∇ν , (2)

which is a prototype of a Green hyperbolic opera-
tor, obtainable as the limit ξ → ∞ of Eq. (1). It is
known [28] that the (advanced or retarded) Green’s func-
tion Gm2,∞

µρ′ (x, x′) of the Proca operator can be con-
structed from the massive vector Green’s function in
Feynman gauge Gm2,1

µρ′ (x, x′) (which is known to exist
and be unique since Pµν

m2,1 is normally hyperbolic) and
the Green’s function Gm2(x, x′) of the massive Klein–
Gordon operator for scalar fields according to

Gm2,∞
µρ′ (x, x′) = Gm2,1

µρ′ (x, x′) +
1

m2
∇µ∇ρ′Gm2(x, x′) .

(3)

Similarly, we can express the Green’s function of Pµν
m2,ξ

in terms of the Green’s functions Gm2,1
µρ′ , Gm2 and Gξm2 .

It turns out that, contrary to Eq. (3), Gm2,ξ
µρ′ for ξ < ∞

admits a well-defined massless limit, and G0,ξ
µρ′ can be

expressed using mass derivatives of Gm2 at m = 0.
Once we have obtained an expression for the advanced

or retarded Green’s function, we construct the corre-
sponding Hadamard parametrix. Let us start with the
scalar case, and assume given a Hadamard state |ψ〉.
Then the Wightman function3

G+
m2(x, x′) ≡ −i〈ψ|φ(x)φ(x′)|ψ〉 (4)

is a solution to Pm2G+
m2(x, x′) = 0 with the Klein–

Gordon operator

Pm2 ≡ ∇2 −m2 , (5)
while the time-ordered Feynman propagator

GF
m2(x, x′) ≡ −i〈ψ|T φ(x)φ(x′)|ψ〉

= Θ(t− t′)G+
m2(x, x′) + Θ(t′ − t)G+

m2(x′, x)

(6)

is a solution to the inhomogeneous equation
Pm2GF

m2(x, x′) = δ(x, x′) with the covariant δ dis-
tribution δ(x, x′) ≡ δ4(x− x′)/

√−g, and where t = t(x)
is any time function. From those, the retarded Green’s
function can be obtained via

Gret
m2(x, x′) ≡ Θ(t− t′)

[

G+
m2(x, x′) −G+

m2(x′, x)
]

= GF
m2(x, x′) −G+

m2(x′, x) .
(7)

Since |ψ〉 is a Hadamard state, the Wightman func-
tion (4) in four dimensions locally takes the form [27, 32]

G+
m2(x, x′) = − i

8π2

[

Um2(x, x′)

σ(x, x′) + iǫ(t− t′)
+ Vm2(x, x′) ln

[

µ2σ(x, x′) + iǫ(t− t′)
]

+Wm2(x, x′)

]

, (8)

where µ is a mass scale, the functions Um2 , Vm2 and Wm2

are smooth symmetric biscalars, and the distributional
limit ǫ → 0+ is understood. The symmetric biscalar
σ(x, x′) is Synge’s world function [33], equal to one half
of the (signed) square of the geodesic distance between x
and x′, which is well defined locally (i.e., when x′ is in a
normal geodesic neighborhood of x). It is easy to check

2 Although not even P µνρσ
1,1 is normally hyperbolic, its trace-

reversed version P̄ µνρσ
1,1 ≡ P µνρσ

1,1 − 1/(n − 2)gρσgαβP µναβ
1,1 is,

and one can reconstruct the Green’s functions of P µνρσ
1,1 from

the ones of P̄ µνρσ
1,1 by purely algebraic means, see Eq. (41).

3 The prefactor for the Wightman function, the Feynman propaga-
tor and various other Green’s functions is a matter of convention.

that the Feynman propagator (6) is given by expres-
sion (8) with σ(x, x′) + iǫ(t− t′) replaced by σ(x, x′) + iǫ.
The retarded Green’s function (7) thus reads

Gret
m2(x, x′) = −Θ(t− t′)

4π
[Um2δ(σ) − Vm2Θ(−σ)] , (9)

using the well-known formulas (valid in the distributional
limit ǫ → 0+)

1

x+ iǫ
= Pf 1

x
− iπδ(x) , (10a)

ln(x+ iǫ) = ln |x| + iπΘ(−x) , (10b)

with Hadamard’s finite part distribution Pf . Since the
retarded Green’s function is unique, it doesn’t depend
on the state |ψ〉, and thus in particular the biscalars Um2
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and Vm2 are state-independent and only depend on the
geometry of the spacetime M . Therefore, we see that the
biscalar Wm2 encodes the dependence of the Wightman
function G+

m2 (8) or the Feynman propagator GF
m2 (6) on

the quantum state |ψ〉. On the other hand, the geomet-
ric state-independent Hadamard parametrix Hm2(x, x′)
is given by

Hm2 ≡ − i

8π2

[

Um2

σǫ
+ Vm2 ln

(

µ2σǫ

)

]

, (11)

where the proper ǫ prescription depends on whether one
considers the Wightman function G+

m2 or the Feynman
propagator GF

m2 . In the Wightman case, the Hadamard
parametrix H+

m2(x, x′) has the same ǫ prescription as the
Wightman function (8), namely it is of the form (11)
with σǫ = σ + iǫ(t − t′), while the Feynman Hadamard
parametrix HF

m2(x, x′) is of the form (11) with the Feyn-
man prescription σǫ = σ + iǫ. For notational conve-
nience, in the following we will work with the generic
form (11), and moreover drop the ǫ subscript from σǫ.
Note that both the Wightman function G+

m2 and the
Feynman propagatorGF

m2 are actually independent of the
scale µ, and that a change µ → µ′ is compensated by the
change Wm2(x, x′) → Wm2(x, x′) + 2Vm2(x, x′) ln(µ/µ′).
For massive scalars, one could choose µ to be equal to
m, which however creates problems as m → 0 for the
Hadamard parametrix.

In the vector case in Feynman gauge ξ = 1, the
Hadamard parametrix is similarly given by [1]

Hm2,1
µρ′ (x, x′) ≡ − i

8π2





Um2,1
µρ′

σ
+ V m2,1

µρ′ ln
(

µ2σ
)



 , (12)

where the same remarks about the proper ǫ prescrip-
tion apply. The Wightman function now contains a state-
dependent bitensor Wm2,1

µρ′ . As we will see [cf. Eq. (122)],
for a general gauge ξ 6= 1 the Hadamard parametrix con-
tains additional singular terms proportional to σ−2, and
a new set of bitensors {U, V }m2,ξ

µρ′ related to the Feynman
gauge bitensors and the biscalars appearing in the scalar
Hadamard parametrix (11).

Along the same lines, we calculate the retarded or
advanced Green’s function Gξ,ζ

µνρ′σ′ for linearized grav-
ity around backgrounds which are solutions to Einstein’s
equations with a cosmological constant Λ. We express
Gξ,ζ

µνρ′σ′ in terms of the de Donder gauge Green’s func-

tion G1,1
µνρ′σ′ , and the vector and scalar Green’s functions

Gm
2,1

µρ′ and Gm
2 with m a mass parameter proportional

to Λ, and we show that the limit m
2 → 0 (which corre-

sponds to Λ = 0) exists. While for de Donder gauge the
most singular term in the Hadamard parametrix is again
proportional to σ−1, for a general gauge it turns out to
be proportional to σ−3.

The remainder of the article is organized as follows: in
Sec. II we determine the advanced and retarded Green’s

functions for vector and tensor fields in general linear
and covariant gauges, in Sec. III we show that cer-
tain divergence and trace identities which follow for the
Green’s functions can be obtained as Ward identities in
the free quantum theory, and in Sec. IV we determine
the corresponding Hadamard parametrices. We close in
Sec. V with an outlook on future work, and, with a view
on practical applications, also give expressions for the
state-dependent W coefficients in Appendix B under the
assumption that the Wightman functions or Feynman
propagators in general linear and covariant gauges are
determined in the same way as the Green’s functions. We
use the “+++” sign convention of Ref. [34], and work in
n ≥ 2 dimensions, except for the Hadamard expansion in
Sec. IV where we restrict to four dimensions.

II. GREEN’S FUNCTIONS

Given a differential operator P , by definition advanced
and retarded Green’s functions Gadv/ret satisfy

PxG
adv/ret(x, x′) = δ(x, x′) = Px′Gadv/ret(x, x′) (13)

with the support properties

supp

∫

Gret(x, x′)f(x′) dgx
′ ⊂ J+(supp f) ,

supp

∫

Gadv(x, x′)f(x′) dgx
′ ⊂ J−(supp f)

(14)

for any compactly supported test function f , where
J+(S) [J−(S)] is the causal future (past) of a set S,
and we set dgx ≡ √−g dnx. Given a Green’s function,
the solution of the inhomogeneous equation Pφ = f with
retarded or advanced boundary conditions is then given
by the formula

φret/adv(x) =

∫

Gret/adv(x, x′)f(x′) dgx
′ . (15)

Uniqueness of Green’s functions with a specific boundary
condition, thus, leads to unique solutions to the inhomo-
geneous equation under those boundary conditions. In
particular, for vanishing source f = 0 we obtain φ = 0,
which we will make use of in the following.

In this section, we determine the advanced and re-
tarded Green’s functions of vector and tensor fields in
general linear covariant gauges. Since the GreenâĂŹs
functions that we obtain are expressed in terms of the
scalar and vector Green’s function and their mass deriva-
tives, we begin with the massive Klein–Gordon operator.
Our calculations are valid for either advanced or retarded
boundary conditions, and for ease of notation we drop the
superscript “adv/ret” in the remainder of the article.

A. Scalar field

Consider a massive scalar field with minimal curvature
coupling. The differential operator appearing in its EOM



4

is the Klein–Gordon operator Pm2 defined in Eq. (5). As
discussed in the introduction, Pm2 is a normally hyper-
bolic differential operator, and thus admits unique ad-
vanced and retarded Green’s functions Gm2(x, x′) which
satisfy

Pm2Gm2(x, x′) = δ(x, x′) , (16)

with the support properties discussed above. For later
use, we will need mass derivatives of Green’s functions,
and we define

ĜM2 ≡ ∂Gm2

∂m2

∣

∣

∣

∣

m2=M2

, ˆ̂GM2 ≡ ∂Ĝm2

∂m2

∣

∣

∣

∣

m2=M2

.

(17)
By differentiating Eq. (16) with respect to the mass, we
obtain

Pm2Ĝm2(x, x′) = Gm2(x, x′) (18)

and

Pm2
ˆ̂Gm2(x, x′) = 2Ĝm2(x, x′) . (19)

B. Vector field

As explained in the introduction, the linearized Yang-
Mills equation is not normally hyperbolic. Here, we con-
sider a (massive) vector field in a general linear covari-
ant gauge, whose differential operator Pµν

m2,ξ is given by
Eq. (1), with ξ a gauge parameter. The choice ξ = 1
(Feynman gauge) eliminates the last term in Eq. (1) and
Pµν

m2,1 is a normally hyperbolic operator. The Green’s
functions that we want to determine satisfy

Pµν
m2,ξG

m2,ξ
νβ′ (x, x′) = gµ

β′δ(x, x
′) , (20)

with the bitensor of parallel transport gµβ′ , which for
coinciding points reduces to the metric

lim
x′→x

gµβ′ = gµβ . (21)

Divergence identity for ξ = 1

To obtain the Green’s function Gm2,ξ
νβ′ (x, x′), we first

need to determine an expression for the divergence of the
Feynman gauge Green’s function Gm2,1

νβ′ (x, x′). We follow
Ref. [1] and calculate

Pm2

[

∇νGm2,1
νβ′ (x, x′) + ∇β′Gm2(x, x′)

]

= ∇µ

[

Pµν
m2,1G

m2,1
νβ′ (x, x′)

]

+ ∇β′Pm2Gm2(x, x′)

= ∇µ

[

gµ
β′δ(x, x

′)
]

+ ∇β′δ(x, x′) = 0 ,

(22)

where the equality of the last line follows from the prop-
erties of the parallel propagator gµβ′ [1, 33].

According to the previous discussion, since Pm2 is nor-
mally hyperbolic the solution of this equation with either
retarded or advanced boundary conditions is unique and
thus vanishing, and we infer that

∇νGm2,1
νβ′ (x, x′) = −∇β′Gm2(x, x′) . (23)

This relation is in fact necessary for the Ward identities
to hold in the (free) quantum theory, which we explain
in the framework of BRST quantization in Sec. III.

