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Putting bandits into context: How function learning supports decision
making

Eric Schulz
University College London

Emmanouil Konstantinidis
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Maarten Speekenbrink
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We introduce the contextual multi-armed bandit task as a framework to investigate learning

and decision making in uncertain environments. In this novel paradigm, participants repeat-

edly choose between multiple options in order to maximise their rewards. The options are

described by a number of contextual features which are predictive of the rewards through ini-

tially unknown functions. From their experience with choosing options and observing the

consequences of their decisions, participants can learn about the functional relation between

contexts and rewards and improve their decision strategy over time. In three experiments,

we explore participants’ behaviour in such learning environments. We predict participants’

behaviour by context-blind (mean-tracking, Kalman filter) and contextual (Gaussian process

and linear regression) learning approaches combined with different choice strategies. Partic-

ipants are mostly able to learn about the context-reward functions and their behaviour is best

described by a Gaussian process learning strategy which generalizes previous experience to

similar instances. In a relatively simple task with binary features, they seem to combine this

learning with a “probability of improvement” decision strategy which focuses on alternatives

that are expected to lead to an improvement upon a current favourite option. In a task with

continuous features that are linearly related to the rewards, participants seem to more explicitly

balance exploration and exploitation. Finally, in a difficult learning environment where the

relation between features and rewards is non-linear, some participants are again well-described

by a Gaussian process learning strategy, whereas others revert to context-blind strategies.

Keywords: Function Learning; Decision Making; Gaussian Process; Multi-Armed Bandits;

Reinforcement Learning

Introduction

Imagine you have recently arrived in a new town and

need to decide where to dine tonight. You have visited a

few restaurants in this town before and while you have a

current favourite, you are convinced there must be a better

restaurant out there. Should you revisit your current favourite

again tonight, or go to a new one which might be better, but

might also be worse? This is an example of the exploration-
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exploitation dilemma (e.g., Cohen, McClure, & Yu, 2007;

Laureiro-Martínez, Brusoni, & Zollo, 2010; Mehlhorn et

al., 2015): should you exploit your current but incomplete

knowledge to pick an option you think is best, or should you

explore something new and improve upon your knowledge

in order to make better decisions in the future? While explo-

ration is risky, in this case it is not blind. Over the years, you

have visited many restaurants and you know for instance that

better restaurants generally have more customers, a good am-

biance, and are not overly cheap. So you walk around town,

noting of each restaurant you pass how busy it is, how nice

it looks, the price of the items on the menu, etc. At the end

of a long walk, you finally sit down in a restaurant; one you

never visited before but predicted to be best based on numer-

ous features such as neighbourhood, clientéle, price, and so

forth.

The exploration-exploitation dilemma tends to be studied

with so-called multi-armed bandit tasks, such as the Iowa

gambling task (e.g., Bechara, Damasio, Tranel, & Damasio,

2005; Steyvers, Lee, & Wagenmakers, 2009). These are tasks
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in which people are faced with a number of options, each

having an associated average reward. Initially, these average

rewards are unknown and people can only learn about the re-

ward of an option by choosing it. Through experience, peo-

ple can learn which are the good options and use this knowl-

edge in the attempt to accumulate as much reward as possi-

ble. However, as our restaurant example above shows, many

real-life situations are richer than such simple multi-armed

bandit tasks. Options tend to have numerous features (e.g.,

number of customers and menu prices in the restaurant ex-

ample) which are predictive of their associated reward. With

the addition of informative features, the decision problem

can be termed a contextual multi-armed bandit (henceforth

CMAB; Li, Chu, Langford, & Schapire, 2010). While these

kinds of tasks are ubiquitous in daily life, they are rarely

studied within the psychological literature. This is unfortu-

nate, as CMAB tasks encompass two important areas of cog-

nition: experience-based decision making (Barron & Erev,

2003; Hertwig & Erev, 2009; Speekenbrink & Konstantini-

dis, 2015) and function learning (DeLosh, Busemeyer, &

McDaniel, 1997; Kalish, Lewandowsky, & Kruschke, 2004;

Speekenbrink & Shanks, 2010). Both topics have been stud-

ied extensively (see e.g., Newell, Lagnado, & Shanks, 2015,

for an overview), but commonly in isolation.

Learning and decision making within contextual multi-

armed bandit tasks generally requires two things: learning

a function that maps the observed features of options to their

expected rewards, and a decision strategy that uses these ex-

pectations to choose between the options. Function learning

in CMAB tasks is important because it allows one to gen-

eralize previous experiences to novel situations. For exam-

ple, it allows one to predict the quality of a new restaurant

from experiences with other restaurants with a similar num-

ber of customers and a similarly priced menu. The decision

strategy is important because not only should you attempt

to choose options that are currently most rewarding, but you

should also take into account how much you can learn in or-

der to make good choices in the future. In other words, you

should take into account the exploration-exploitation trade-

off, where exploration here means learning about the func-

tion that relates features to rewards.

In what follows, we will describe the contextual multi-

armed bandit paradigm in more detail and propose several

models to describe how people may solve CMAB tasks. We

will then describe three experiments which explore how peo-

ple perform within three variants of a CMAB task. We show

that participants are able to learn within the CMAB, approx-

imating the function in a close-to-rational way (Lucas, Grif-

fiths, Williams, & Kalish, 2015; Srinivas, Krause, Kakade, &

Seeger, 2009) and using their knowledge to sensitively bal-

ance exploration and exploitation. However, the extent to

which participants are able to learn the underlying function

crucially depends on the complexity of the task. In summary,

we make the following contributions:

1. We introduce the contextual multi-armed bandit as

a psychological paradigm combining both function

learning and decision making.

2. We model and predict learning in CMABs using Gaus-

sian processes regression, a powerful framework that

generalizes important psychological models which

were previously proposed to describe human function

learning.

3. We show that participants sensibly choose between op-

tions according to their expectations (and attached un-

certainty) while learning about the underlying func-

tions.

Contextual multi-armed bandits

A contextual multi-armed bandit task is a game in which

on each round, an agent is presented with a context (a set

of features) and a number of options which each offer an

unknown reward. The expected rewards associated to each

option depend on the context through an unknown function.

The context can contain general features that apply to all

options (e.g., the city the restaurants are in) or specific fea-

tures that apply to single options (e.g., the exact menu and its

price). The agent’s task is to choose those options that will

accumulate the highest reward over all rounds of the game.

The rewards are stochastic, such that even if the agent had

complete knowledge of the task, a choice would still involve

a kind of gamble. In this respect, choosing an option can be

seen as choosing a slot machine (a one-armed bandit) to play,

or, equivalently, choosing which arm of a multi-armed bandit

to play. After choosing an option in a round, the agent re-

ceives the reward of the chosen option but is not informed of

the foregone rewards that could have been obtained from the

other options. For an agent who ignores the context, the task

would appear as a restless bandit task (e.g., Speekenbrink &

Konstantinidis, 2015), as the rewards associated with an arm

will vary over time due to the changing context. However,

learning the function that maps the context to (expected) re-

wards will make these changes in rewards predictable and

thereby choosing the optimal arm easier. In order to choose

wisely, the agent should thus learn about the underlying func-

tion. Sometimes, this may require her to choose an option

which is not expected to give the highest reward on a par-

ticular round, but one that might provide useful information

about the function, thus choosing to explore rather than to

exploit.

Contextual multi-armed bandit tasks provide us with a

scenario in which a participant has to learn a function in order

to maximize the outputs of that function over time by making

wise choices. They are a natural extension of both the classic

multi-armed bandit task, which is a CMAB with an invariant
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context throughout, and the restless bandit task, which is a

CMAB with time as the only contextual feature.

