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Abstract. We report on an introductory study used to gauge the significance of random weak-
edge disorder on the coherent transport properties of ultra-thin zig-zag nanoribbons (ZGNRs)
beyond the simple (i.e., first nearest-neighbour) tight-binding approximation. Such extensions
include up to third nearest-neighbour hopping in an extended tight-binding model, as well as
a mean-field Hubbard-U . The effect of the random weak-edge disorder causes charge-carrier
localization that reduces the conductance about the Fermi energy in all of the systems studied.
In the non-interacting systems, the extended tight-binding model is found to be more robust
against disorder due to the increased kinetic degrees of freedom. Localization effects from the
random weak-edge disorder are found to compete with the mean-field Hubbard-U resulting in
spin-dependent conductance properties.

1. Introduction

Edge roughness [1] and chemical disorder due to highly reactive edges [2] are common issues
in the fabrication of graphene nanoribbons requiring realistic modelling and fast simulation for
future device design. Within this context, the role of disorder on the transport properties of low-
dimensional quantum systems becomes a key question, and thus, in this paper, we explore its
effect in ultra-thin ZGNRs. Ideal ZGNRs are predicted to have antiferromagnetic order across
the ribbon-width commensurate with Lieb’s theorem for a half-filled bipartite lattice, and a band
gap that varies inversely as a function of the increasing ribbon width [3]. With experimental
measurements also showing magnetic signatures in graphene nanoribbons with ZGNR edges [4],
the interplay between magnetic effects, system-dimension and random edge disorder becomes
pertinent and timely considerations.

There are few density functional theory (DFT) studies on disordered ZGNRs most likely due
to the computational cost involved in large unit cell calculations. One such study by Huang
et al. on ZGNRs with systematic edge-vacancy defects predicted a loss of magnetism at 33%
edge-vacancy concentration [5]. Using a generalized tight-binding (GTB) model with mean-field
Hubbard-U that reproduces DFT trends, we were able to verify that the loss of magnetism in
the systematic study was due to finite size effects [6]. When random edge-vacancy disorder
was considered within ensemble-averaging in ultra-thin ZGNRs, our results showed a persistent
magnetic state and onset of spin-dependent transport for increasing ribbon length, indicating
the dominance of the magnetic interaction against disorder.



Figure 1. A section of an ultra-thin, 5-atom-wide (9.24 Å) ZGNR device studied in this
work. The coloured edge-atoms have weak-disorder implemented by the random perturbation
of the site-dependent on-site energy ǫi(edge) within the range V=±0.5 eV as applied through the

Hamiltonian in Eq. 1. Various system lengths are investigated: 73.8, 86.1, 123.0 and 147.6 Å.

Most tight-binding transport studies on disordered graphene nanoribbons use a non-
interacting nearest neighbour (i.e., simple) tight-binding model (STB). For example, Refs. [7, 8].
Here, we extend this work and our previous studies on random edge-vacancy disorder [6],
to investigate weak-edge disorder introduced by random perturbation to the local edge-atom
chemical potentials in ultra-thin ZGNRs (Fig. 1). Other published studies that use the STB
model show ZGNRs to be less robust against this type of disorder compared to armchair
graphene nanoribbons (AGNRS), with these systems also having a transport gap that opens
due to Anderson localization [7, 8]. By investigating the effect of random weak-edge disorder
beyond the STB approximation, we will test the interplay of increased kinetics using an extended
tight-binding (ETB) model (up to third nearest neighbour), and interaction effects by applying
a generalized tight binding (GTB) model with mean-field Hubbard-U .