The massive vector Green’s function for general ξ

In the general case, inspired from the known flat-space
Green’s function we consider the combination

G̃m2,ξ
νβ′ ≡ Gm2,ξ

νβ′ + (ξ − 1)∇ν∇β′G̃ (24)

with an unspecified function G̃. A short calculation shows
that

Pµν
m2,1G̃

m2,ξ
νβ′ (x, x′) = gµ

β′δ(x, x
′) (25)

if G̃ fulfils

∇µ
[

∇β′Pξm2G̃(x, x′) + ∇νG̃m2,ξ
νβ′ (x, x′)

]

= 0 . (26)

Since Pµν
m2,1 is normally hyperbolic, the solution of

Eq. (25) with retarded or advanced boundary conditions
is unique, and we conclude that G̃m2,ξ

νβ′ = Gm2,1
νβ′ . The

relation (23) then shows that Eq. (26) for G̃ reduces to

∇µ∇β′

[

Pξm2G̃(x, x′) −Gm2(x, x′)
]

= 0 . (27)

One easily verifies that a solution of this equation is given
by

G̃ =
Gm2 −Gξm2

(1 − ξ)m2
, (28)

and we thus obtain

Gm2,ξ
νβ′ = Gm2,1

νβ′ +
1

m2
∇ν∇β′

(

Gm2 −Gξm2

)

. (29)

For the divergence of the general vector Green’s function,
we then calculate using the relation (23)

∇νGm2,ξ
νβ′ = −ξ∇β′Gξm2 , (30)

which reduces to relation (23) for ξ = 1. We see that the
transversality of the Green’s function in Landau gauge
ξ = 0, which is known from the flat-space case, holds
also in general spacetimes, i.e.,

∇νGm2,0
νβ′ = 0 . (31)
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The massless limit

In the limit m → 0, we have

Gm2 = G0 +m2Ĝ0 + O(m4) , (32)

and we obtain

G0,ξ
νβ′ = G0,1

νβ′ − (ξ − 1)∇ν∇β′Ĝ0 , (33)

which also can be obtained from the direct solution of
Eq. (27) using Eq. (18) for m2 = 0.

C. Tensor field

Lastly we would like to determine the Green’s func-
tions for a symmetric second-rank tensor field (which we
call graviton) subject to the linearized Einstein equation,
which is the basic quantum field in perturbative quan-
tum gravity around fixed backgrounds [35–37]. Since in
two dimensions the integral of the Ricci scalar is a topo-
logical invariant, we restrict to n ≥ 3 dimensions.In this
work, we consider background metrics gµν which satisfy
Einstein’s equation with a cosmological constant4

Rµν − 1

2
gµνR+ gµνΛ = 0 , (34)

which implies

Rµν =
2Λ

n− 2
gµν , R =

2nΛ

n− 2
, ∇µRµνρσ = 0 ,

(35)

where the last equation follows from the Bianchi iden-
tities. We stress that apart from this conditions, the
Riemann tensor is unconstrained; in particular we are
not restricting to de Sitter or anti-de Sitter space-
time where the Weyl tensor Cµνρσ = Rµνρσ − 2/(n −
2)
(

Rµ[ρgσ]ν −Rν[ρgσ]µ

)

+ 2/[(n − 2)(n − 1)]Rgµ[ρgσ]ν

would vanish.
We do not consider a mass term for the graviton.

Writing the perturbed metric as background gµν plus
perturbation κhµν with κ2 = 16πGN, and expanding
the Einstein-Hilbert action with cosmological constant
to second order in hµν , we obtain the action

S(0) =
1

4

∫
[

hµν
(

∇2hµν − 2∇ρ∇µhνρ + 2∇µ∇νh
)

− h∇2h+
2

n− 2

(

2hµνhµν − h2
)

Λ

]

dgx ,

(36)

where h ≡ gµνhµν and ∇µ is the covariant derivative
operator with respect to the background metric gµν . To
perform gauge fixing, we add to S(0) the action

SGF = − 1

2ξ

∫
(

∇νhµν − ∇µh

2ζ

)(

∇ρh
µρ − ∇µh

2ζ

)

dgx

(37)
with two gauge parameters ξ and ζ, where the analogue
of Feynman gauge, usually called de Donder gauge, is
given by ξ = ζ = 1. Variations of S(0) +SGF with respect
to hµν leads to the field equation P ρσµν

ξ,ζ hµν = 0, with the
differential operator

P ρσµν
ξ,ζ ≡ 1

2

(

gρ(µgν)σ − 1

2
gρσgµν

)

∇2 +Rργσδ

(

δ(µ
γ δ

ν)
δ − 1

2
gγδg

µν

)

−
(

1 − 1

ξ

)

∇(ρgσ)(µ∇ν)

+
1

2

(

1 − 1

ξζ

)

(gµν∇ρ∇σ + gρσ∇µ∇ν) − 1

4

(

1 − 1

ξζ2

)

gρσgµν∇2 ,

(38)

and the Green’s function Gξ,ζ
µνα′β′(x, x′) satisfies

P ρσµν
ξ,ζ Gξ,ζ

µνα′β′(x, x
′) = g

(ρ
α′g

σ)
β′ δ(x, x

′) . (39)

Similar to the vector field, P ρσµν
ξ,ζ is not a normally hy-

perbolic operator for general values of ξ and ζ. However,
even in the case ξ = ζ = 1 it is not normally hyperbolic
since the coefficient of ∇2 is not the identity on symmet-
ric rank-2 tensors,

(

gρ(µgν)σ − 1
2g

ρσgµν
)

fµν 6= fρσ (the
factor 1/2 is irrelevant). However, the trace-reversed op-

4 The generalization to other background fields, such as the infla-
ton in cosmological spacetimes, proceeds along the same lines.

erator

P̄µνρσ
1,1 ≡ Pµνρσ

1,1 − 1

n− 2
gρσgαβP

µναβ
1,1

=
1

2
gρ(µgν)σ∇2 −Rρ(µν)σ

(40)

is normally hyperbolic, and possesses unique retarded
and advanced Green’s functions Ḡ1,1

µνα′β′ . From those, one

obtains the Green’s functions of Pµναβ
1,1 by the same trace

reversal, a purely algebraic operation:

G1,1
µνα′β′ = Ḡ1,1

µνα′β′ − 1

n− 2
gµνg

ρσḠ1,1
ρσα′β′ , (41)

and thus their existence (and uniqueness) is also guaran-
teed. In the literature, it is common to directly use the
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trace reversed variable h̄µν ≡ hµν − 1
2gµνh. However, in

our case this does not lead to a simplification, and in par-
ticular P̄µνρσ

1,1 is not the differential operator which one
would obtain by replacing hµν by h̄µν in the action for
ξ = ζ = 1.

Trace and divergence identities for ξ = ζ = 1

To construct the Green’s function in the general case,
we follow the same strategy as for the vector field. We
thus first derive a relation between the divergence of the
tensor Green’s function and the gradient of vector and
scalar ones. Let us introduce a mass parameter

m
2 ≡ − 4Λ

n− 2
. (42)

Using that

gρσP
ρσµν
1,1 = −n− 2

4
gµνPm

2 , (43)

we calculate from Eq. (39) that

Pm
2

[

gµνG1,1
µνα′β′(x, x

′) +
4

n− 2
gα′β′Gm

2(x, x′)

]

= 0 .

(44)
Since Pm

2 is a normally hyperbolic operator, the solution
of this equation with retarded or advanced boundary con-
ditions is again unique and we infer the trace identity [38]

gµνG1,1
µνα′β′ = − 4

n− 2
gα′β′Gm

2 . (45)

Using this identity, it follows that
(

1

2
gρµgνσ∇2 +Rρµσν

)

G1,1
µνα′β′(x, x

′)

=

(

g
(ρ
α′g

σ)
β′ − 1

n− 2
gρσgα′β′

)

δ(x, x′) ,

(46)

and we calculate

P
m

2/2

[

∇νG1,1
µνα′β′ + 2∇(α′Gm

2,1
|µ|β′) +

2

n− 2
gα′β′∇µGm

2

]

= ∇ν∇2G1,1
µνα′β′(x, x

′) − 2Rρνσ
µ∇ρG

1,1
σνα′β′(x, x

′) + 2gµ(α′∇β′)δ(x, x
′) +

2

n− 2
gα′β′∇µδ(x, x

′)

= ∇σ

[

2gµ(α′gσ
β′)δ(x, x

′) − 2

n− 2
δσ

µgα′β′δ(x, x′)

]

+ 2gµ(α′∇β′)δ(x, x
′) +

2

n− 2
gα′β′∇µδ(x, x

′) = 0 .

(47)

Since P
m

2/2 is again a normally hyperbolic operator we
conclude that [38]

∇νG1,1
µνα′β′ = −2∇(α′Gm

2,1
|µ|β′) − 2

n− 2
gα′β′∇µGm

2 . (48)

Similar to the vector case, we will also derive this re-
lation as a Ward identity for the free quantum theory
in Sec. III. Note that while certain states (i.e., Wight-
man functions or Feynman propagators) for fields of neg-
ative mass might be ill-behaved, the retarded/advanced

Green’s functions are completely well-defined. For exam-
ple, in de Sitter space where Λ > 0 the scalar Wight-
man function is infrared-divergent for the natural Bunch–
Davies vacuum state for all m2 ≤ 0 (which includes
m

2 < 0), while in the retarded Green’s function the
problematic infrared divergence cancels out (see, e.g.,
Ref. [39]).

The graviton Green’s function for general ξ and ζ

In the general case where either ξ or ζ (or both) are dif-
ferent from 1, again inspired from the flat-space Green’s
function5, we consider the combination

5 See, e.g., Refs. [40–42] and use the formula

∫

eipx(p2
− iǫ)α dnp

(2π)n
= i

4αΓ
(

n
2

+ α
)

π
n
2 Γ(−α)

(x2 + iǫ)−α− n
2

in n dimensions [43] Eq. (A.40), [44] Eq. (8.715) (converted to
our conventions).
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G̃ξ,ζ
µνα′β′ ≡ Gξ,ζ

µνα′β′ + (ξ − 1)
(

∇µ∇α′G̃νβ′ + ∇ν∇α′G̃µβ′ + ∇µ∇β′G̃να′ + ∇ν∇β′G̃µα′

)

− 4(1 − ζ)

(n− 2)(1 − 2ζ)
(gµν∇α′∇β′ + gα′β′∇µ∇ν)G̃1 +

4(1 − ζ)

(1 − 2ζ)2

(

(ξ − 1)(1 − 3ζ) +
n

n− 2
(1 − ζ)

)

∇µ∇ν∇α′∇β′G̃2

(49)

with unknown functions G̃νβ′ , G̃1 and G̃2. This combination satisfies

P ρσµν
1,1 G̃ξ,ζ

µνα′β′(x, x
′) = g

(ρ
α′g

σ)
β′ δ(x, x

′) , (50)

if G̃νβ′ , G̃1 and G̃2 fulfil the conditions

gα′β′

(

gρσ∇2 − 2ζ∇ρ∇σ
)

PM2G̃1 + (n− 2)ζgρσ∇α′∇β′PM2G̃1 − n
1 − ζ

1 − 2ζ

(

gρσ∇2 − 2ζ∇ρ∇σ
)

∇α′∇β′

(

PM2G̃2 − G̃1

)

=
n− 2

2
ζ(gµν∇ρ∇σ + gρσ∇µ∇ν)G̃ξ,ζ

µνα′β′ − n− 2

4
(1 + ζ)gρσgµν∇2G̃ξ,ζ

µνα′β′

(51)

and

− 2

(

∇(ρP
σ)ν
m

2,−ζ/(1−2ζ) +
1 − 2ζ

2ζ2
gρσPM2∇ν

)

∇(α′G̃|ν|β′) − 1 − ζ

ζ2

(

gρσ∇2 − 2ζ∇ρ∇σ
)

(

∇α′∇β′ +
gα′β′

n− 2
PM2

)

G̃1

+
2

n− 2

(1 − ζ)[1 + (n− 3)ζ]

ζ2(1 − 2ζ)
∇α′∇β′

(

gρσ∇2 − 2ζ∇ρ∇σ
)(

PM2G̃2 − G̃1

)

= ∇(ρgσ)(µ∇ν)G̃ξ,ζ
µνα′β′ − 1

2ζ
(gµν∇ρ∇σ + gρσ∇µ∇ν)G̃ξ,ζ

µνα′β′ +
1

4ζ2
gρσgµν∇2G̃ξ,ζ

µνα′β′ ,

(52)

where we defined

M
2 ≡ − ζ

1 − 2ζ
m

2 . (53)

Since P ρσµν
1,1 has unique retarded and advanced Green’s

functions, we infer that G̃ξ,ζ
µνα′β′ = G1,1

µνα′β′ , and can cal-
culate the right-hand sides of these conditions using the
relations (30), (45) and (48). It is then easy to check that
Eqns. (51) and (52) are fulfilled if

PM2G̃1 = Gm
2 , (54a)

PM2G̃2 = G̃1 , (54b)

gµσP
σν
m

2,−ζ/(1−2ζ)G̃νβ′ = Gm
2,1

µβ′ +
1 − ζ

ζ
∇µ∇β′G̃1 .