While the CMAB is novel in the psychological literature

(though see Schulz, Konstantinidis, & Speekenbrink, 2015;

Stojic, Analytis, & Speekenbrink, 2015), where few tasks ex-

plicitly combine function learning and experience-based de-

cision making, there are certain similarities with tasks used in

previous research. For example, recent studies in experience-

based decision-making provided participants with descrip-

tions about the underlying distributions that generate rewards

(e.g., Lejarraga & Gonzalez, 2011; Weiss-Cohen, Konstan-

tinidis, Speekenbrink, & Harvey, 2016). Just as in the

CMAB, this presents a naturalistic decision environment in

which different sources of information (e.g., descriptions and

participants’ own experience) need to be integrated in order

to choose between alternatives or courses of action.

Another related paradigm is multiple cue probability

learning (MCPL, Kruschke & Johansen, 1999; Speekenbrink

& Shanks, 2008) in which participants are shown an array of

cues that are probabilistically related to an outcome and have

to learn the underlying function mapping the cues’ features

to expected outcomes. Especially when the outcome is a cat-

egorical variable, such as in the well-known “Weather Pre-

diction Task” (Gluck, Shohamy, & Myers, 2002; Speeken-

brink, Channon, & Shanks, 2008), making a prediction is

structurally similar to a decision between multiple arms (pos-

sible predictions) that are rewarded (correct prediction) or

not (incorrect prediction). Just as in the CMAB, multiple-

cue probability learning and probabilistic category learning

tasks require people to learn a function which maps multiple

cues or features to expected outcomes. An important dif-

ference however is that in these latter tasks there is a strong

dependency between the options: there is only one correct

prediction, and hence there is a perfect (negative) correla-

tion between the rewards for the options. Whether a cur-

rent choice was rewarded or not thus provides information

about whether the non-chosen options would have been re-

warded. This dependency weakens the need for exploration,

especially when the outcome is binary, in which case there

is no need for exploration at all. In CMAB tasks, there is a

stronger impetus for exploration, as the rewards associated

to arms are generally conditionally independent, given the

context. Knowing that a particular option was rewarded thus

does not provide immediate information whether another op-

tion would have been rewarded. Another major difference is

that MCPL tasks generally require participants to learn the

whole function. In CMAB tasks, learning the function is

only necessary insofar as it helps to make better decisions.

To solve the exploration-exploitation dilemma, it may suffice

to learn the function well only in those regions that promise

to produce high rewards. Moreover, as we will see later, each

option can be governed by its own function relating context

to rewards. To our knowledge, simultaneous learning of mul-

tiple functions has not previously been investigated.

Another area of related research comes from the associa-

tive learning literature, where it has been shown that context

can act as an additional cue to maximize reward (cf Bouton &

King, 1983; Gershman, Blei, & Niv, 2010). In one example

of this, Gershman and Niv (2015) showed how generalization

based on context (the average reward of options in an envi-

ronment) can explain how participants react to novel options

in the same environment, such that a high-reward context

leads people to approach novel options, while a low-reward

context leads to avoidance of novel options. The CMAB

paradigm introduced here is related to such situations, but

instead of a single, constant context, varies the contexts such

that good performance requires learning the underlying con-

textual function.

Models of learning and decision making

Formally, we can describe a CMAB as a game in which on

each round t = 1, . . . ,T , an agent observes a context st ∈ S
from the set S of possible contexts, and has to choose an arm

at ∈ A from the setA of all arms of the multi-armed bandit.

After choosing an arm, the agent receives a reward

yt = f (st, at) + ǫt, (1)

and it is her goal to choose those arms that will produce the

highest accumulated reward

R =

T
∑

t=1

yt. (2)

over all rounds. The function f is initially unknown and can

only be inferred from the rewards received after choosing

arms in the encountered contexts.

To perform well in a CMAB task, an agent needs to learn a

model of the function f from experience, and on each round

use this model to predict the outcomes of the available ac-

tions and choose the arm with the highest predicted outcome.

We can thus distinguish between a learning component, for-

malized as a learning model which estimates the function

relating rewards to contexts and actions, and a decision or

acquisition component that uses the learned model to deter-

mine the best subsequent decisions. These work together as

shown in Algorithm 1 (see also Brochu, Cora, & De Freitas,

2010).
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Algorithm 1 General CMAB-algorithm. A learning model

M tries to learn the underlying function f by mapping

the current expectations and their attached uncertainties to

choices via an acquisition function acq.

Require: A modelM of the function f , an acquisition func-

tion acq, previous observationsD0 = {∅}
for t = 1, 2, . . . ,T do

Choose arm at = arg maxa∈A acq (a|st,M)

Observe reward yt = f (st, at) + ǫt
Update Augment the data Dt = (at, st,Dt−1) and up-

date the modelM←M(Dt)

end for

This formalization of an agent’s behaviour requires us to

capture two things: (a) a representation or model M of the

assumed underlying function that maps the given context to

expected outcomes and (b) an acquisition function acq that

evaluates the utility of choosing each arm based on those

expected outcomes and their attached uncertainties. Here,

the model defines the learning process and the acquisition

function the way in which outputs of the learned model are

mapped onto choices1. In the following, we will describe a

number of instantiations of these two components.

Models of learning

Technically, a function is a mapping from a set of input

values to a set of output values, such that for each input value,

there is a single output value (also called a many-to-one map-

ping as different inputs can provide the same output). Psy-

chological research on how people learn such mappings has

normally followed a paradigm in which participants are pre-

sented with input values and asked to predict the correspond-

ing output value. After their prediction, participants are pre-

sented with the true output value, which is often corrupted by

additional noise. Through this outcome feedback, people are

thought to adjust their internal representation of the under-

lying function. In psychological theories of function learn-

ing, these internal representations are traditionally thought

to be either rule-based or similarity-based. Rule-based the-

ories (e.g., Carroll, 1963; Koh & Meyer, 1991) conjecture

that people learn a function by assuming it belongs to an

explicit parametric family, for example linear, polynomial,

or power-law functions. Outcome feedback allows them to

infer the parameters of the function (e.g., the intercept and

slope of a linear function). This approach attributes a rich set

of representations (parametric families) to learning agents,

but tends to ignore how people choose from this set (how

they determine which parametric family to use). Similarity-

based theories (e.g., Busemeyer, Byun, Delosh, & McDaniel,

1997) conjecture that people learn a function by associating

observed input values to their corresponding output values.

When faced with a novel input value, they form a prediction

by relying on the output values associated to input values that

are similar to the novel input value. While this approach is

domain general and does not require people to assume a para-

metric family a priori, similarity-based theories have trouble

explaining how people readily generalize their knowledge to

novel inputs that are highly dissimilar to those previously en-

countered.

Research has indicated that neither approach alone is suf-

ficient to explain human function learning. Both approaches

fail to account for the finding that some functional forms,

such as linear ones, are much easier to learn than others, such

as sinusoidal ones (McDaniel & Busemeyer, 2005). This

points towards an initial bias towards linear functions, which

can be overcome through sufficient experience. They also

fail to adequately predict how people extrapolate their knowl-

edge to novel inputs (DeLosh et al., 1997).