2. Theory and computational method

The GTB Hamiltonian is defined as

H =
∑

iσ

ǫiniσniσ −
∑

ijσ

(tijc
†
iσcjσ +H.c.) +

∑

i

Uniσni−σ (1)

where c†iσ(cjσ) is the fermion creation (destruction) operator, which creates (destroys) an electron
with spin σ = {↑, ↓} at site i (j), niσ = 1 or 0 is the spin-dependent number operator, and H.c.

is the Hermitian conjugate. The model is parameterised using the parameter set in Ref. [9],
where U = 2.0 eV denotes the Hubbard-U (i.e., the local Coulomb interaction energy between
opposite spins [10]), and tij are the hopping energies equal to 2.7 eV, 0.20 eV and 0.18 eV for
first, second and third nearest neighbor hopping, respectively. To model random weak-edge
disorder, the local on-site energy of each edge atom ǫi(edge) has been randomly perturbed in the
range V = ±0.5 eV (Fig. 1). To solve the Hamiltonian, a mean-field approximation is used
maintaining a half-filled system, where

niσni−σ = 〈niσ〉ni−σ + niσ〈ni−σ〉 − 〈niσ〉〈ni−σ〉 (2)

and 〈niσ〉 is the expectation associated with the local spin-occupancy. Using this approximation,
Eq. (1) can be decoupled and linerarized into two spin-dependent Hamiltonians, which are then
solved self-consistently. For further details about the self-consistent method see Ref. [11].

The coherent transport properties of the ZGNRs are calculated using the Landauer-Bütticker
formalism [12] assuming that the device has semi-infinite ZGNR leads. The spin-dependent
conductance Gσ(E) at energy E is determined from the transmission function Tσ(E), such that,

Gσ(E) =
e2

h
Tσ(E) (3)
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Figure 2. The ensemble-averaged conductance G in units of the quantum conductance (e2/h)
versus the energy E relative to the Fermi energy EF for ideal and random weak-edge-disordered
STB, ETB and GTB systems measured in the range −3 eV ≤ E−EF ≤ 3 eV. The local on-site
potential is randomly varied in the range V = ±0.5 eV. The systems have a device length of
146.7 Å. For the GTB results, both spin-channels are shown.

where
Tσ(E) = Tr[ΓLσ(E)GRet

σ (E)ΓRσ(E)GAdv
σ (E)] (4)

and G
Ret/Adv
σ (E) are the retarded/advanced Green’s functions. The ΓL/Rσ(E) matrices are

calculated from
ΓL/Rσ(E) = [ΣRet

L/Rσ(E)− ΣAdv
L/Rσ(E)] (5)

where
Σ
Ret/Adv
L/Rσ (E) = V †

L/Rg
Ret/Adv
L/Rσ (E)VL/R. (6)

Here, VL/R describes the coupling between the ZGNR device and the L/R lead, and g
Ret/Adv
L/Rσ (E)

are the retarded/advanced surface Green’s functions for the leads, which have been obtained
using the decimation iteration method [13]. The transmission function is calculated using the
methods described in Ref. [14]. Our application of this formalism was tested against density
functional theory transport results in Hancock et al. 2010 [9], and also applied in other works,
such as Baldwin and Hancock 2016 [6]. To calculate the effect of random edge-disorder, an
ensemble average is obtained where χ ≈ x̄ = 1

N

∑N
i=1 xi. Here, x̄ is the average value of a

calculated property taken over the sample size, N , xi is the measured property for the ith

system in the ensemble population, and χ is the ensemble average. The standard error (SE)
associated with the ensemble average is SE = σ√

N
where σ is the standard deviation.

3. Results & Discussion

Figure 2 shows the ensemble-averaged conductance for the disordered and ideal STB, ETB and
GTB systems as a function of the energy E relative to the Fermi energy EF . A device length
of 146.7 Å was chosen as longer devices are more susceptible to disorder due to the expected
decrease in conductance arising from increased charge-carrier localization. To determine the
number of randomly-defected systems (N) in each ensemble that are needed to obtain these



results, a convergence test was performed for the ensemble-averaged conductance measured at
the Fermi energy GEF

in the STB, ETB and GTB calculations. In performing this test, a strict
convergence criterion was set such that the ensemble-averaged results were deemed converged
when GEF

[N ] − GEF
[N−1] ≤ 0.01 e2/h. Application of this criterion resulted in convergence

of the transport results at N=24 for the non-interacting STB and ETB systems, and at N=12
for the GTB spin-up and spin-down solutions. The smaller number of N=12 systems required
to converge the ensemble-average GTB transport results, compared to N=24 for the ETB and
STB solutions, indicates the stabilizing effect of the mean-field Hubbard-U against disorder.