(54c)

By a straightforward but lengthy calculation, we find
a solution of these latter conditions in terms of (mass
derivatives of) vector and scalar Green’s functions, and
replacing those solutions into the ansatz (49), we find
that the retarded or advanced Green’s function for the
graviton in a general linear covariant gauge takes the
form

Gξ,ζ
µνα′β′ = G1,1

µνα′β′ − 2(ξ − 1)
[

∇α′∇(µĜ
m

2,1
ν)β′

+ ∇β′∇(µĜ
m

2,1
ν)α′

]

− 4(ξ − 1)
1 − ζ

1 − 2ζ
∇µ∇ν∇α′∇β′

(

ĜM2 − Ĝm
2

M2 − m
2

)

+
4(1 − ζ)

(n− 2)(1 − 2ζ)
(gµν∇α′∇β′ + gα′β′∇µ∇ν)

(

GM2 −Gm
2

M2 − m
2

)

+
4(1 − ζ)2

(1 − 2ζ)2

[

n

n− 2
− (ξ − 1)

]

∇µ∇ν∇α′∇β′

[

GM2 −Gm
2 −

(

M
2 − m

2
)

ĜM2

(M2 − m
2)

2

]

.

(55)

Lastly, we also want to give expressions for the trace
and divergence of the graviton Green’s function in the

general gauge ξ, ζ 6= 1. Using the relation (45) for
the trace of the graviton Green’s function in the gauge
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ξ = ζ = 1, the divergence of the vector Green’s func-
tion (23) and its mass derivative, the equations satisfied

by the scalar Green’s function (16) and its mass deriva-
tive (18), we find

gµνGξ,ζ
µνα′β′ =

4ζ

(n− 2)(1 − 2ζ)

[

gα′β′GM2 − n(1 − ζ) − (n− 2)(ξ − 1)ζ

(1 − 2ζ)
∇α′∇β′ĜM2

]

. (56)

Now using also the relation (48) for the divergence of the graviton Green’s function in the gauge ξ = ζ = 1 and the
mass derivative of the vector Eq. (20) we find

∇νGξ,ζ
µνα′β′ = −2ξ∇(α′Gm

2,1
|µ|β′) +

2

(n− 2)(1 − 2ζ)
gα′β′∇µGM2 − 2ξ(1 − ζ)

1 − 2ζ
∇α′∇β′∇µ

(

GM2 −Gm
2

M2 − m
2

)

− 2

(1 − 2ζ)2

[

n

n− 2
(1 − ζ) − (ξ − 1)ζ

]

∇α′∇β′∇µĜM2 .

(57)

Special gauges and vanishing cosmological constant

Let us elaborate here on the form of the graviton
Green’s function (55), the trace identity (56) and the
divergence identity (57) for special values of the gauge
parameters and for the case with a vanishing cosmologi-
cal constant.

ξ → 1: This limit is clearly seen to be regular for all
three identities and will make some of the terms in those
expressions vanish.

ζ → 1: While the trace identity (56) is clearly regular
in this limit, the regularity of the other two identities
is not apparent, since from the definition (53) we have
M

2 → m
2 for ζ → 1. However, the mass terms always

appear in the combination

1 − ζ

M2 − m
2

= −1 − 2ζ

m
2

→ 1

m
2
, (58)

which remains regular as ζ → 1, and it follows that the
Green’s function is given by

Gξ,1
µνα′β′ = G1,1

µνα′β′ − 2(ξ − 1)
(

∇α′∇(µĜ
m

2,1
ν)β′

+ ∇β′∇(µĜ
m

2,1
ν)α′

)

, (59)

while trace and divergence are

gµνGξ,1
µνα′β′ = − 4

n− 2
gα′β′Gm

2 + 4(ξ − 1)∇α′∇β′Ĝm
2 , (60a)

∇νGξ,1
µνα′β′ = −2ξ∇(α′Gm

2,1
|µ|β′) − 2

n− 2
gα′β′∇µGm

2 + 2(ξ − 1)∇α′∇β′∇µĜm
2 . (60b)

ξ → 1, ζ → 1: From the above expressions, G1,1
µνα′β′

and the identities (45) and (48) are clearly recovered in
this limit.

ζ → 0: In this limit, M → 0 and the trace of the
Green’s function vanishes

gµνGξ,0
µνα′β′ = 0 . (61)

ξ → 0, ζ → ∞: In this limit, M → m
2/2 and the

trace term in the gauge-fixing action (37) disappears. We
have

gµνG0,∞
µνα′β′ = − 2

n− 2

(

gα′β′G
m

2/2 − ∇α′∇β′Ĝ
m

2/2

)

,

(62a)

∇νG0,∞
µνα′β′ = 0 . (62b)

In view of vanishing of the divergence of Green’s function,
we can call this gauge generalized Landau gauge.

ξ → 0, ζ = n/2: In this gauge, the Green’s function
decomposes into two parts

G
0,n/2
µνα′β′ = GTT

µνα′β′ − 2

(n− 2)(n− 1)
gµνgα′β′GM2 , (63)
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where the “spin-2” part

GTT
µνα′β′ = G1,1

µνα′β′ + 2
[

∇α′∇(µĜ
m

2,1
ν)β′

+ ∇β′∇(µĜ
m

2,1
ν)α′

]

+
2

n− 1
(gµν∇α′∇β′ + gα′β′∇µ∇ν)

(

GM2 −Gm
2

M2 − m
2

)

+
2(n− 2)

n− 1
∇µ∇ν∇α′∇β′

[

GM2 −Gm
2

(M2 − m
2)

2 − Ĝm
2

M2 − m
2

]

+
2

(n− 2)(n− 1)
gα′β′gµνGM2

(64)

is transverse and traceless,

∇µGTT
µνα′β′ = 0 = gµνGTT

µνα′β′ , (65)

as can be checked using the trace (56) and divergence
identities (57). This gauge is used in AdS/CFT calcula-
tions [30].

Λ → 0: At first sight, this limit might seem divergent
since both M

2 and m
2 vanish in this limit. To show that

the limit actually exists, we expand around zero mass

Gm
2 = G0 + m

2Ĝ0 +
1

2
m

4 ˆ̂G0 + O(m6) , (66a)

Ĝm
2 = Ĝ0 + m

2 ˆ̂G0 + O(m4) , (66b)

and the analogous equations for M
2, and obtain [using

also the definitions of m2 (42) and M
2 (53)]

GM2 −Gm
2

M2 − m
2

→ Ĝ0 , (67a)

Ĝm
2

M2 − m
2

→ Ĝ0

M2 − m
2

− 1 − 2ζ

1 − ζ
ˆ̂G0 , (67b)

ĜM2

M2 − m
2

→ Ĝ0

M2 − m
2

+
ζ

1 − ζ
ˆ̂G0 , (67c)

GM2 −Gm
2

(M2 − m
2)

2 → Ĝ0

M2 − m
2

− 1 − 3ζ

2(1 − ζ)
ˆ̂G0 . (67d)

The potentially divergent terms cancel out in the full
Green’s function, and it follows that

Gξ,ζ
µνα′β′

∣

∣

∣

Λ=0
= G1,1

µνα′β′

∣

∣

∣

Λ=0
− 2(ξ − 1)

(

∇α′∇(µĜ
0,1
ν)β′

+ ∇β′∇(µĜ
0,1
ν)α′

)

+
4(1 − ζ)

(n− 2)(1 − 2ζ)
(gµν∇α′∇β′ + gα′β′∇µ∇ν)Ĝ0

− 2(1 − ζ)

(1 − 2ζ)2

[ n

n− 2
(1 − ζ) + (ξ − 1)(1 − 3ζ)

]

∇µ∇ν∇α′∇β′

ˆ̂G0

(68)

and

∇νGξ,ζ
µνα′β′

∣

∣

∣

Λ=0
= −2ξ∇(α′G0,1

|µ|β′) +
2

(n− 2)(1 − 2ζ)
gα′β′∇µG0

− 2

(n− 2)(1 − 2ζ)2

[

2[(n− 1) − (n− 2)ζ](1 − ζ) + (n− 2)(ξ − 1)(1 − 4ζ + 2ζ2)
]

∇α′∇β′∇µĜ0 .

(69)

In flat space where in addition Rµνρσ = 0, this coincides
with well-known results (see footnote 5 on page 6).

III. WARD IDENTITIES

As mentioned in the previous sections, the rela-
tions (30), (56) and (57) can be derived as Ward iden-
tities of the free quantum theory. For the divergence re-
lations (30) and (57), this has already been noted pre-
viously [15, 45, 46], and in this section we show how
to derive all three identities in the framework of BRST
quantization of gauge theories. A mathematically rigor-
ous formulation of BRST quantization in the algebraic
approach to quantum field theory on curved spacetimes
has been given in Refs. [37, 46–48], but we only need

some basic facts which we state in the following.

A. Massive vector boson

In the BRST formalism, one introduces in addition to
the vector field Aµ fermionic ghost and antighost fields c
and c̄, and an auxiliary bosonic (Nakanishi-Lautrup) field
B. For a massive (Proca) vector field, the theory is not a
gauge theory, and one must add an additional auxiliary
scalar field φ, known as Stueckelberg field [15, 49, 50].
The full action then reads

S =
1

2

∫
[

AµP
µν
m2,ξAν + φPξm2φ− 2c̄Pξm2c+ ξB̃2

]

dgx

(70)
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with the differential operators Pµν
m2,ξ and Pξm2 defined in

Eqns. (1) and (5), and where we defined

B̃ ≡ B + ξ−1∇µA
µ +mφ , (71)

which completely decouples from the rest of the theory.
In the massless limit, we recover the gauge-fixed action
of a free gauge vector in the BRST formulation, and we
can also obtain the original massive theory in the gauge
φ = 0. Furthermore, in the limit ξ → ∞ in which the
differential operator Pµν

m2,ξ gives the Proca operator (2),
both the scalar and the ghosts become infinitely massive
and drop out of the physical spectrum, such that the
Proca theory is recovered.

It is now straightforward to check that S is invariant
under the action of the free (linearized) BRST differential
s0, which is a nilpotent (s2

0 = 0) fermionic differential
acting according to

s0Aµ = ∇µc , (72a)
s0c = 0 , (72b)
s0c̄ = B , (72c)

s0B = 0 , (72d)
s0φ = −mc . (72e)

We see that s0 generalizes the gauge symmetry to in-
clude the additional fields, replacing the gauge parame-
ter with the ghost field. In the interacting classical the-
ory, i.e., the full non-Abelian Yang-Mills(-Higgs) theory,
the full nonlinear BRST differential s extends this action
while remaining nilpotent, and in the quantum theory,
one needs to extend it further to a quantum BRST dif-
ferential q = s + O(~) [48, 51]. The observables in the
quantum theory are then the interacting fields and com-
posite operators invariant under the action of q, but here
we restrict to the free quantum theory and only need s0.
A general Ward identity then reads

0 = 〈ψ| s0T O1 · · · On|ψ〉

=

n
∑

i=1

(−1)

∑

i−1

j=1
ǫj 〈ψ|T O1 · · · (s0Oi) · · · On|ψ〉 , (73)

where |ψ〉 is a Hadamard state, T is time-ordering, Oi

are field operators (including composite operators, which
in the free theory are local and covariant Wick powers
defined with respect to a Hadamard parametrix), and ǫi
is the Grassmann parity of Oi.