In order to overcome some of the aforementioned prob-

lems, hybrid versions of the two approaches have been put

forward (McDaniel & Busemeyer, 2005). One such hy-

brid is the extrapolation-association model (EXAM, DeLosh

et al., 1997), which assumes a similarity-based representa-

tion for interpolation, but simple linear rules for extrapola-

tion. Although EXAM effectively captures the human bias

towards linearity and accurately predicts human extrapola-

tions over a variety of relationships, it cannot account for the

human capacity to generate non-linear extrapolations (Bott &

Heit, 2004). The population of linear experts model (POLE,

Kalish et al., 2004) is set apart by its ability to capture knowl-

edge partitioning effects; based on acquired knowledge, dif-

ferent functions can be learned for different parts of the input

space. Beyond that, it demonstrates a similar ordering of

error rates to those of human learners across different tasks

(McDaniel, Dimperio, Griego, & Busemeyer, 2009). Re-

cently, Lucas et al. (2015) proposed Gaussian process regres-

sion as a rational approach towards human function learning.

Gaussian process regression is a Bayesian non-parametric

model which unifies both rule-based and similarity-based

theories of function learning. Instead of assuming one par-

ticular functional form, Gaussian process regression is based

on a model with a potentially infinite number of parameters,

but parsimoniously selects parameters through Bayesian in-

ference. As shown by Lucas et al., a Gaussian process re-

gression model accounts for many of the previous empirical

findings on function learning. Following this approach, we

will conceptualize function learning in a CMAB as Gaussian

process regression. We contrast this with context-blind learn-

ing which tries to directly learn the expected reward of each

option without taking the contextual features into account.

1Normally, the algorithm would pick the observation with the

highest value according to the acquisition function, whereas we en-

ter these values into a softmax function, see Equation 17
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Contextual learning through Gaussian process regres-

sion. In the following, we will assume that the agents

learns a separate function f j(s) that maps contexts s to re-

wards y for each option j. Gaussian process regression is a

non-parametric Bayesian solution to function learning which

starts with a prior distribution over possible functions and,

based on observed inputs and outputs of the function, updates

this to a posterior distribution over all functions. In Gaussian

process regression, p( f j), the distribution over functions, is

defined by a Gaussian process (GP). Technically, a GP is a

stochastic process such that the marginal distribution of any

finite collection of observations generated by it is a multi-

variate Gaussian distribution (see Rasmussen, 2006). A GP

is parametrized by a mean function m j(s) and a co-variance

function, also called kernel, k j(s, s′):

m j(s) = E

[

f j(s)
]

(3)

k j(s, s′) = E

[

( f j(s) − m j(s))( f j(s′) − m j(s′))
]

. (4)

In the following, we will focus on the computations for

a single option (and hence single function) and suppress

the subscripts j. Suppose we have collected rewards yt =

[y1, y2, . . . , yt]
⊤ for arm j in contexts st = {s1, . . . , st}, and we

assume

yt = f (st) + ǫt ǫt ∼ N(0, σ2). (5)

Given a GP prior on the functions

f (s) ∼ GP (m(s), k(s, s′)
)

, (6)

the posterior over f is also a GP:

p( f (s)|Dt−1) = GP (mt(s), kt(s, s′)
)

, (7)

where Dt−1 = {s1, y1, . . . , st, yt} denotes the set of observa-

tions (contexts and rewards) of the function f . The posterior

mean and kernel function are

mt(s) = kt(s)⊤(Kt + σ
2I)yt (8)

kt(s, s′) = k(s, s′) − kt(s)⊤(Kt + σ
2I)−1kt(s′), (9)

where kt(s) = [k(s1, s), . . . , k(st, s)]⊤, Kt is the positive def-

inite kernel matrix [k(s, s′)]s,s′∈Dt
, and I the identity matrix.

Note that the posterior variance of f for context s can be

computed as

vt(s) = kt(s, s). (10)

This posterior distribution can also be used to derive predic-

tions about each arm’s rewards given the current context, that

are also assumed to be normally distributed.

A key aspect of a GP model is the covariance or kernel

function k. The choice of a kernel function corresponds to

assumptions about the shape of the true underlying function.

Among other aspects, the kernel determines the smooth-

ness, periodicity, and linearity of the expected functions (c.f.

Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gershman,

2016). Additionally, the choice of the kernel also deter-

mines the speed at which a GP model can learn over time

(Schulz, Tenenbaum, Reshef, Speekenbrink, & Gershman,

2015). The kernel defines a similarity space over all possible

contexts. As such, a GP can be seen as a similarity-based

model of function learning, akin to exemplar models tradi-

tionally used to describe category learning (Nosofsky, 1986).

However, by first mapping the contexts s via the kernel into a

“feature space”, it is possible to rewrite the posterior mean of

a GP as a linear combination of transformed feature values.

From a psychological perspective, a GP model can in this

way also be thought of as encoding “rules” mapping inputs

to outputs. A GP can thus be simultaneously expressed as

a similarity-based or rule-based model, thereby unifying the

two dominant classes of function learning theories in cogni-

tive science (for more details, see Lucas et al., 2015).

Different kernels correspond to different psychological

assumptions about how people approach function learning.

By choosing a linear kernel, the model corresponds directly

to Bayesian linear regression. This kernel thus instantiates

a relatively simple rule-based way of learning the underly-

ing function, assuming it has a particular parametric shape,

namely a linear combination of the contextual features. The

radial basis function kernel (RBF, sometimes also called

square(d) exponential or Gaussian kernel) postulates smooth

but otherwise relatively unconstrained functions and is prob-

ably the most frequently used kernel in the Gaussian pro-

cess literature. The RBF kernel contains a free parameter λ,

referred to as the length scale, which determines the extent

to which increasing the distance between two points reduces

their correlation. The mathematical details of the two contex-

tual models, corresponding to these two choices of kernel, as

well as an illustration of the way in which they learn (i.e.

update their prior distribution to a posterior distribution) are

provided in Table 1.
Context-blind learning. To assess the extent to which

people take the context into account, we contrast the contex-

tual learning models above with two context-blind learning

models that ignore the features and focus on the average re-

ward of each option over all contexts.

The Bayesian mean-tracking model assumes that the av-

erage reward associated to each option is constant over time

and simply computes a posterior distribution over the mean

µ j of each option j. Here, we will implement a relatively sim-

ple version of such a model which assumes rewards are nor-

mally distributed with a known variance but unknown mean

and the prior distribution for that mean is again a normal dis-

tribution. This implies that the posterior distribution for each

mean is also a normal distribution:

p(µ j|Dt−1) = N(m j,t, v j,t) (11)

Here, the mean m j,t represents the currently expected out-

come for a particular arm j and the variance v j,t represents
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Table 1

Details of the two contextual models used to model participants’ learning. Mathematical details of each model are provided

in the “Model” column. For each model, prior samples of functions for a one-dimensional input are shown in the “Prior”

column. The “Posterior” column shows posterior samples of the functions after the same set of 6 observations (dots).

Model Prior Posterior

Linear

θ1(s − θ2)(s′ − θ2)
●

●

●

●

●

●

Radial Basis

exp
(

− (s−s′)2

2λ2

)
●

●

●

●

●

●

the uncertainty attached to that expectation. The posterior

distribution can be computed through a mean-stable version

of the Kalman filter, which we will describe next.