The ensemble-averaged transport results show a reduced conductance for the disordered
systems, particularly about EF , compared to the results for the ideal devices (Fig. 2). In the
non-interacting results, the ETB system is found to be more robust to disorder compared to the
STB system due to the increased kinetic degrees of freedom in the former, with both systems
exhibiting perturbations to the conduction up to the second conduction step. Although the
conduction is reduced at EF for the disordered STB and ETB systems, it remains finite (hence
statistically significant) against the calculated standard error (SE) (Table 1)—i.e., these results
are greater in magnitude than the 0.01*e2/h threshold established for experimental validity [1].

The ensemble-averaged GTB results for the interacting disordered system show a break-down
in the Hubbard-U gap when compared to the ideal GTB solutions (Fig. 2). A finite conductance
is determined for the spin-up channel, and a zero conductance for the spin-down channel at EF

against the SE and the 0.01*e2/h criterion (Table 1). The asymmetry of the disorder across
the ribbon-width is the underlying cause of these spin-dependent results. The unequal local
chemical potentials on the device edge-atoms obtained through the random edge-disorder, as
well as at the lead connections, perturb the magnetic state and transport leading to a finite
spin-dependent conduction within the Hubbard-U gap region in the GTB solutions.

Table 1. Ensemble-averaged GEF
and associated standard error (SE) for the disordered systems.

System GEF
(e2/h) SE (e2/h) GEF

± SE (e2/h)

STB 0.23 0.09 0.14 to 0.32
ETB 0.5 0.1 0.4 to 0.6

GTB (spin-up channel) 0.05 0.02 0.03 to 0.07
GTB (spin-down channel) 8E-5 3E-5 5E-5 to 1.1E-4

To determine the effect of charge carrier localization due to disorder, the conductance at EF

is plotted as a function of the system length (Fig. 3). At a given energy E, the localization
length ζ can be obtained from

G(L) = G0(L)e
−L
ζ , (7)

where G is the conductance in the disordered system, G0 is the conductance of the ideal system
and L is the length of the device [15]. Using this equation, and from the exponential fits to the
results in Fig. 3, the localization lengths have been determined as 65 Å for the STB system and
101 Å for the ETB system, both with ∼30% uncertainty, meaning that the charge-carriers are
well-localized in the previously studied device length of 146.7 Å. The STB results are found
to be in good agreement compared to ensemble-averaged STB results on similarly disordered
systems [7], and as expected, the ETB localization length is longer than the STB localization
length due to the increased kinetic degrees of freedom in the former. At longer device lengths
and/or for higher maximum values of the disorder strength |V |, a disorder gap is expected that
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Figure 3. The ensemble-averaged conductance G measured at the Fermi energy EF in units
of quantum conductance (e2/h) versus system length for the STB and ETB random edge-
disordered systems. The local on-site potential is randomly varied in the range V = ±0.5 eV.
Using exponential fitting, the localization lengths are determined as 65 Å for the STB system
and 101 Å for the ETB system, both with ∼30% uncertainty. The error bars correspond to ±
the standard error (SE).

will influence these findings, as well as begin to compete with the Hubbard gap in the GTB
results, with the study of these effects being the topic of future work.

4. Conclusion

An introductory study has been performed to gauge the significance of random weak-edge
disorder on the coherent transport properties of ultra-thin ZGNRs beyond the simple (i.e.,
first nearest-neighbour) tight-binding (STB) model. These extensions have included up to third
nearest-neighbour hopping in an extended tight-binding (ETB) model, as well as a mean-field
Hubbard-U interaction (GTB model). Within ensemble averaging, the effect of the disorder
causes charge-carrier localization reducing the STB, ETB and GTB conductances, with the
ETB system being more robust relative to the STB due to increased kinetic degrees of freedom.
Faster convergence of the ensemble-averaged transport relative to the ensemble size for the GTB
also indicates the stabilizing effect of the mean-field Hubbard-U . Asymmetric edge-disorder
and connection to the leads results in spin-dependent perturbations that reduce the effective
Hubbard-U causing single spin-channel conductance at the Fermi energy. Further studies will
involve testing a range of on-site energy disorder strengths and device dimensions.
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