The free quantum fields have the following Feynman
propagators in a Hadamard state |ψ〉:

〈ψ|T Aµ(x)Aρ′(x′)|ψ〉 = iGF,m2,ξ
µρ′ (x, x′) , (74a)

〈ψ|T φ(x)φ(x′)|ψ〉 = iGF
ξm2(x, x′) , (74b)

〈ψ|T c(x)c̄(x′)|ψ〉 = −iGF
ξm2(x, x′) , (74c)

〈ψ|T B̃(x)B̃(x′)|ψ〉 =
i

ξ
δ(x, x′) , (74d)

and analogously the Wightman functions G+ are given
by the same formulas without the time-ordering T .
The retarded Green’s functions can then be recovered
from these according to the relation (7): Gret(x, x′) =
GF(x, x′)−G+(x′, x). Alternatively, one can consider the
purely algebraic covariant (anti-)commutators

[Aµ(x), Aρ′(x′)] = i∆m2,ξ
µρ′ (x, x′) , (75a)

[φ(x), φ(x′)] = i∆ξm2(x, x′) , (75b)
{c(x), c̄(x′)} = −i∆ξm2(x, x′) , (75c)

[B̃(x), B̃(x′)] = 0 , (75d)

where ∆(x, x′) ≡ Gadv(x, x′) − Gret(x, x′) is called the
causal propagator or Pauli–Jordan function. This would
be more in line with the spirit of the algebraic approach
to quantum field theory, where one constructs the alge-
bra of free or interacting quantum fields first (including
renormalization), and worries about states and expecta-
tion values afterwards. Let us again denote the right-hand
sides by an unspecified “G”.

We then use the identity

〈ψ| s0T Aµ(x)c̄(x′)|ψ〉 = 0 (76)

(or the commutator of those fields), which gives

0 = 〈ψ|T s0Aµ(x)c̄(x′)|ψ〉 + 〈ψ|T Aµ(x) s0c̄(x
′)|ψ〉

= ∇µ〈ψ|T c(x)c̄(x′)|ψ〉

+ 〈ψ|T Aµ(x)
(

B̃ − ξ−1∇ρ′Aρ′ −mφ
)

(x′)|ψ〉

= −iξ−1
[

ξ∇µGξm2(x, x′) + ∇ρ′

Gm2,ξ
µρ′ (x, x′)

]

,

(77)

which is relation (30). Note that derivatives are taken
outside the time-ordered product, which is in accordance
with the algebraic approach [25, 26], and with path
integral calculations (where it is sometimes called T ∗

product). One might also wonder if it is necessary for
the scalar φ and the ghosts to have the same propa-
gator (74); this follows by expanding the Ward identity
0 = 〈ψ| s0T φ(x)c̄(x′)|ψ〉.

B. Graviton

For the graviton, both ghost and antighost as well as
the auxiliary field obtain a Lorentz index, and the free
BRST differential acts as

s0hµν = ∇µcν + ∇νcµ , (78a)
s0cµ = 0 , (78b)
s0c̄µ = Bµ , (78c)

s0Bµ = 0 . (78d)

The BRST-extended action reads

S =
1

2

∫

hρσP
ρσµν
ξ,ζ hµν dgx+

ξ

2

∫

B̃µB̃µ dgx

−
∫

c̄µP
µν
m

2,−ζ/(1−2ζ)cν dgx

(79)
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with

B̃µ ≡ Bµ +
1

ξ

(

∇νhµν − 1

2ζ
∇µh

)

, (80)

the mass parameter m2 from Eq. (42) and the differential
operator P ρσµν

ξ,ζ of Eq. (38). Again it is straightforward
to check that s0S = 0. The free quantum fields have the
following Feynman propagators in a Hadamard state |ψ〉:

〈ψ|T hµν(x)hρ′σ′(x′)|ψ〉 = iGF,ξ,ζ
µνρ′σ′(x, x

′) , (81a)

〈ψ|T cµ(x)c̄ρ′(x′)|ψ〉 = −iG
F,m2,−ζ/(1−2ζ)
µρ′ (x, x′) ,

(81b)

〈ψ|T B̃µ(x)B̃ρ′(x′)|ψ〉 =
i

ξ
gµρ′δ(x, x′) , (81c)

where the propagator (81b) is the vector one with the
specified mass and gauge parameter, and the analogous
expressions for the commutators. To derive the diver-
gence relation (57), we expand the Ward identity

〈ψ| s0T hµν(x)c̄ρ′(x′)|ψ〉 = 0 (82)

and obtain

0 = 〈ψ|T (∇µcν + ∇νcµ)(x)c̄ρ′(x′)|ψ〉 + 〈ψ|T hµν(x)

[

B̃ρ′ − 1

ξ

(

∇σ′

hρ′σ′ − 1

2ζ
∇ρ′h

)]

(x′)|ψ〉

= −iξ−1

[

∇σ′

Gξ,ζ
µνρ′σ′(x, x

′) − 1

2ζ
gα′β′∇ρ′Gξ,ζ

µνα′β′(x, x
′) + 2ξ∇(µG

m
2,−ζ/(1−2ζ)

ν)ρ′
(x, x′)

]

.

(83)

Using the trace identity (56) to replace the second term
and the relation (29) between the vector Green’s function
in different gauges, the divergence identity (57) follows.

Since the gauge symmetry of the free classical theory
hµν → hµν + 2∇(µvν) arises from linearized diffeomor-
phisms, the divergence identity in the form (83) is the
Ward identity associated to diffeomorphisms (and the cµ

are the diffeomorphism ghosts). Similarly, the trace iden-
tity (56) would be the Ward identity associated to lin-
earized Weyl transformations hµν → hµν + gµνw, but
this is not a (gauge) symmetry of the original action
S(0) (36). To derive it, we thus again need to consider an
extended theory with an additional compensating scalar
field φ, which transforms under linearized Weyl trans-
formations as φ → φ + (n − 2)w, and whose action is
obtained from the original action S(0) (36) by replacing
hµν → hµν − 1/(n− 2)gµνφ. This theory is now invariant
under linearized Weyl transformations, and to gauge fix
this new symmetry we add a (Weyl) ghost d, antighost
d̄, and auxiliary field F . The gauge-fixed extended action
S′ then reads

S′ =
1

2

∫

hρσP
ρσµν
ξ,ζ hµν dgx+

ξ

2

∫

B̃µB̃
µ dgx

+

∫

F̃PM2φdgx+
1

2
M2

∫

φ2 dgx

−
∫

c̄µP
µν
m

2,−ζ/(1−2ζ)cν dgx−
∫

d̄PM2d dgx

+
n− 2ζ − (n− 2)ζξ

2ζ

∫

c̄µ∇µd dgx ,

(84)

where now

B̃µ ≡ Bµ +
1

ξ

(

∇νhµν − 1

2ζ
∇µh

)

+
1

2
∇µφ , (85a)

F̃ ≡ F

n− 2
− 1 − 2ζ

4ζ
h− 2(n− 1) − (n− 2)ξ

8(n− 2)
φ , (85b)

M2 ≡ n− 2ζ − (n− 2)ξζ

4(n− 2)(1 − 2ζ)
m

2 . (85c)

The free BRST differential acts according to

s0hµν = ∇µcν + ∇νcµ + gµνd , (86a)
s0φ = (n− 2)d , (86b)
s0d = 0 , (86c)

s0d̄ = F , (86d)
s0F = 0 , (86e)

with the action on c̄µ, cµ and Bµ unchanged from (78),
and again s0S

′ = 0. The Feynman propagators for hµν

and B̃ are unchanged, while the others now read

〈ψ|T φ(x)φ(x′)|ψ〉 = 0 , (87a)

〈ψ|T F̃ (x)φ(x′)|ψ〉 = iGF
M2(x, x′) , (87b)

〈ψ|T F̃ (x)F̃ (x′)|ψ〉 = −iM2ĜF
M2(x, x′) , (87c)

〈ψ|T cµ(x)c̄ρ′(x′)|ψ〉 = −iG
F,m2,−ζ/(1−2ζ)
µρ′ (x, x′) , (87d)

〈ψ|T cµ(x)d̄(x′)|ψ〉 = i
n− 2ζ − (n− 2)ζξ

2(1 − 2ζ)

× ∇µĜF
M2(x, x′) ,

(87e)

〈ψ|T d(x)d̄(x′)|ψ〉 = −iGF
M2(x, x′) , (87f)

〈ψ|T d(x)c̄ρ′(x′)|ψ〉 = 0 . (87g)

To derive the trace relation (56), we expand the identity

〈ψ| s0T hµν(x)d̄(x′)|ψ〉 = 0 (88)

and obtain
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0 = 〈ψ|T
(

2∇(µcν) + gµνd
)

(x)d̄(x′)|ψ〉 + (n− 2)〈ψ|T hµν(x)

[

F̃ +
1 − 2ζ

4ζ
h+

2(n− 1) − (n− 2)ξ

8(n− 2)
φ

]

(x′)|ψ〉

= i

[

(n− 2)(1 − 2ζ)

4ζ
gρ′σ′

Gξ,ζ
µνρ′σ′(x, x

′) +
n− 2ζ − (n− 2)ζξ

1 − 2ζ
∇µ∇νĜM2(x, x′) − gµνGM2(x, x′)

]

,

(89)

which coincides with Eq. (56).
While we had previously derived the divergence and

trace identities only for the (retarded or advanced)
Green’s functions, their derivation as Ward identities
means that they also must hold for Feynman propagators,
and in general for the state-dependent correlation func-
tions if the theory is to be consistent. This is obviously a
much stronger requirement, and further complicates the
already intricate issue of the construction of Hadamard
states in general curved spacetimes. However, once states
have been found in one particular gauge of the family of
linear and covariant gauges that we study in this paper,
one can obtain states that fulfil the divergence and trace
identities for the whole family by relating the Wightman
functions or Feynman propagators in the same way as
the Green’s functions (29), (33) and (55).

IV. HADAMARD EXPANSION

As explained in the introduction, the Wightman func-
tion for a scalar field in any Hadamard state in four di-
mensions has the form [27, 32]

G+
m2(x, x′) = H+

m2(x, x′) − i

8π2
Wm2(x, x′) (90)

for x′ in a normal geodesic neighborhood of x, where H+

is the Hadamard parametrix (11) with the Wightman
prescription6 σǫ = σ + iǫ(t − t′), and where Um2 , Vm2

and Wm2 are smooth biscalars. Since G+
m2 is a bisolution

of the Klein–Gordon equation, it follows that H+
m2 is a

bisolution up to a smooth remainder:

Pm2(x)H+
m2(x, x′) = f(x, x′) ,

Pm2(x′)H+
m2(x, x′) = f ′(x, x′) ,

(91)

with f and f ′ being (unspecified) smooth functions.
In fact, this is the definition of a parametrix for a
general differential operator [27, 28]. The Hadamard
parametrix HF

m2 for the Feynman propagator is obtained
from Eq. (11) using the Feynman prescription σǫ = σ+iǫ.
This parametrix is a bisolution modulo a smooth remain-
der to the inhomogeneous equation:

Pm2(x)HF
m2(x, x′) = δ(x, x′) + f(x, x′) ,

Pm2(x′)HF
m2(x, x′) = δ(x, x′) + f ′(x, x′) ,

(92)

6 The prefactor is again a matter of convention.

where again f and f ′ are smooth functions. Similarly, one
can define advanced, retarded, Dyson (anti-Feynman)
Hadamard parametrices, which coincide with the respec-
tive propagators/Green’s functions up to a smooth re-
mainder in any normal geodesic neighborhood. Those in-
volve the same biscalars Um2 and Vm2 , but differ in the
type of iǫ prescription needed near σ = 0 to properly
define them as distributions, and one can use the rela-
tions (10) to relate them. In the following, we will work
with the general form (11), and the analogue for vector
and tensor fields, and for notational convenience drop the
subscript ǫ on σ. Furthermore, we will denote a generic
Green’s function or two-point function by G.