Unlike the Bayesian mean tracking model, which com-

putes the posterior distribution of a time-invariant mean µ j

after each new observation, the Kalman filter is a suitable

model for tracking a time-varying mean µ j,t which we here

assume varies according to a simple random walk

µ j,t+1 = µ j,t + ζt ζt ∼ N(0, σ2
ζ ) (12)

Such a Kalman filter model has been used to success-

fully describe participants’ choices in a restless bandit task

(Speekenbrink & Konstantinidis, 2015) and has also been

proposed as a model unifying many findings within the liter-

ature of context-free associative learning (Gershman, 2015;

Kruschke, 2008). In this model, the posterior distribution of

the mean is again a normal distribution

p(µ j,t |Dt−1) = N(m j,t, v j,t) (13)

with mean

m j,t = m j,t−1 + δ j,tG j,t(yt − m j,t−1) (14)

where yt is the received reward on trial t and δ j,t = 1 if arm

j was chosen on trial t, and 0 otherwise. The “Kalman gain”

term is computed as

G j,t =

v j,t−1 + σ
2
ζ

v j,t−1 + σ
2
ζ
+ σ2

ǫ

(15)

where vk,t, is the variance of the posterior distribution of the

mean µ j,t is computed as

v j,t = (1 − δ j,tG j,t)(v j,t−1 + σ
2
ζ ) (16)

Prior means and variances were initialized to m j,0 = 0 and

v j,0 = 1000, while the innovation variance σ2
ζ

and error vari-

ance σ2
ǫ were free parameters. The Bayesian mean-tracking

model is obtained from the Kalman filter model by setting

the innovation variance to σ2
ζ
= 0, implying the underlying

mean is not assumed to change over time.

Decision strategies

The aforementioned learning models each generate a pre-

dictive distribution, reflecting the rewards expected from

choosing options in the current context. To model partici-

pants’ choices, we need a decision strategy that defines the

current predictive means and variances are used to choose be-

tween options. In the psychological literature, popular deci-

sion rules that map current expectations onto choices are the

softmax and ǫ-greedy rule (Sutton & Barto, 1998). These are

rules which are based on a single expectation for each option.

In the softmax rule, the probability of choosing an option is

roughly proportional to the current expectations, while the

ǫ-greedy rule chooses the maximum-expectancy option with

probability 1 − ǫ and otherwise chooses with equal probabil-

ity between the remaining options. Frequently, these rules

ignore the uncertainty about the formed expectations, while

rationally, uncertainty should guide exploration. Here, we

follow Speekenbrink and Konstantinidis (2015) and define

a broader set of decision rules that explicitly model how

participants trade off between expectations and uncertainty.

We will consider 4 different strategies to make decisions in

a CMAB task based on the predictive distributions derived

from the above learning models. The mathematical details of

these are given in Table 2.

The upper confidence bound (UCB) algorithm defines a

trade-off between an option’s expected value and the asso-
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ciated uncertainty and chooses the option for which the up-

per confidence bound of the mean is highest. The UCB rule

has been shown to perform well in many real world tasks

(Krause & Ong, 2011). It has a free parameter β, which

determines the width of confidence interval (for example,

setting β = 1.96 would result in a 95% credible set). The

UCB-algorithm can be described as a selection strategy with

an exploration bonus, where the bonus dynamically depends

on the confidence interval of the estimated mean reward at

each time point. It is sometimes also referred to as optimistic

sampling as it can be interpreted to inflate expectations with

respect to the upper confidence bounds (Srinivas et al., 2009).

Another decision strategy is the probability of improve-

ment (PoI) rule, which calculates the probability for each op-

tion to lead to an outcome higher than the option that is cur-

rently believed to have the highest expected value (Kushner,

1964). Intuitively, this algorithm estimates the probability of

one option to generate a higher utility than another option

and has recently been used in experiments involving multi-

attribute choices (Gershman, Malmaud, Tenenbaum, & Ger-

shman, 2016).

The PoI rule focusses solely on the probability that an op-

tion provides a higher outcome than another; whether the dif-

ference in outcomes is large or small does not matter. The

expected improvement (EXI) rule is similar to the PoI rule,

but does take the magnitude of the difference in outcomes

into account and compares options to the current favourite in

terms of the expected increase of outcomes (Mockus, Tiesis,

& Zilinskas, 1978).

The fourth decision strategy we consider is the probabil-

ity of maximum utility (PMU) rule (Speekenbrink & Kon-

stantinidis, 2015). This strategy chooses each option accord-

ing to the probability that it results in the highest reward

out of all options in a particular context. It can be seen as

a form of probability matching (Neimark & Shuford, 1959)

and can be implemented by sampling from each option’s pre-

dictive distribution once, and then choosing the option with

the highest sampled pay-off. Even though this acquisition

function seems relatively simple, it describes human choices

in restless bandit tasks well (Speekenbrink & Konstantinidis,

2015). It is also closely related to Thompson sampling (May,

Korda, Lee, & Leslie, 2012), which samples from the poste-

rior distribution of the mean rather than the predictive distri-

bution of rewards. Thus, while Thompson sampling “proba-

bility matches” the expected rewards of each arm, the proba-

bility of maximum utility rule matches to actual rewards that

might be obtained2.

The first three decision rules (but not the PMU rule) are

deterministic, while participants’ decisions are expected to

be more noisy reflections of the decision rule. We there-

fore used a softmax transformation to map the value of each

option according to the decision rule into probabilities of

choice:

p(at = j|st,Dt−1) =
exp{τ−1 · acq(a = j|st,Dt−1)}
∑n

i=1 exp{τ−1 · acq(a = i|st,Dt−1)}
(17)

The temperature parameter τ > 0 governs how consistently

participants choose according to the values generated by

the different kernel-acquisition function combinations. As

τ → 0 the highest-value option is chosen with a probability

of 1 (i.e., arg max), and when τ→ ∞, all options are equally

likely, with predictions converging to random choice. We

use τ as a free parameter, where lower estimates can be inter-

preted as more precise predictions about choice behaviour.

General CMAB task

In our implementation of the CMAB task, participants

are told they have to mine for “Emeralds” on different plan-

ets. Moreover, it is explained that at each time of mining

the galaxy is described by 3 different environmental factors,

“Mercury”, “Krypton”, and “Nobelium”, that have different

effects on different planets. Participants are then told that

they have to maximize their production of Emeralds over

time by learning how the different environmental factors in-

fluence the planets and choosing the planet they think will

produce the highest outcome in light of the available factors.

Participants were explicitly told that different planets can re-

act differently to specific environmental factors. A screen-

shot of the CMAB task can be seen in Figure 1.

Figure 1. Screenshot of the CMAB task in Experiment 1.

As each planet responds differently to the contexts, they

can be seen as arms of a multi-armed bandit that are related

to the context by different functions. The reward of an option

2In earlier studies (Schulz, Konstantinidis, & Speekenbrink,

2015) we had implemented Thompson sampling as sampling func-

tions from the Gaussian process and individually maximizing the

resulting functions instead of sampling from the posterior predic-

tive distribution. We also did not estimate hyper-parameters for the

Gaussian process for each participant.
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Table 2

Acquisition functions used to model participants’ choices. Mathematical details are provided in the column “Acquisition

function”. Here, m j,t(s) denotes the posterior mean of the function for context s and action j, and action j = ∗ denotes the

action currently believed to be optimal. Examples are provided for a problem where each action corresponds to choosing

a one-dimensional input, after which the associated output can be observed. Prior samples from a Radial Basis kernel are

shown in the “Prior (time t)” column. The utility of each potential action according to each acquisition function is shown in

the “acq()” column. After choosing the action with the highest utility and observing the corresponding output, the Gaussian

process is updated and used as a prior at the next time. Samples from this posterior are shown in the final column (“Prior

(time t + 1)”).

Acquisition function Prior (time t) acq(a = i|st,Dt−1) Prior (time t + 1)

Upper Confidence Bound:

m j,t(st) + c
√

v j,t(st)
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Φ















m j,t(s) − m∗,t(s)
√

v j,t(s)
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Expected Improvement

(

m j,t(s) − m∗,t(s)
)

Φ(z) +
√

v j,t(s)φ(z)

z =
m j,t(s) − m∗,t(s)
√

v j,t(s)
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P( f j(s) + ǫ j,t > fi(s) + ǫi,t,∀i , j)
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j is given as

y j,t = f (at = j, st) = f j(st) + ǫ j,t (18)

with ǫ j,t ∼ N(0, 5). The task consists of 150 trials in which a

random context is drawn and participants choose a planet to

mine on3.

The three experiments differ in the functions f j and

whether the environmental factors defining the context were

binary or continuous. This is specified in more detail when

describing the experiments. Source code for the experimen-

tal set-up is available online.4

Model comparison

All models were compared in terms of their out-of-sample

predictive performance, assessing the accuracy of their one-

step-ahead predictions and comparing it to that of a ran-

dom model which picks each option with the same prob-

ability. Our procedure is as follows: for each participant,

we first fitted a given model by maximum likelihood to the

first t − 1 trials with a differential evolution optimization

algorithm (using 100 epochs, cf. Mullen, Ardia, Gil, Win-

dover, & Cline, 2009). We then used this fitted model to

predict the choice on trial t. As repeating this procedure

for every trial is computationally expensive, we assess the

models’ predictive accuracy for every participant on trials

t = {10, 30, 50, 70, 90, 110, 130, 150}. The one-step-ahead

predictive accuracy measure compares each model Mk to a

3The initial trial had the same context s1 for all participants. Af-

terwards, the values of the context st were sampled at random
4https://github.com/ericschulz/contextualbandits
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random modelMrand:

R2
p = 1 − logL(Mk)/ logL(Mrand) (19)

where L(M) denotes the likelihood of model M (i.e., the

probability of a participants’ choices as predicted by fit-

ted model M). This measure is similar to McFadden’s

pseudo-R2 (McFadden, 1973), although it uses the com-

pletely random model Mrand as comparison model, instead

of the intercept-only regression model used in McFadden’s

pseudo-R2. Just like McFadden’s measure, ours has values

between 0 (accuracy equal to the random model) and 1 (ac-

curacy infinitely larger than the random model).

Experiment 1 : CMAB with binary cues

The goal of the first experiment was to test whether partic-

ipants can learn to make good decisions in a CMAB task. For

this purpose, we set up a relatively simple contextual bandit

scenario in which the contexts consist of binary features.

Participants

Forty-seven participants (26 male) with an average age of

31.9 years (S D = 8.2) were recruited via Amazon Mechan-

ical Turk and received $0.3 plus a performance-dependent

bonus. The experiment took 12 minutes to complete on av-

erage and the average reward was $0.73±0.07.

Task

There were four different arms that could be played (plan-

ets that could be mined). In addition, three discrete vari-

ables, si,t, i = 1, 2, 3, were introduced as the general context.

The three variables defining the contexts could either be on

(si,t = 1) or off (si,t = −1). The outcomes of the four arms

were dependent on the context as follows:

f1(st) = 50 + 15 × s1,t − 15 × s2,t

f2(st) = 50 + 15 × s2,t − 15 × s3,t

f3(st) = 50 + 15 × s3,t − 15 × s1,t

f4(st) = 50

The assignment of these functions to the planets, and the

order of the planets on screen, was the same for each partici-

pant.5

On each trial, the probability that a contextual feature was

on or off was set to p(si,t = 1) = p(si,t = −1) = 0.5, mak-

ing each of the 8 possible contexts equally likely to occur

on a given trial. The functions f j were designed such that

the expected reward of each arm over all possible contexts

equals E[y j,t] = 50. This means that the only way to gain

higher rewards than the average of 50 is by learning how

the contextual features influence the rewards. More formally,

this implies that no arm achieves first-order stochastic dom-

inance. Moreover, including the context-independent fourth

arm that returns the mean with added noise helps us to dis-

tinguish even further between learning and not learning the

context: this arm has the same expected value as all the other

arms but a lower variance and therefore achieves second-

order stochastic dominance over the other arms. As such,

a context-blind and risk-averse learner would prefer this arm

over time.

Procedure

After giving their informed consent, participants received

instructions to the experiment. Participants were told that

they had to mine for “Emeralds” on different planets. More-

over, it was explained that at each time each of the 3 different

environmental factors could either be on (+) or off (-) and had

different effects on different planets. Participants were told

that they had to maximize the overall production of Emeralds

over time by learning how the different elements influence

the planets and then picking the planet they thought would

produce the highest outcome, given the status (on or off) of

the elements. It was explicitly noted that different planets

can react differently to different elements. After reading the

instructions, participants performed the CMAB task. There

were a total number of 150 trials and participants were paid

$0.3 + total score/(150 × 100).

Results

For all of the following analyses we report both frequentist

and Bayesian test results. The latter are reported as Bayes

factors, where BF10 quantifies the posterior probability ra-

tio of the alternative hypothesis as compared to the null hy-

pothesis (see Morey, Rouder, Jamil, & Morey, 2015). Un-

less stated otherwise, we use a Bayesian t-test (Morey &

Rouder, 2011; Rouder, Speckman, Sun, Morey, & Iverson,

2009), with a Jeffreys-Zellner-Siow (JZS) prior with scale

r =
√

2/2).

Behavioural results. Participants gained 66.78 points

(SD=13.02) per round on average throughout the task. Par-

ticipants’ average scores were significantly above the chance

level of 50 (t(46) = 8.83, p < 0.01). 34 out of 47 par-

ticipants performed better than chance according to a sim-

ple t-test with α = 0.05 and µ0 = 50. Using a Bayesian

meta-analytical t-test6 over all participants’ scores, we found

a Bayes factor of BF10 = 68.34 indicating that the alternative

hypothesis of participants performing better than chance was

around 68 times more likely than chance performance. As

5As previous research with the Iowa Gambling task found little

effect of options’ position on participants decisions (Chiu & Lin,

2007), we expect similar results if we had randomized the position

on screen.
6Implemented as a Bayesian meta t-test that first compares each

participant’s scores against 50 and then aggregates the overall re-

sults in a Bayesian meta t-test (see Morey et al., 2015).
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such, participants seemingly learned to take the context into

account, obtaining higher rewards than expected if they were

ignoring the context.

Over time, participants made increasingly better choices

(see Figure 2a), as indicated by a significant correlation be-

tween the average score (over participants) and trial number,

r = 0.74, p < 0.01. Using a Bayesian test for correlations

(Wetzels & Wagenmakers, 2012), we found a Bayes factor of

BF10 = 6.01 when comparing the correlation to a mean of 0.

27 out 47 participants had a significantly positive correlation

between trial numbers and score at α = 0.05.

The proportion of participants choosing the non-

contextual option (the option that did not respond to any of

the contextual features, indicated as the 4th arm) decreased

over time (r = −0.22, p < 0.05, BF10 = 58.8, Figure 2b), an-

other indicator that participants learned the underlying func-

tions. Finally, the proportion of participants choosing the

best option for the current context increased during the task

(r = 0.72, p < 0.01, BF10 = 263.2, see Figure 2a). More-

over, when assessing whether either outcomes or chosen

arms on a trial t − 1 were predictive for a chosen arm on trial

t in a hierarchical multinomial regression (where trials were

nested within participants) with chosen arms as dependent

variable, we found no significant relationship, again indicat-

ing that participants seemed to indeed learn the underlying

function instead of using more simplistic (and in this case

not very useful) heuristic memorization techniques such as

testing similar arms in sequences or changing to a particular

arm after a particular score.

Modelling results. To determine which combination of

learning model and acquisition function best captures partic-

ipants’ choices, we focus on one-step-ahead predictive com-

parisons. For each participant and model, we computed our

pseudo-R2 at the eight test trials. Higher R2-values indicate

better model performance. The results are shown in Figure 3.