A. Scalar field

It is well known that the biscalars Um2 , Vm2 and Wm2

possess an asymptotic expansion as x → x′, of the form

Um2 = U
(0)
m2 , (93a)

{V/W}m2 =

∞
∑

k=0

{V/W}(k)
m2σ

k (93b)

with smooth biscalars U (0)
m2 , V (k)

m2 and W (k)
m2 , which for an-

alytic spacetimes is even convergent (see, e.g., Refs. [11,
17, 27, 52] and references therein). By requiring G+

m2 to
solve the Klein–Gordon equation outside of coincidence
and comparing manifest powers of σ, one obtains

U
(0)
m2 =

√
∆ (94)

with the van Vleck–Morette determinant [1, 33]

∆(x, x′) = −[g(x)g(x′)]
− 1

2 det[∇α∇β′σ(x, x′)] , (95)

and the recursion relations

Q2k+4V
(k+1)

m2 = − 1

k + 1
Pm2V

(k)
m2 , (96a)

Q2k+4W
(k+1)
m2 = − 1

k + 1

(

Pm2W
(k)
m2 +Q4k+6V

(k+1)
m2

)

(96b)

with the differential operator

Qk ≡ 2∇µσ∇µ − ∇µσ∇µ ln ∆ + k , (97)

subject to the boundary condition

Q2V
(0)

m2 = −Pm2

√
∆ . (98)
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Again it is seen that Um2 and Vm2 are completely deter-
mined geometrically, while for Wm2 the first coefficient is
an arbitrary solution of the free Klein–Gordon equation

Pm2W
(0)
m2 = 0 , (99)

which encodes the state-dependence of the two-point
function. Imposing smoothness, there is a unique solution
to the recursion relations (96) for which the coefficients
are symmetric [52]. This solution can be given explicitly
as an integral in Riemannian normal coordinates, but in
the following we only need that the unique smooth so-
lution to Qkf = 0 is f = 0, from which it follows in
particular that the V (k)

m2 are polynomials of order k+1 in
m2 [52, 53]. For completeness, we give an explicit solution
in Appendix A.

Mass derivatives

Since the Green’s functions for vector and tensor fields
in a general gauge (29), (33) and (55) also involve mass
derivatives, we need to calculate the corresponding coef-
ficients of the Hadamard expansion. As explained previ-
ously, certain states (i.e., Wightman functions or Feyn-
man propagators) might be ill-behaved for certain ranges
of the mass parameter, and the same applies to their
mass derivatives. However, this problem does not arise for
the retarded or advanced propagators (which are state-
independent), and is thus confined to the W biscalar.
In the following, we will also present formulas for the
coefficients W (k)

m2 , with the understanding that we only
consider such states for which the resulting expressions
are well-defined. In contrast, the corresponding formulas
for U (0)

m2 and the V
(k)

m2 are always well-defined; in fact,

U
(0)
m2 (94) is mass-independent, and as stated before V (k)

m2

is a polynomial in m2 of order k+ 1. The Hadamard ex-
pansion of the mass derivative (17) is then simply ob-
tained by taking a mass derivative of Eqns. (8), (90)
or (11) and the recursion relations (96) for the coeffi-
cients. Since U (0)

m2 is mass-independent, it follows that

Ĝm2 = − i

8π2

[

V̂m2 ln
(

µ2σ
)

+ Ŵm2

]

, (100)

where V̂ and Ŵ have the asymptotic expansions

V̂m2 =

∞
∑

k=0

V̂
(k)

m2 σ
k , Ŵm2 =

∞
∑

k=0

Ŵ
(k)
m2 σ

k . (101)

They fulfil the recursion relations

Q2k+4V̂
(k+1)

m2 = − 1

k + 1

(

Pm2 V̂
(k)

m2 − V
(k)

m2

)

, (102a)

Q2k+4Ŵ
(k+1)
m2 = − 1

k + 1

(

Pm2Ŵ
(k)
m2 −W

(k)
m2

)

− 1

k + 1
Q4k+6V̂

(k+1)
m2

(102b)

with the boundary condition

V̂
(0)

m2 =
1

2

√
∆ (103)

for V̂ (0)
m2 , and Ŵ

(0)
m2 fulfilling Pm2Ŵ

(0)
m2 = W

(0)
m2 .

For later use, we now show by induction that for all
k ≥ 0

V̂
(k+1)

m2 =
1

2(k + 1)
V

(k)
m2 . (104)

Take first k = 0, which by the recursion relation (102)
and the boundary conditions (98) and (103) fulfils

Q4V̂
(1)

m2 = −Pm2 V̂
(0)

m2 + V
(0)

m2

=
1

2
Q2V

(0)
m2 + V

(0)
m2 =

1

2
Q4V

(0)
m2 .

(105)

Therefore,

Q4

(

V̂
(1)

m2 − 1

2
V

(0)
m2

)

= 0 , (106)

and the unique solution of this first-order differential
equation which is smooth vanishes [52]. Assume now that
k ≥ 1, and that the relation (104) has been shown up to
order k − 1. Applying the differential operator Q2k+4 on
Eq. (104) and using Eq. (102), we obtain

Q2k+4

[

V̂
(k+1)

m2 − 1

2(k + 1)
V

(k)
m2

]

= − 1

2(k + 1)

(

Q2k+4V
(k)

m2 + 2Pm2 V̂
(k)

m2 − 2V
(k)

m2

)

.

(107)

By the induction hypothesis we have V̂
(k)

m2 =

1/(2k)V
(k−1)

m2 , which using Eq. (96) leads to

Q2k+4

[

V̂
(k+1)

m2 − 1

2(k + 1)
V

(k)
m2

]

= − 1

2(k + 1)

(

Q2k+2V
(k)

m2 +
1

k
Pm2V

(k−1)
m2

)

= 0 .

(108)

Again, the unique smooth solution of this first-order dif-
ferential equation vanishes, and we obtain Eq. (104).
However, no similar relation exists for the Ŵ (k)

m2 .
Similarly, for the second mass derivatives we have

ˆ̂Gm2 = − i

8π2

[

ˆ̂Vm2 ln
(

µ2σ
)

+ ˆ̂Wm2

]

, (109)

with (since V̂ (0)
m2 is mass-independent, the first coefficient

ˆ̂V
(0)

m2 vanishes)

ˆ̂Vm2 =

∞
∑

k=1

ˆ̂V
(k)

m2 σ
k , ˆ̂Wm2 =

∞
∑

k=0

ˆ̂W
(k)
m2 σ

k , (110)
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the recursion relations

Q2k+4
ˆ̂V

(k+1)
m2 = − 1

k + 1

(

Pm2
ˆ̂V

(k)
m2 − 2V̂

(k)
m2

)

, (111a)

Q2k+4
ˆ̂W

(k+1)
m2 = − 1

k + 1

(

Pm2
ˆ̂W

(k)
m2 − 2Ŵ

(k)
m2

)

− 1

k + 1
Q4k+6

ˆ̂V
(k+1)

m2

(111b)

with the boundary condition

ˆ̂V
(1)

m2 =
1

4

√
∆ , (112)

and ˆ̂W
(0)
m2 fulfilling

Pm2
ˆ̂W

(0)
m2 = 2Ŵ

(0)
m2 . (113)

Moreover, taking a mass derivative of Eq. (104) we obtain
for all k ≥ 1

ˆ̂V
(k+1)

m2 =
1

2(k + 1)
V̂

(k)
m2 =

1

4k(k + 1)
V

(k−1)
m2 . (114)

Since the coefficients V (k)
m2 are polynomials in m2, one

can also derive formulas which relate coefficients for dif-
ferent masses. The easiest way to obtain those is to ex-
pand around zero mass

V
(k)

m2 =

k+1
∑

ℓ=0

1

ℓ!
(m2)ℓ

[

∂ℓ

∂(m2)ℓ
V

(k)
m2

]

m2=0

, (115)

and then use the relations (104) and (114) and their gen-
eralizations to higher mass derivatives, together with the
boundary conditions (98), (103) and (112) and their gen-
eralizations to higher mass derivatives. Later on we will
need these expressions for k = 0, 1, 2, where we obtain

V
(0)

m2 = V
(0)

0 +m2V̂
(0)

0 = V
(0)

0 +
1

2
m2

√
∆ , (116a)

V
(1)

m2 = V
(1)

0 +
1

2
m2V

(0)
0 +

1

8
m4

√
∆

= V
(1)

0 +
1

2
m2V

(0)
m2 − 1

8
m4

√
∆ ,

(116b)

V
(2)

m2 = V
(2)

0 +
1

4
m2V

(1)
0 +

1

16
m4V

(0)
0 +

1

96
m6

√
∆ .

(116c)

B. Vector field

The vector Green’s function and the local Hadamard
parametrix in Feynman gauge ξ = 1 have been studied
quite extensively in the literature, see e.g. Refs. [1, 54–
58]. In this gauge, the Hadamard expansion takes the
form [1]

Gm2,1
νβ′ = − i

8π2





Um2,1
νβ′

σ
+ V m2,1

νβ′ ln
(

µ2σ
)

+Wm2,1
νβ′



 ,

(117)

where the same assertions as in the scalar case apply. In
particular, the functions U , V and W are smooth sym-
metric bitensors possessing an asymptotic expansion of
the form

Um2,1
νβ′ = U

m2,1(0)
νβ′ , (118a)

V m2,1
νβ′ =

∞
∑

k=0

V
m2,1(k)

νβ′ σk , (118b)

Wm2,1
νβ′ =

∞
∑

k=0

W
m2,1(k)
νβ′ σk , (118c)

and imposing the equation of motion (20) outside of co-
incidence and comparing manifest powers of σ, they fulfil
the recursion relations

Q2k+4V
m2,1(k+1)

νβ′ = − 1

k + 1
gνµP

µρ
m2,1V

m2,1(k)
ρβ′ , (119a)

Q2k+4W
m2,1(k+1)
νβ′ = − 1

k + 1
gνµP

µρ
m2,1W

m2,1(k)
ρβ′

− 1

k + 1
Q4k+6V

m2,1(k+1)
νβ′

(119b)

with the boundary conditions

U
m2,1(0)
νβ′ =

√
∆ gνβ′ , (120a)

Q2V
m2,1(0)

νβ′ = −gνµP
µρ
m2,1

(√
∆ gρβ′

)

, (120b)

and W
m2,1(0)
νβ′ being an arbitrary smooth solution of the

equation of motion Pµρ
m2,1W

m2,1(0)
ρβ′ = 0, encoding the

state dependence. An explicit solution in Riemannian
normal coordinates can be given in the same way as for
the scalar field. Here again appears the parallel propaga-
tor gµβ′ , which is defined as the unique solution to [33]

∇ρσ∇ρgµβ′ = 0 , lim
x′→x

gµβ′ = gµβ . (121)

For a general gauge, the retarded or advanced Green’s
functions are given by Eq. (29) in the massive case and
Eq. (33) in the massless case, which completely deter-
mines the U and V coefficients and thus the Hadamard
parametrix; we assume that the relation between the
Wightman function or Feynman propagator in differ-
ent gauges is also given by Eqns. (29) and (33), which
then also determines the W coefficients. Using the
Hadamard expansion of the scalar propagator (11) and
taking into account that the first coefficient U (0)

m2 is mass-
independent, it then follows that their Hadamard expan-
sion is given by

Gm2,ξ
νβ′ (x, x′) = − i

8π2

[

U
m2,ξ(−1)
νβ′

σ2
+
U

m2,ξ(0)
νβ′

σ

+ V m2,ξ
νβ′ ln

(

µ2σ
)

+Wm2,ξ
νβ′

]
(122)
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with the asymptotic expansions

V m2,ξ
νβ′ =

∞
∑

k=0

V
m2,ξ(k)

νβ′ σk , Wm2,ξ
νβ′ =

∞
∑

k=0

W
m2,ξ(k)
νβ′ σk .

(123)

The coefficients {U/V/W}m2,ξ(k)
νβ′ are obtained by insert-

ing the expansions (117) and (8) into Eq. (29), perform-
ing the derivatives and comparing manifest powers of σ.
Using also the mass expansion (116), this gives

U
m2,ξ(−1)
νβ′ =

ξ − 1

2

√
∆σνσβ′ , (124a)

U
m2,ξ(0)
νβ′ = Um2,1

νβ′ − ξ − 1

2

[

(

2σ(ν∇β′) + σνβ′

)

√
∆

+
1

2

(

V
(0)

m2 + V
(0)

ξm2

)

σνσβ′

]

,

(124b)

V
m2,ξ(k)

νβ′ = V
m2,1(k)

νβ′ − ∇ν∇β′

V
(k)

ξm2 − V
(k)

m2

m2

− k + 1

m2

[

(k + 2)σνσβ′

(

V
(k+2)

ξm2 − V
(k+2)

m2

)

+
(

2σ(ν∇β′) + σνβ′

)

(

V
(k+1)

ξm2 − V
(k+1)

m2

)

]

,

(124c)

where to shorten the resulting expressions we have de-
fined

σµ···ν ≡ ∇ν · · · ∇µσ , (125)

and the lengthy expressions for the W coefficients are
given in Appendix B.