Overall, the best performing model was the GP learning

model with a RBF kernel and the PoI decision rule. Ag-

gregating over acquisition functions, the contextual mod-

els produced significantly better one-step-ahead predictions

than the context-blind models (t(186) = 6.13, p < 0.01,

BF10 = 1.9× 104). Additionally, the GP-model with an RBF

kernel performed better than the linear model (t(92) = 7.23,

p < 0.01, BF10 = 2.6 × 104). Distinguishing the different

acquisition functions turned out to be harder than comparing

the different learning approaches. Aggregating over learn-

ing models, the probability of maximum utility strategy per-

formed marginally better than all other acquisition functions

(t(186) = 1.97, p < 0.05, BF10 = 2.3). Even though the

probability of improvement acquisition function numerically

predicted participants’ choices best out of all the acquisition

functions when combined with the RBF kernel GP, this dif-

ference was not high (t(186) = 1.15, p > 0.05, BF10 = 0.24).

The median parameter estimates of the GP model over all

acquisition functions per participant were extracted and are

shown in Figure 4.

The median noise variance (σ̂ = 3.08) was reasonably

close to the underlying observation noise variance of σ = 5,

albeit smaller in general (t(46) = −4.7, p < 0.01, BF10 =

913.05); thus, participants seemed to underestimate the over-

all noise in the observed outcomes. The estimates of the

length-scale parameter clustered around the mean value of

λ̂ = 6.12. An RBF kernel can emulate a linear kernel by

setting a very high length-scale. As the true underlying func-

tions were linear in the experiment, we could thus expect

high values for λ̂. In that light, a value of six for the esti-

mated length-scale seems surprisingly small, as it indicates

that the dependencies between input points are expected to

decay rather quickly, i.e. that participants generalized more

locally than what was necessary. The overall temperature

parameter was relatively low (mean estimate: τ̂−1
= 0.085),

indicating that participants quite consistently chose the op-

tions with the highest predicted rewards.

According to the best fitting model in our cognitive mod-

elling exercise, people learn the relation between context and

outcomes by relying on a more general function approxima-

tor than just a linear regression (implemented as a linear ker-

nel). By using a Probability of Improvement decision strat-

egy, participants compare the option which is thought to have

the highest average rewards in the current context, to rela-

tively lesser known options in that context, determining how

probable these are to provide a higher reward. This strategy

is in agreement with prior findings in simpler multi-attribute

choice tasks (for example, Carroll & De Soete, 1991).

Experiment 2: Continuous-Linear CMAB

Experiment 1 contained only 8 unique contexts. This

makes a memorization strategy feasible: participants may

have simply memorized the expected rewards for each option

in each context, rather than inferring a more general model of

the underlying function. The goal of the second experiment

was to assess whether the findings from Experiment 1 gen-

eralize to a task with a larger number of unique contexts, in

which memorization of input-output pairs is less plausible.

For this purpose, Experiment 2 used the same task as Ex-

periment 1, but with continuous rather than binary features

comprising the contexts.

Participants

Fifty-nine participants (30 male) with a mean age of 32.4

(SD=7.8) were recruited via Amazon Mechanical Turk and

received $0.3 as a basic reward and a performance-dependent

bonus of up to $0.5. The experiment took 13 minutes on av-

erage to complete and the average reward was $0.69 ± 0.08.
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Figure 2. Results of the the continuous-linear CMAB task of Experiment 1. (a) average mean score per round, (b) proportion

of choices of the 4th arm, and (c) proportion of choices of the best arm. Red error bars indicate standard error aggregated over

5 trials. Regression line is based on a least square regression including a 95% confidence level interval of the prediction line.

Task and Procedure

The task was identical to that of Experiment 1, only this

time the context contained continuous features with an un-

derlying linear function mapping inputs to outputs:

f1(st) = 50 + 3 × s1,t − 3 × s2,t

f2(st) = 50 + 3 × s2,t − 3 × s3,t

f3(st) = 50 + 3 × s3,t − 3 × s1,t

f4(st) = 50.

The values of the context variables s j,t were sampled ran-

domly from a uniform distribution s j,t ∼ U(−10, 10). The

values were rounded to whole numbers and shown in their

numerical form to participants. As in the task of Experi-

ment 1, the expected value (over all contexts) for each op-

tion was 50, so no option achieved first-order stochastic

dominance, while the fourth option achieved second-order

stochastic dominance as the variance of its rewards was the

lowest.

Results

Behavioral results. On average, participants earned

59.84 (SD = 9.41) points during the entire game, which is

significantly higher than chance, t(58) = 7.17, p < 0.01. A

hierarchical Bayesian t-test revealed that the alternative hy-

pothesis of performing better than chance was BF10 = 53.88

more likely than the null hypothesis of chance performance.

29 participants performed better than chance overall as mea-

sure by individual t-tests with α = 0.05. Thus, as in Ex-

periment 1, participants were able to take the context into

account in order to increase their performance above chance

level.

Performance increased over trials, r = 0.39, t(58) = 3.64,

p < 0.01, although this was not as pronounced as in Ex-

periment 1 (see Figure 5a). A hierarchical Bayesian t-test

showed that participants’ correlations between score and trial

number were BF10 = 15.44 more likely to be greater than 0

than lesser than or equal to 0, thus showing strong evidence

for improvement over time. The correlation between trial

number and score was significantly positive for 20 out of 59

participants.

While the proportion of participants choosing the fourth

option did not decrease significantly over time (r = 0.05,

p > 0.05, BF10 = 0.01), the proportion of choosing the

best option in the context did increase significantly over trials

(r = 0.33, p < 0.01, BF10 = 18.87 see Figure 5c).

A hierarchical multinomial regression showed that neither

the previously chosen arm nor the previously received reward

was predictive of current choice (all p > 0.05). Thus, partic-

ipants did not seem to rely on simply repeating choices or

other more simple heuristics to determine their decisions.
Modelling results. Cross validation results are shown

in Figure 6. The best performing model incorporates again a

GP-RBF learning component, but now coupled with a UCB

decision strategy. In this experiment, the contextual mod-

els did not significantly outperform the context-blind models

(t(234) = −2.59, p < 0.01, BF10 = 0.12). However, this

was mostly due to the linear model performing significantly

worse than all the other learning models (t(234) = 2.37,

p < 0.05, BF10 = 8.79). The GP-RBF model signifi-

cantly outperformed all the other candidate learning models

(t(234) = 5.63, p < 0.01, BF10 = 6.73). Thus, as in Ex-

periment 1, participants were best predicted by a Gaussian

Process learning model with a radial basis function kernel.

The best performing decision strategy differs between the

contextual and context-free models. The UCB strategy per-

formed better than the other decision strategies for the con-

textual models, significantly so for the linear learning model,

t(609) = 3.94, p < 0.01, BF10 = 7.45, but not signifi-
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Model Comparison: Discrete

Figure 3. Predictive accuracy of the models for the CMAB task with discrete cues in Experiment 1. Error bars represent the

standard error of the mean.

cantly for the RBF-learning model, t(609) = 0.4, p > 0.05,

BF10 = 3.62. For the context-free learning models, the

probability of maximum utility acquisition function provided

the best predictive performance for both the Bayesian mean

tracker (t(614) = 5.77, p < 0.01, BF10 = 7.98) and Kalman

filter learning model (t(614) = 5.13, p < 0.01, BF10 = 7.63).

In previous research with a restless bandit task (Speeken-

brink & Konstantinidis, 2015), the PMU decision strategy

combined with a Kalman filter learning model also provided

a superior fit to participants’ behaviour. Hence, the present

findings could indicate that some people switched to a non-

contextual strategy within this more difficult set-up.

The median parameter estimates of the GP-RBF-learning

model over all acquisition functions were extracted for each

participant individually and are shown in Figure 7.

The estimated temperature parameter was τ̂−1
= 0.049 on

average, which indicates that participants mostly consistently

chose the options with the highest predicted utility. The es-

timated error variance was σ̂ = 5.07 on average, which was

very close to the actual variance of σ = 5 (t(58) = 0.16,

p > 0.05, BF01 = 0.14). The estimated length-scale pa-

rameter was clustered tightly around a value of λ̂ = 10.31.

This indicates a tendency towards further extrapolation than

in Experiment 1, but is still quite far removed from the level

of extrapolation a linear function would provide.

Experiment 3: Continuous-Non-Linear CMAB

The previous experiments showed that most participants

were able to learn how a contexts defined by multiple fea-

tures differentially affect the rewards associated to decision

alternatives. The goal of the third experiment was to inves-

tigate assess whether this would still be the case in an even



CONTEXTUAL MULTI-ARMED BANDITS 13

0.1

10.0

σ (Variance) λ (Length−Scale) τ (Temperature)

E
st

im
at

e 
(l

o
g
 s

ca
le

)

GP−RBF Parameter Estimates

Figure 4. Parameter estimates of the error variance σ, the length-scale λ, and the temperature parameter τ for the GP-RBF

model in Experiment 1. Dots show median parameter estimates per participant and boxplots show the median and inter-quartile

range.
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Figure 5. Results of the the continuous-linear CMAB task of Experiment 2. (a) average mean score per round, (b) proportion

of choices of the 4th arm, and (c) proportion of choices of the best arm. Red error bars indicate standard error aggregated over

5 trials. Regression line is based on a least square regression including a 95% confidence level interval of the prediction line.

more complicated environment in which rewards are associ-

ated to the contexts by general non-linear functions sampled

from a Gaussian process prior.

Participants

60 participants (28 female) with a mean age of 29

(SD=8.2) were recruited via Amazon Mechanical Turk and

received $0.3 as a basic reward and a performance-dependent

reward of up to $0.5. The experiment took on average 12

minutes to complete on participants earned $0.67 ± 0.04 on

average.

Task and Procedure

The task was identical to that of Experiment 2, apart from

the functions mapping inputs to outputs, which were drawn
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Figure 6. Predictive accuracy of the models for the CMAB task with continuous-linear cues in Experiment 2. Error bars

represent the standard error of the mean.

from a Gaussian process prior:

f1(st) = 50 + f1(s1,t, s2,t)

f2(st) = 50 + f2(s2,t, s3,t)

f3(st) = 50 + f3(s3,t, s1,t)

f4(st) = 50

f j ∼ GP(µ,Σ), j = 1, . . . , 3,

with mean function µ set to 0 and Σ a radial basis function

kernel with a length-scale of θ2 = 2. As in Experiment 2, the

features were described numerically and could take values

between -10 and 10. These values were sampled from a uni-

form distribution si,t ∼ U(−10, 10). As before, the average

expectation for all planets was 50 and the variance for the

fourth arm was the lowest.

The procedure was identical to the one of Experiment 2.

Results

Behavioural results. Participants earned 55.35 (SD =

6.33) points on average during the whole task, which is sig-

nificantly above chance level, t(59) = 5.85, p < 0.01. This

was confirmed in a hierarchical Bayesian t-test over partici-

pants’ scores, BF10 = 54.1. 26 participants performed better

than chance as assessed by a simple t-test with α = 0.05.

Average scores increased over trials, r = 0.19, p < 0.01,

BF10 = 1.2, but to a lesser extent than in Experiment 2 (see

Figure 8b), which might be due to the increase in difficulty of

the task. Only 10 participants showed a significantly positive

correlation between trial number and score. While signifi-

cant, the increase in choosing the best option over trials was

not substantial, r = 0.12, p < 0.05, BF10 = 0.3 (see Fig-

ure 8c). The proportion of choosing the non-contextual arm

did not significantly decrease over time, r = 0.04, p > 0.05,
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Figure 7. Parameter estimates of the error variance σ, the length-scale λ, and the temperature parameter τ for the GP-RBF

model in Experiment 2. Dots show median parameter estimates per participant and boxplots show the median and inter-quartile

range.
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Figure 8. Results of the the continuous-nonlinear CMAB task of Experiment 3. (a) average score per round, (b) proportion of

choices of the 4th arm, and (c) proportion of choices of the best arm. Red error bars indicate standard error aggregated over 5

trials. Regression line is based on a least square regression including a 95% confidence level interval of the prediction line.

BF10 = 0.1. Overall, these results seem to indicate that par-

ticipants struggled more to perform well in the continuous

non-linear task than in the two prior experiments.

Modelling results. Modelling results are shown in Fig-

ure 9. Overall, the best performing model had a GP-RBF

learning component and a UCB decision strategy. Consid-

ering the results for the learning models (aggregating over

the decision strategies), as in Experiment 2, the contextual

models did not predict participants’ choices significantly bet-

ter than the context-blind models (t(197) = 1.71, p > 0.05,

BF10 = 0.13), but this was due to the linear model generating

worse predictions than all the other models (t(197) = 3.26,

p < 0.01, BF10 = 6.9). The GP-RBF learning model gener-

ated better predictions than the other models (t(197) = 3.26,

p < 0.01, BF10 = 7.59). Regarding the decision strat-

egy, the probability of maximum utility acquisition function

generated the best predictions for both context-free mod-

els (Bayesian Mean Tracker: t(191) = 2.33, p < 0.05,
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Figure 9. Predictive accuracy of the models for the CMAB task with continuous-non-linear cues in Experiment 3. Error bars

represent the standard error of the mean.

BF10 = 6.87; Kalman filter: t(192) = 2.10, p < 0.05,

BF10 = 7.19). The upper confidence bound sampler was

the best acquisition function for the linear learning model

(t(193) = 1.97, p > 0.05, BF10 = 7.53). There was no mean-

ingful difference between different acquisition functions for

the GP-RBF model.

Figure 10 shows the median parameter estimates of the

GP-RBF learning model for each participant.

The low average estimated temperature parameter τ̂ =

0.06 again indicates that participants mostly consistently

chose the options with the highest predicted rewards. The

estimated length-scale clustered tightly along a value of λ̂ =

6.86, which this time turned out to be higher than the true

underlying length-scale. The estimated noise variance of

σ̂ = 5.71 was again indistinguishable from the underlying

true variance ofσ = 5 (t(49) = 1.29, p > 0.05, BF10 = 0.34).

As this last experiment required participants to learn three

different non-linear functions, it may have been too taxing

for some participants to learn the functions, so that they re-

verted to learning in a context-free manner. Thus, whereas

some participants are well-predicted by the contextual mod-

els, others seem to be captured better by the context-blind

models.

Inter-experimental model comparison

In all three experiments, the GP-RBF learning model de-

scribed participants learning the best. In the first experiment,

best performing model coupled this with a probability of im-

provement decision strategy, while in other experiment, this

learning model was coupled with an upper confidence bound

decision strategy. To further investigate how participants

adapted to the different task environments, we here assess
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Figure 10. Parameter estimates of the error variance σ, the length-scale λ, and the temperature parameter τ for the GP-RBF

model in Experiment 3. Dots show median parameter estimates per participant and boxplots show the median and inter-quartile

range.

how model performance and parameter estimates vary be-

tween different experiments. For this analysis, we focus on

the model with a GP-RBF learning component and a UCB

decision strategy because this strategy described participants

reasonably well in all of the experiments and come with the

additional benefit that the parameters are very interpretable.