We note the appearance of a term proportional to σ−2

in the Hadamard expansion (122), which seems more sin-
gular than the σ−1 term. However, the presence of σνσβ′

in the numerator of this term reduces the strength of
the singularity, which in a mathematically precise way
is captured by the scaling degree or degree of divergence
(scaling degree minus spacetime dimension) [59, 60]. Near
coincidence, we have σ(x, x′) ≈ (x − x′)2/2 with the
Minkowski squared distance (x − x′)2, which upon a
rescaling {x/x′} → λ{x/x′} is rescaled by a factor λ2,
and σ−1 has thus scaling degree 2 and degree of diver-
gence 2 − 4 = −2. Since the degree of divergence is neg-
ative, σ−1 (with any ǫ prescription) is already well de-
fined also at coincidence, i.e., the limit ǫ → 0 exists af-
ter smearing with arbitrary test functions whose support
contains x = x′ (see, e.g., Refs. [24, 26, 46]). Similarly,
σν(x, x′) ≈ (x−x′)ν near coincidence which scales with a
factor λ. Therefore, the degree of divergence of σνσβ′/σ2

is also −2 < 0, and this term is again already well defined
at coincidence for any ǫ prescription.

One might still wonder why this case is different from
the Hadamard expansion of the product [Gm2(x, x′)]2,
where also terms proportional to σ−2 appear. There,
such terms must in general be renormalized depending

on the concrete type of Green’s function/Wightman func-
tion/propagator. For example, for the Feynman prescrip-
tion σ+ iǫ we have (σ+ iǫ)−2, which is not a well-defined
distribution in four dimensions. However, in our case this
term comes from taking a derivative of σ−1, which is well-
defined for any prescription as a distributional derivative.
For example, for the Feynman prescription σ+iǫ we take
a derivative of the relation (10) and obtain

− d

dσ

1

σ + iǫ
= Pf 1

σ2
+ iπδ′(σ) , (126)

where the right-hand side is a well-defined distribution in
four dimensions, and the left-hand side is how σ−2 in the
Hadamard expansion (122) (with Feynman prescription)
should be understood. The higher negative powers of σ
which appear for the graviton are defined analogously.

The massless limit can be taken easily using the ex-
pansion (115) (and its analogue for the W coefficients,
which we assume to exist as explained above). Using also
the relations (103) and (104) we obtain

U
0,ξ(−1)
νβ′ =

ξ − 1

2

√
∆σνσβ′ , (127a)

U
0,ξ(0)
νβ′ = U0,1

νβ′ − ξ − 1

2

[

(

2σ(ν∇β′) + σνβ′

)

√
∆

+ V
(0)

0 σνσβ′

]

,

(127b)

V
0,ξ(k)

νβ′ = V
0,1(k)

νβ′ − ξ − 1

2

[

∇ν∇β′ V̂
(k)

0

+ (k + 1)σνσβ′V
(k+1)

0

+
(

2σ(ν∇β′) + σνβ′

)

V
(k)

0

]

,

(127c)

and the expressions for the W coefficients are again given
in Appendix B. Of course, these expressions are identi-
cal to the ones that would be obtained by inserting the
Hadamard expansion of Ĝ0 (100) into the massless vector
propagator (33).

Mass derivatives

For use in the graviton case, we also need the mass
derivative of the vector coefficients. In Feynman gauge
ξ = 1, we take a mass derivative of the recursion rela-
tions (119) and obtain

Q2k+4V̂
m2,1(k+1)

νβ′

= − 1

k + 1

(

gνµP
µρ
m2,1V̂

m2,1(k)
ρβ′ − V

m2,1(k)
νβ′

)

,
(128a)

Q2k+4Ŵ
m2,1(k+1)
νβ′ = − 1

k + 1

(

gνµP
µρ
m2,1Ŵ

m2,1(k)
ρβ′

−W
m2,1(k)
νβ′ +Q4k+6V̂

m2,1(k+1)
νβ′

)

,

(128b)
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and taking a mass derivative of the boundary condi-
tions (120) we have

Û
m2,1(0)
νβ′ = 0 , Q2V̂

m2,1(0)
νβ′ =

√
∆ gνβ′ . (129)

The last equation again admits a unique smooth solution
[which can be checked using the properties of the bitensor
of parallel transport (121)], given by

V̂
m2,1(0)

νβ′ =
1

2

√
∆ gνβ′ , (130)

and similar to the case of the scalar field the boundary
condition for Ŵm2,1(0)

νβ′ is

gνµP
µρ
m2,1Ŵ

m2,1(0)
ρβ′ = W

m2,1(0)
νβ′ . (131)

In complete analogy to the scalar case, we show by in-
duction that for all k ≥ 0

V̂
m2,1(k+1)

νβ′ =
1

2(k + 1)
V

m2,1(k)
νβ′ . (132)

Take first k = 0, which by the recursion relation (128)
and the boundary conditions (120) and (130) fulfils

Q4V̂
m2,1(1)

νβ′ = −gνµP
µρ
m2,1V̂

m2,1(0)
ρβ′ + V

m2,1(0)
νβ′

=
1

2
Q2V

m2,1(0)
νβ′ + V

m2,1(0)
νβ′ =

1

2
Q4V

m2,1(0)
νβ′ .

(133)

The unique smooth solution to this first-order differential
equation is given by (132). Assume now that k ≥ 1, and
that the relation (132) has been shown up to order k −
1. Applying the differential operator Q2k+4 and using
equation (128), we obtain

Q2k+4

[

2(k + 1)V̂
m2,1(k+1)

νβ′ − V
m2,1(k)

νβ′

]

= −Q2k+4V
m2,1(k)

νβ′ − 2gνµP
µρ
m2,1V̂

m2,1(k)
ρβ′ + 2V

m2,1(k)
νβ′ .

(134)

Since by induction we may assume that V̂
m2,1(k)

ρβ′ =

1/(2k)V
m2,1(k−1)

ρβ′ , it follows that

Q2k+4

[

2(k + 1)V̂
m2,1(k+1)

νβ′ − V
m2,1(k)

νβ′

]

= −Q2k+2V
m2,1(k)

νβ′ − 1

k
gνµP

µρ
m2,1V

m2,1(k−1)
ρβ′ = 0

(135)

using the recursion relation (119), and the unique smooth
solution is again given by (132). Again, no similar relation

exists for the Ŵm2,1(k)
ρβ′ .

In a general gauge, the mass derivative of the vector co-
efficients is easily computed by taking a mass derivative
of the general Hadamard expansion (122). Since many

terms are mass-independent, their derivative vanishes
and we obtain

Ĝm2,ξ
νβ′ = − i

8π2





Û
m2,ξ(0)
νβ′

σ
+ V̂ m2,ξ

νβ′ ln
(

µ2σ
)

+ Ŵm2,ξ
νβ′





(136)
with the asymptotic expansions

V̂ m2,ξ
νβ′ =

∞
∑

k=0

V̂
m2,ξ(k)

νβ′ σk , Ŵm2,ξ
νβ′ =

∞
∑

k=0

Ŵ
m2,ξ(k)
νβ′ σk .

(137)
Using the relations (130) and (132) for the mass deriva-
tive of the Feynman gauge vector coefficients, (103)
and (104) for the mass derivative of scalar coefficients,
and (116) for different masses, one can compute these
coefficients, and we delegate the lengthy expressions to
Appendix B.

Let us here make a remark on the singular nature of the
Hadamard expansion of the vector propagator. Naively,
one might expect that the Hadamard expansion (122) of
the vector Green’s function in the general gauge ξ 6= 1
contains a term proportional to σ−3, arising from two
derivatives acting on the term proportional to σ−1 in
the Hadamard expansion (11) of the scalar Green’s func-
tion. However, since the general gauge vector Green’s
function (29) involves the difference between two scalar
Green’s functions with different masses, and the coeffi-
cient U (0)

m2 of this term is independent of the mass (94),
this term actually vanishes, and the most singular term
in the Hadamard expansion (122) is proportional to σ−2.
Its coefficient Um2,ξ(−1) is again mass-independent (124),
and thus the Hadamard expansion of the mass derivative
of the vector Green’s function (136) has only σ−1 as its
most singular term.

C. Tensor field

In the analogue of Feynman gauge ξ = ζ = 1, we have
the Hadamard expansion [8, 35]

G1,1
µνα′β′ = − i

8π2

[

U1,1
µνα′β′

σ
+ V 1,1

µνα′β′ ln
(

µ2σ
)

+W 1,1
µνα′β′

]

,

(138)
where the same assertions as in the scalar and vector
case apply. In particular, the functions U , V and W are
smooth symmetric bitensors possessing an asymptotic ex-
pansion of the form

U1,1
µνα′β′ = U

1,1(0)
µνα′β′ , (139a)

V 1,1
µνα′β′ =

∞
∑

k=0

V
1,1(k)

µνα′β′σ
k , (139b)

W 1,1
µνα′β′ =

∞
∑

k=0

W
1,1(k)
µνα′β′σ

k . (139c)
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Requiring G1,1
µνα′β′ to be a solution of the equation of

motion Pµνρσ
1,1 G1,1

ρσα′β′ = 0 outside of coincidence, they
fulfil the recursion relations

Q2k+4V
1,1(k+1)

µνα′β′ = − 1

k + 1
gµρgνσP

ρσκλ
1,1 V

1,1(k)
κλα′β′ , (140a)

Q2k+4W
1,1(k+1)
µνα′β′ = − 1

k + 1
gµρgνσP

ρσκλ
1,1 W

1,1(k)
κλα′β′

− 1

k + 1
Q4k+6V

1,1(k+1)
µνα′β′

(140b)

with the boundary conditions

U
1,1(0)
µνα′β′ =

√
∆

(

gα′(µgν)β′ − 1

2
gµνgα′β′

)

, (141a)

Q2V
1,1(0)

µνα′β′ = −gµρgνσP
ρσκλ
1,1 U

1,1(0)
κλα′β′ , (141b)

and W 1,1(0)
µνα′β′ is an arbitrary smooth solution of the equa-

tion of motion Pµνρσ
1,1 W

1,1(0)
ρσα′β′ = 0.

To obtain the Hadamard expansion in the general
gauge ξ, ζ 6= 1 we have to insert the expansions (8),
(100) and (136) for the scalar and vector Green’s function
and their mass derivatives in the general gauge Green’s
function (55), using also the relations (132), (103), (116)
and (141) as well as the definitions of m

2 (42) and
M

2 (53). After a straightforward but lengthy calculation,
it follows that

Gξ,ζ
µνα′β′ = − i

8π2

[

Uξ,ζ
µνα′β′

σ
+ V ξ,ζ

µνα′β′ ln
(

µ2σ
)

+W ξ,ζ
µνα′β′

]

,

(142)

where similar to the vector case the expansion of Uξ,ζ

now contains negative powers of σ, namely

Uξ,ζ
µνα′β′ =

0
∑

k=−3

U
ξ,ζ(k)
µνα′β′σ

k , (143)

while V ξ,ζ and W ξ,ζ have the usual asymptotic expansion

V ξ,ζ
µνα′β′ =

∞
∑

k=0

V
ξ,ζ(k)

µνα′β′σ
k , (144a)

W ξ,ζ
µνα′β′ =

∞
∑

k=0

W
ξ,ζ(k)
µνα′β′σ

k . (144b)

We obtain

U
ξ,ζ(−3)
µνα′β′ = 0 , (145)

U
ξ,ζ(−2)
µνα′β′ = −2c(ξ, ζ)σµσνσα′σβ′

√
∆ , (146)

U
ξ,ζ(−1)
µνα′β′ =

[

2(ξ − 1)σ(µgν)(α′σβ′) − (1 − ζ)

(1 − 2ζ)
(g ·σ2)µνα′β′ + c(ξ, ζ)(σ3 ·∇)µνα′β′

]√
∆ − 2σµσνσα′σβ′∆V ξ,ζ(2) , (147)

U
ξ,ζ(0)
µνα′β′ =

(

gα′(µgν)β′ − 1

2
gµνgα′β′

)√
∆ − (ξ − 1)

(

σα′(µgν)β′ + σβ′(µgν)α′

)

√
∆ − 2(ξ − 1)σ(µV

m
2,1(0)

ν)(α′
σβ′)

− (ξ − 1)
[

σµ∇(α′

(√
∆ gβ′)ν

)

+ σν∇(α′

(√
∆ gβ′)µ

)

+ σα′∇(µ

(√
∆ gν)β′

)

+ σβ′∇(µ

(√
∆ gν)α′

)]

+
(1 − ζ)

(1 − 2ζ)
(g ·σ ·∇)µνα′β′

√
∆ − c(ξ, ζ)(σ2 ·∇2)µνα′β′

√
∆ +

(1 − ζ)

(1 − 2ζ)
(g ·σ2)µνα′β′

[

V
(0)

0 +
(1 − 3ζ)

4(1 − 2ζ)
m

2
√

∆

]

+ 2(σ3 ·∇)µνα′β′∆V ξ,ζ(2) + 6σµσνσα′σβ′∆V ξ,ζ(3) ,

(148)

V
ξ,ζ(0)

µνα′β′ = V
1,1(0)

µνα′β′ − (ξ − 1)
[

∇µ∇(α′

(√
∆ gβ′)ν

)

+ ∇ν∇(α′

(√
∆ gβ′)µ

)]

− 2(ξ − 1)σ(µV
m

2,1(1)
ν)(α′

σβ′)

− (ξ − 1)
[

σα′(µV
m

2,1(0)
ν)β′

+ σβ′(µV
m

2,1(0)
ν)α′

+ σµ∇(α′V
m

2,1(0)
|ν|β′) + σν∇(α′V

m
2,1(0)

|µ|β′) + 2∇(µV
m

2,1(0)
ν)(α′

σβ′)

]

+
(1 − ζ)

(1 − 2ζ)
(g ·σ2)µνα′β′V

(1)
0 +

(1 − ζ)

(1 − 2ζ)

[

(g ·σ ·∇)µνα′β′ +
(1 − 3ζ)

4(1 − 2ζ)
m

2(g ·σ2)µνα′β′

]

V
(0)

0

+
(1 − ζ)

(1 − 2ζ)

[

gα′β′∇µ∇ν + gµν∇α′∇β′ +
(1 − 3ζ)

4(1 − 2ζ)
m

2(g ·σ ·∇)µνα′β′ +
(1 − 5ζ + 7ζ2)

24(1 − 2ζ)2
m

4(g ·σ2)µνα′β′

]√
∆

− c(ξ, ζ)(σ ·∇3)µνα′β′

√
∆ + 2(σ2 ·∇2)µνα′β′∆V ξ,ζ(2) + 6(σ3 ·∇)µνα′β′∆V ξ,ζ(3) + 24σµσνσα′σβ′∆V ξ,ζ(4)

(149)
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and (for k ≥ 1)

V
ξ,ζ(k)

µνα′β′ = V
1,1(k)

µνα′β′ − ξ − 1

k

(

∇µ∇(α′V
m

2,1(k−1)
|ν|β′) + ∇ν∇(α′V

m
2,1(k−1)

|µ|β′)

)

− 2(k + 1)(ξ − 1)σ(µV
m

2,1(k+1)
ν)(α′

σβ′)

− (ξ − 1)
[

σα′(µV
m

2,1(k)
ν)β′

+ σβ′(µV
m

2,1(k)
ν)α′

+ σµ∇(α′V
m

2,1(k)
|ν|β′) + σν∇(α′V

m
2,1(k)

|µ|β′) + 2∇(µV
m

2,1(k)
ν)(α′

σβ′)

]

+
2(1 − ζ)

(1 − 2ζ)

[

(k + 2)(k + 1)(g ·σ2)µνα′β′

V
(k+2)

M2 − V
(k+2)
m

2

M2 − m
2

+ (k + 1)(g ·σ ·∇)µνα′β′

V
(k+1)

M2 − V
(k+1)
m

2

M2 − m
2

]

+
2(1 − ζ)

(1 − 2ζ)

[

(gα′β′∇µ∇ν + gµν∇α′∇β′)
V

(k)
M2 − V

(k)
m

2

M2 − m
2

]

+ ∇µ∇ν∇α′∇β′∆V ξ,ζ(k) + (k + 1)(σ ·∇3)µνα′β′∆V ξ,ζ(k+1) + (k + 2)(k + 1)(σ2 ·∇2)µνα′β′∆V ξ,ζ(k+2)

+ (k + 3)(k + 2)(k + 1)(σ3 ·∇)µνα′β′∆V ξ,ζ(k+3) + (k + 4)(k + 3)(k + 2)(k + 1)σµσνσα′σβ′∆V ξ,ζ(k+4) ,
(150)

with the abbreviations

∆V ξ,ζ(k) ≡ −(ξ − 1)
4(1 − ζ)

(1 − 2ζ)

V̂
(k)

M2 − V̂
(k)
m

2

M2 − m
2

+
4(1 − ζ)2(3 − ξ)

(1 − 2ζ)2

V
(k)

M2 − V
(k)
m

2 −
(

M
2 − m

2
)

V̂
(k)

M2

(M2 − m
2)

2 , (151a)

(g ·σ2)µνα′β′ ≡ gα′β′σµσν + gµνσα′σβ′ , (151b)

(σ3 ·∇)µνα′β′ ≡ 2σµσνσ(α′∇β′) + 2σα′σβ′σ(µ∇ν) + 4σ(µσν)(α′σβ′) + σµσνσα′β′ + σµνσα′σβ′ , (151c)

(g ·σ ·∇)µνα′β′ ≡ 2gα′β′σ(µ∇ν) + 2gµνσ(α′∇β′) + gα′β′σµν + gµνσα′β′ , (151d)

(σ2 ·∇2)µνα′β′ ≡ σα′σβ′∇µ∇ν + σµσν∇α′∇β′ + 2σµσ(α′∇β′)∇ν + 2σνσ(α′∇β′)∇µ + 2σµνσ(α′∇β′) + 2σα′β′σ(µ∇ν)

+ 4σ(α′σβ′)(µ∇ν) + 4σ(µσν)(α′∇β′) + σµνσα′β′ + 2σµ(α′σβ′)ν + 2σ(µσν)α′β′ + 2σ(α′σβ′)µν ,

(151e)

(σ ·∇3)µνα′β′ ≡ 2σ(µ∇ν)∇α′∇β′ + 2σ(α′∇β′)∇µ∇ν + 2σµ(α′∇β′)∇ν + 2σν(α′∇β′)∇µ

+ σµν∇α′∇β′ + σα′β′∇µ∇ν + 2σα′β′(µ∇ν) + 2σµν(α′∇β′) + σµνα′β′ ,
(151f)

c(ξ, ζ) ≡ (1 − ζ)[(ξ − 1)(1 − 3ζ) + 2(1 − ζ)]

2(1 − 2ζ)2
. (151g)

Again, we have delegated the even lengthier expressions
for the W coefficients to Appendix B. Similarly to the
vector case, the general-gauge graviton Green’s func-
tion (55) is less singular than one would naively expect.
Since the coefficient U (0)

m2 of the most singular term in the
Hadamard expansion of the scalar Green’s function (11)
is mass-independent, the term proportional to σ−1 dis-
appears both from the difference of scalar Green’s func-
tions and their mass derivative in Eq. (55), leaving the
logarithmic term ln(µ2σ) as the most singular. Because
four derivatives act on it, one would expect a term pro-
portional to σ−4 in the Hadamard expansion (142) for a
general gauge. Nevertheless, the coefficient of this term
turns out to vanish (145), and the most singular term is
proportional to σ−3. So far, the reason for this cancella-
tion is unclear.

D. Generalization to n dimensions

Since already in four dimensions the formulas for the
Hadamard expansions in general gauges (in particular
the state-dependent W coefficients) become quite com-
plicated, we only indicate how one proceeds in n 6= 4
dimensions. To actually calculate the coefficients them-
selves, and in addition their covariant expansion that is
needed to calculate the expectation values of composite
operators, the use of a computer algebra system is highly
recommended [61].

Scalar field

In n dimensions, the Hadamard expansion for a scalar
field has the form (see, e.g., Ref. [11])

Gm2 = −icn

[

Um2

σn/2−1
+ Vm2 ln

(

µ2σ
)

+Wm2

]

, (152)
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where the constant cn is given by

cn =







1/(4π) n = 2

Γ
(

n
2 − 1

)

2(2π)
n
2

n > 2 ,
(153)

and the asymptotic expansion of the biscalars
{U/V/W}m2 is of the form

{U/V/W}m2 =

∞
∑

k=0

{U/V/W}(k)
m2σ

k , (154)

where V
(k)

m2 = 0 in odd dimensions and U
(k)
m2 = 0 for

k > n/2 − 2 in even dimensions. That is, in odd dimen-
sions the logarithmic term is absent, in n = 2 dimensions
Um2 = 0, and in even dimensions greater than n = 4
there are terms more singular than σ−1. The recursion
relations (96) now read

Q2k+2U
(k+1)
m2 = − 2

2k + 4 − n
Pm2U

(k)
m2 , (155a)

Q2k+nV
(k+1)

m2 = − 1

k + 1
Pm2V

(k)
m2 , (155b)

Q2k+nW
(k+1)
m2 = − 1

k + 1

(

Pm2W
(k)
m2 +Q4k+2+nV

(k+1)
m2

)

(155c)

with the Klein–Gordon operator Pm2 (5), and must be
solved with the boundary conditions

U
(0)
m2 = 0 , V

(0)
m2 = −

√
∆ (156)

in n = 2 dimensions,

U
(0)
m2 =

√
∆ , Qn−2V

(0)
m2 = −Pm2U

(n/2−2)
m2 (157)

in even dimensions greater than 2, and

U
(0)
m2 =

√
∆ , V

(0)
m2 = 0 (158)

in odd dimensions, while W (0)
m2 is always a solution of the

Klein–Gordon equation Pm2W
(0)
m2 = 0. Formulas for the

mass derivatives can then be derived in exactly the same
way as for n = 4.

Vector field

In Feynman gauge ξ = 1, we have the direct general-
ization of the scalar formula for the propagator:

Gm2,1
νβ′ = −icn





Um2,1
νβ′

σn/2−1
+ V m2,1

νβ′ ln
(

µ2σ
)

+Wm2,1
νβ′



 ,

(159)
with the asymptotic expansions

{U/V/W}m2,1
νβ′ =

∞
∑

k=0

{U/V/W}m2,1(k)
νβ′ σk , (160)

where V m2,1(k)
νβ′ = 0 in odd dimensions and U

m2,1(k)
νβ′ =

0 for k > n/2 − 2 in even dimensions. The recursion
relations are

Q2k+2U
m2,1(k+1)
νβ′ = − 2

2k + 4 − n
gνµP

µρ
m2,1U

m2,1(k)
ρβ′ ,

(161a)

Q2k+nV
m2,1(k+1)

νβ′ = − 1

k + 1
gνµP

µρ
m2,1V

m2,1(k)
ρβ′ , (161b)

Q2k+nW
m2,1(k+1)
νβ′ = − 1

k + 1
gνµP

µρ
m2,1W

m2,1(k)
ρβ′

− 1

k + 1
Q4k+2+nV

m2,1(k+1)
νβ′

(161c)

with the operator Pµρ
m2,1 defined in Eq. (1), and are solved

with the boundary conditions

U
m2,1(0)
νβ′ = 0 , V

m2,1(0)
νβ′ = −

√
∆ gνβ′ (162)

in n = 2 dimensions,

U
m2,1(0)
νβ′ =

√
∆ gνβ′ , (163a)

Qn−2V
m2,1(0)

νβ′ = −gνµP
µρ
m2,1U

m2,1(n/2−2)
ρβ′ (163b)

in even dimensions greater than 2, and

U
m2,1(0)
νβ′ =

√
∆ gνβ′ , V

m2,1(0)
νβ′ = 0 (164)

in odd dimensions, and W
m2,1(0)
νβ′ being a solution to

Pµρ
m2,1W

m2,1(0)
ρβ′ = 0.

In a general gauge, the Hadamard expansion is again
obtained by inserting the scalar and Feynman gauge vec-
tor Hadamard expansions into Eq. (29). We refrain from
giving the general expression here, and only note that the
most singular term is of order σ−n/2.