For example, higher β-estimates are an indicator of more ex-

ploration behaviour, higher λ-estimates indicate further gen-

eralization, and higher noise parameters model an increasing

tendency to perceive the underlying function as noisy. 11

shows the mean estimates of this model across all three ex-

periments.

The overall predictive performance of the model was sig-

nificantly higher in the first experiment compared to the other

two experiments (t(152) = 4.52, p < 0.01, BF10 = 3.16).

There was no meaningful difference between the continuous-

linear (Experiment 2) and the continuous-non-linear tasks

(Experiment 3; t(105) = −0.28, p > 0.05, BF10 = 0.24).

Comparing the exploration-parameter β across experiments

revealed that there was a negative correlation between the

tendency to explore and the complexity of the task (ranked

from discrete to non-linear) with r = −0.18, p < 0.05 and

BF10 = 5.6. This means that participants appear to ex-

plore less as the task becomes more difficult. The assumed

noise term σ was estimated to be lower for the discrete task

than for the continuous-linear task (t(140) = 3.3, p < 0.01,

BF10 = 4.35), which in turn was smaller than the estimated

variance of the continuous-nonlinear task (t(163) = 2.22,

p < 0.05, BF10 = 4.7). Thus, the more difficult a task,

the higher the subjective level of noise seems to be. The

length-scale parameter λ did not differ significantly between

the three experiments (all p > 0.5, BF10 = 1.1). This in-

dicates that participants seem to approach diverse function

learning tasks with a similar assumption about the underlying

smoothness of the function. While this assumed smoothness

was less than the objective smoothness of of the functions

in the first two experiments, it was slightly higher in the last

experiment.

In summary, comparing parameter estimates of the GP-

RBF model combined with Upper Confidence Bound sam-

pling between experiments showed that (1) the model cap-

tures participants’ behaviour best for the more simple task

with discrete-feature contexts, (2) participants seem to ex-

plore less in more difficult tasks, (3) the length-scale param-

eter which reflects the assumed smoothness of the functions

seems to be relatively stable across tasks, indicating a general

approach to learning about unknown functions, and (4) the

continuous-non-linear experiment was hard for participants

as the model captured their behaviour less well and assumed

more noise overall.

Discussion and Conclusion

We have introduced the contextual multi-armed bandit

(CMAB) task as a paradigm to investigate behaviour in situa-

tions where participants have to learn functions and simulta-
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Figure 11. Mean estimates of the predictive performance R2, the exploration parameter β, the error variance σ, and the

length-scale λ across all experiments. Error bars represent the standard error of the mean.

neously make decisions according to the predictions of those

functions. The CMAB is a natural extension of both func-

tion learning and experience-based decision making in multi-

armed bandit tasks. In three experiments, we assessed peo-

ple’s performance in a CMAB task where a general context

affected the rewards of options differently (i.e. each option

had a different function relating contexts to rewards). Even

though learning multiple functions simultaneously is likely

to be more complex than learning a single function (as is

common in previous studies on function learning and multi-

ple cue probability learning), on average, participants were

able to perform better than expected if they were unable to

take the context into account. This was even the case in a

rather complex situation where the functions were sampled

from a general distribution of non-linear functions, although

performance dropped considerably compared to simpler en-

vironments with linear functions.

Modelling function learning as Gaussian process regres-

sion allowed us to incorporate both rule-based and similarity-

based learning in a single framework. In all three environ-

ments, participants appeared to learn according to Gaussian

process regression with a radial basis function (RBF) ker-

nel. This is a universal function learning engine that can

approximate any functional form and assumes the function

is relatively smooth. As it involves similarity-based gener-

alization from previous observations to current contexts, it

is similar to exemplar models which generalize by retrieving

previously memorized instances and weighting these accord-

ing to the similarity to the current context. We did not find

the strong bias towards linear functions that has been found

previously (e.g., Lucas et al., 2015). This could be due to

the increased complexity of learning multiple functions si-

multaneously, or due to participants learning the functions

with the purpose of making good decisions, rather than to

accurately predict the outcomes as such. While good perfor-

mance in standard function learning experiments requires ac-

curate knowledge of a function over its whole domain, more

course-grained knowledge usually suffices in CMAB tasks
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where it is enough to know which function has the maximum

output for the given context. Participants appeared to assume

the functions were less smooth than they actually were in

the two first experiments. Although they would be expected

to perform better if their assumed smoothness matched the

objective smoothness, participants would have had to learn

the smoothness from their observations, which is not a trivial

learning problem. If the objective smoothness is unknown,

approaching the task with a relatively less smooth kernel

may be wise, as it will lead to smaller learning errors than

overshooting and expecting relatively too smooth functions

(see Schulz, Speekenbrink, Hernández-Lobato, Ghahramani,

& Gershman, 2016; Sollich, 2001).

The results regarding the decision strategy were somewhat

less consistent. When the features comprising the contexts

were binary, people appeared to rely on a strategy in which

they focus on the probability of improving upon past out-

comes. In environments with continuous contextual features,

they appeared to balance expectations and uncertainty more

explicitly, relying on an upper confidence bound (UCB) ac-

quisition function. Participants may have adapted their de-

cision strategy to the task at hand. In a relatively simple

scenario with binary features and small number of unique

and distinct contexts, it is feasible to memorize the average

rewards and best alternative for each context, and trying to

maximally improve upon the current best option may there-

fore be an efficient strategy. As the environment becomes

more complicated, memorization seems less plausible, mak-

ing exploration in order to learn the functions more impor-

tant. The UCB strategy explicitly balances the expected re-

wards and its associated uncertainty, and has been interpreted

as a dynamic shaping bonus within the exploratory choice lit-

erature (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006).

It is currently the only acquisition function with provable

good regret (Srinivas, Krause, Kakade, & Seeger, 2012).

The environment involving non-linear functions sampled

from a Gaussian process was more difficult than the others,

and a proportion of participants appeared unable to learn the

functions. Their behaviour was more in line with a context-

blind learning strategy (Kalman filter) that treats the task

as a restless bandit in which the expected rewards fluctuate

over time but where these fluctuations are not predictable

from changes in context. The combination of a Kalman

filter learning model with a “probability of maximum util-

ity” decision strategy that described these participants best

has been found to describe participants behaviour well in an

actual restless bandit task Speekenbrink and Konstantinidis

(2015) and here might have indicated the limits of partici-

pants’ learning ability in our task.

The present experiments focused on a general context

which differentially affected the outcomes of options. This

is different than the CMAB task of Stojic et al. (2015), in

which the features had different values for each option, while

the function relating the contexts to rewards was the same for

each options. Future studies could combine these paradigms

and incorporate both option-specific (e.g., the type of restau-

rant) as well as general (e.g., the area in which the restaurants

are located) contextual features, possibly allowing these to

interact (e.g., a seafood restaurant might be preferable to a

pizzeria in a fishing village, but not a mountain village).

To make bring our task closer to to real-life decision situa-

tions, future research could adapt the reward functions to in-

corporate costs of taking actions or obtaining poor outcomes

(see Schulz, Huys, Bach, Speekenbrink, & Krause, 2016).

Research utilizing the CMAB paradigm also has the potential

to be applied to more practical settings, for example military

decision making, clinical decision making, or financial in-

vestment scenarios, to name just a few examples of decision

making that normally involve both learning a function and

making decisions based on expected outcomes. Incorporat-

ing context into models of reinforcement learning and deci-

sion making generally provides a fruitful avenue for future

research.
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