Tensor field

In the gauge ξ = ζ = 1, we again have the direct
generalization of the scalar formula for the propagator:

G1,1
µνα′β′ = −icn

[

U1,1
µνα′β′

σn/2−1
+ V 1,1

µνα′β′ ln
(

µ2σ
)

+W 1,1
µνα′β′

]

,

(165)
with the asymptotic expansions

{U/V/W}1,1
µνα′β′ =

∞
∑

k=0

{U/V/W}1,1(k)
µνα′β′σ

k , (166)

where V 1,1(k)
µνα′β′ = 0 in odd dimensions and U1,1(k)

µνα′β′ = 0 for
k > n/2 − 2 in even dimensions. The recursion relations



20

are

Q2k+2U
1,1(k+1)
µνα′β′ = − 2

2k + 4 − n
gµρgνσP

ρσγδ
1,1 U

1,1(k)
γδα′β′ ,

(167a)

Q2k+nV
1,1(k+1)

µνα′β′ = − 1

k + 1
gµρgνσP

ρσγδ
1,1 V

1,1(k)
γδα′β′ , (167b)

Q2k+nW
1,1(k+1)
µνα′β′ = − 1

k + 1
gµρgνσP

ρσγδ
1,1 W

1,1(k)
γδα′β′

− 1

k + 1
Q4k+2+nV

1,1(k+1)
µνα′β′

(167c)

with the operator Pµνρσ
1,1 defined in Eq. (38) and the

boundary conditions

U
1,1(0)
µνα′β′ =

√
∆

(

gα′(µgν)β′ − 1

n− 2
gµνgα′β′

)

, (168)

in n > 2 dimensions,

Qn−2V
1,1(0)

µνα′β′ = −gµρgνσP
ρσγδ
1,1 U

1,1(n/2−2)
γδα′β′ (169)

in even dimensions greater than 2, and

V
1,1(0)

µνα′β′ = 0 (170)

in odd dimensions, and W
1,1(0)
µνα′β′ is a solution to

P ρσγδ
1,1 W

1,1(0)
γδα′β′ = 0.

In a general gauge, the Hadamard expansion is again
obtained by inserting the scalar and vector Hadamard
expansions into Eq. (55). The corresponding expressions
are extremely lengthy, and we note that while naively
the most singular term is of order σ−n/2−2, it is again
possible that as in four dimensions its coefficient may
vanish.

V. OUTLOOK

We have studied vector and tensor Green’s functions in
different linear covariant gauges, derived divergence and
trace identities and calculated their Hadamard expan-
sions. Although the classical gauge theories are clearly
independent of the choice of gauge fixing, the issue of
gauge-fixing independence at the quantum level is tech-
nically much more involved (see, e.g., Ref. [45] for a proof
of the independence of the stress tensor of the gauge pa-
rameter for electrodynamics). A suitable formalism to
study these issues is BRST quantization, where classical
observables are invariant under the action of the (classi-
cal) nilpotent BRST differential s, which generalizes the
gauge symmetry to the additional fields introduced in
the BRST formalism as explained in Sec. III. Further-
more, two observables are identified if they differ by an
s-exact term, such that one needs to study the cohomol-
ogy of s. At the quantum level, the BRST differential
needs to be extended to a quantum BRST differential

q [48, 51], which differs from s by corrections of order
~ (and higher), and the (renormalized) observables are
in the cohomology of q. Formally, the independence of
the correlation functions of these observables from the
choice of gauge fixing follows from the BRST invariance
of the full action S including counterterms sS = 0, in a
regularization scheme where q = s (such as dimensional
regularization). To prove this independence rigorously,
which can be done in the framework of algebraic quan-
tum field theory on curved spacetimes, it is of course nec-
essary to first construct the theory for different choices of
the gauge fixing. To construct the algebra of (composite)
field operators in the free theory, one needs to know the
Hadamard parametrix in order to define local and covari-
ant Wick powers, and to construct the interacting algebra
one needs to know the retarded Green’s functions, both
of which we provide in this work for the class of linear
covariant gauges. It then turns out that the cohomolo-
gies of q for two different gauges are isomorphic [62], i.e.,
there is a one-to-one map between observables calculated
in two different gauges.
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Appendix A: Hadamard coefficients in Riemann

normal coordinates

The explicit solution to the recursion relations (96)
can be given in Riemann normal coordinates. For this,
we first rewrite the differential operator Qk (97) in the
form

QkF =
√

∆
(

2∇µσ∇µ + k
)

(

F√
∆

)

. (A1)

Riemann normal coordinates are such that the geodesics
from x′ to x are straight lines:

yµ(λ) = (x′)µ + λ[xµ − (x′)µ] . (A2)

It follows that σ is given by

σ(x, x′) =
1

2
gµν(x)

∂yµ

∂λ

∂yν

∂λ
, (A3)
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and we calculate

(2∇µσ∇µ + k)F (y, x′) =

(

2
∂yν

∂λ
∇ν + k

)

F (y, x′)

= (2λ∂λ + k)F (y, x′) = 2λ− k−2

2 ∂λ

[

λ
k
2 F (y, x′)

]

.

(A4)

We thus obtain that the unique smooth solution of
QkF = J is given for all k > 0 by

[

F√
∆

]

(x, x′) =
1

2

∫ 1

0

[

J√
∆

]

(y, x′)λ
k−2

2 dλ . (A5)

The recursion relations for the scalar Hadamard coeffi-
cients (96) can now be explicitly solved and read

V
(k+1)

m2 = −
√

∆

2(k + 1)

∫ 1

0

[

Pm2V
(k)

m2√
∆

]

(y, x′)λk+1 dλ ,

(A6a)

W
(k+1)
m2 = − 1

k + 1
V

(k+1)
m2 −

√
∆

2(k + 1)

×
∫ 1

0

[

Pm2W
(k)
m2 + 2(k + 1)V

(k+1)
m2√

∆

]

(y, x′)λk dλ ,

(A6b)

and the boundary condition (98) for V (0)
m2 can be written

as

V
(0)

m2 = −1

2

√
∆

∫ 1

0

[

Pm2

√
∆√

∆

]

(y, x′) dλ . (A7)

For the vector and tensor coefficients we obtain similar
expressions.

Appendix B: Formulas for the W coefficients

Assuming that the Feynman propagators or Wightman
functions in two different gauges are related in the same
way as the Green’s functions (29), (33) and (55), we can
also determine the relation between the W coefficients in
the same way as for the U and V coefficients. For the
vector, this gives

W
m2,ξ(k)
νβ′ = W

m2,1(k)
νβ′ − ∇ν∇β′∆W

(k)
ξ,m2

− (σ ·∇)νβ′

[

(k + 1)∆W
(k+1)
ξ,m2 + ∆V

(k+1)
ξ,m2

]

− σνσβ′

[

(k + 2)(k + 1)∆W
(k+2)
ξ,m2 + (2k + 3)∆V

(k+2)
ξ,m2

]

,

(B1)

where we defined

∆W
(k)
ξ,m2 ≡

W
(k)
ξm2 −W

(k)
m2

m2
, ∆V

(k)
ξ,m2 ≡

V
(k)

ξm2 − V
(k)

m2

m2
,

(B2)

and

(σ ·∇)νβ′ ≡ 2σ(ν∇β′) + σνβ′ , (B3)

and in the massless limit we have [using the rela-
tion (104)]

∆W
(k)
ξ,m2 → (ξ − 1)Ŵ

(k)
0 , ∆V

(k)
ξ,m2 → ξ − 1

2k
V

(k−1)
0 .

(B4)

For the Hadamard expansion coefficients of the mass
derivative of the vector Green’s function (136), we obtain

Û
m2,ξ(0)
νβ′ = −ξ − 1

4

√
∆σνσβ′ , (B5a)

V̂
m2,ξ(0)

νβ′ =
1

2

√
∆ gνβ′ − ξ2 − 1

8
(σ ·∇)νβ′

√
∆

− 1

8

[

(ξ2 − 1)V
(0)

0 +
ξ3 − 1

6
m2

√
∆

]

σνσβ′ ,

(B5b)

V̂
m2,ξ(k)

νβ′ =
1

2k
V

m2,1(k−1)
νβ′ − 1

2k
∇ν∇β′δV

(k)
ξ,m2

− 1

2
(σ ·∇)νβ′δV

(k+1)
ξ,m2 − k + 1

2
σνσβ′δV

(k+2)
ξ,m2 (k ≥ 1) ,

(B5c)

Ŵ
m2,ξ(k)
νβ′ = Ŵ

m2,1(k)
νβ′ − 1

2k
∇ν∇β′δW

(k)
ξ,m2

− 1

2(k + 1)
(σ ·∇)νβ′

[

(k + 1)δW
(k+1)
ξ,m2 + δV

(k+1)
ξ,m2

]

− σνσβ′

2(k + 2)

[

(k + 1)(k + 2)δW
(k+2)
ξ,m2 + (2k + 3)δV

(k+2)
ξ,m2

]

,

(B5d)

where we defined

δV
(k+1)

ξ,m2 ≡ 2(k + 1)
ξV̂

(k+1)
ξm2 − V̂

(k+1)
m2 − ∆V

(k+1)
ξ,m2

m2

=
ξV

(k)
ξm2 − V

(k)
m2 − 2(k + 1)∆V

(k+1)
ξ,m2

m2
,

(B6a)

δW
(k+1)
ξ,m2 ≡ 2(k + 1)

ξŴ
(k+1)
ξm2 − Ŵ

(k+1)
m2 − ∆W

(k+1)
ξ,m2

m2
.

(B6b)

Finally, the W coefficients of the Hadamard expansion
of the graviton in a general gauge read
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W
ξ,ζ(k)
µνα′β′ = W

1,1(k)
µνα′β′ − 2(ξ − 1)

[

∇α′∇(µŴ
m

2,1(k)
ν)β′

+ ∇β′∇(µŴ
m

2,1(k)
ν)α′

]

− 2(ξ − 1)(k + 1)
[

(σ ·∇)α′(µŴ
m

2,1(k+1)
ν)β′

+ (σ ·∇)β′(µŴ
m

2,1(k+1)
ν)α′

+ 2(k + 2)σ(µŴ
m

2,1(k+2)
ν)(α′

σβ′)

]

+
2(1 − ζ)

(1 − 2ζ)

[

(k + 2)(k + 1)(g ·σ2)µνα′β′

W
(k+2)
M2 −W

(k+2)
m

2

M2 − m
2

+ (k + 1)(g ·σ ·∇)µνα′β′

W
(k+1)
M2 −W

(k+1)
m

2

M2 − m
2

]

+
2(1 − ζ)

(1 − 2ζ)

[

(gα′β′∇µ∇ν + gµν∇α′∇β′)
W

(k)
M2 −W

(k)
m

2

M2 − m
2

]

+ ∇µ∇ν∇α′∇β′∆W ξ,ζ(k) + (k + 1)(σ ·∇3)µνα′β′∆W ξ,ζ(k+1) + (k + 2)(k + 1)(σ2 ·∇2)µνα′β′∆W ξ,ζ(k+2)

+ (k + 3)(k + 2)(k + 1)(σ3 ·∇)µνα′β′∆W ξ,ζ(k+3) + (k + 4)(k + 3)(k + 2)(k + 1)σµσνσα′σβ′∆W ξ,ζ(k+4)

+
2(1 − ζ)

(1 − 2ζ)

[

(2k + 3)(g ·σ2)µνα′β′

V
(k+2)

M2 − V
(k+2)
m

2

M2 − m
2

+ (g ·σ ·∇)µνα′β′

V
(k+1)

M2 − V
(k+1)
m

2

M2 − m
2

]

− (ξ − 1)

(k + 1)

[

σα′(µV
m

2,1(k)
ν)β′

+ σβ′(µV
m

2,1(k)
ν)α′

+ σµ∇(α′V
m

2,1(k)
|ν|β′) + σν∇(α′V

m
2,1(k)

|µ|β′) + 2∇(µV
m

2,1(k)
ν)(α′

σβ′)

]

− 2(ξ − 1)
(2k + 3)

(k + 2)
σ(µV

m
2,1(k+1)

ν)(α′
σβ′) + (σ ·∇3)µνα′β′∆V ξ,ζ(k+1) + (2k + 3)(σ2 ·∇2)µνα′β′∆V ξ,ζ(k+2)

+ (3k2 + 12k + 11)(σ3 ·∇)µνα′β′∆V ξ,ζ(k+3) + 2(2k + 5)(k2 + 5k + 5)σµσνσα′σβ′∆V ξ,ζ(k+4)

(B7)

with

∆W ξ,ζ(k) ≡ −(ξ − 1)
4(1 − ζ)

(1 − 2ζ)

Ŵ
(k)
M2 − Ŵ

(k)
m

2

M2 − m
2

− 4(1 − ζ)2

(1 − 2ζ)2
(ξ − 3)

W
(k)
M2 −W

(k)
m

2 −
(

M
2 − m

2
)

Ŵ
(k)
M2

(M2 − m
2)

2 (B8)

and the abbreviations (151).
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