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Abstract

The literature on k-splittable flows, see Baier et al. (2002) [1], provides evidence on how con-
trolling the number of used paths enables practical applications of flows optimization in many
real-world contexts. Such a modeling feature has never been integrated so far in Quickest
Flows, a class of optimization problems suitable to cope with situations such as emergency
evacuations, transportation planning and telecommunication systems, where one aims to
minimize the makespan, i.e. the overall time needed to complete all the operations, see Pas-
coal et al. (2006) [2]. In order to bridge this gap, a novel optimization problem, the Quickest
Multicommodity k-Splittable Flow Problem (QMCkSFP ) is introduced in this paper. The
problem seeks to minimize the makespan of transshipment operations for given demands of
multiple commodities, while imposing restrictions on the maximum number of paths for each
single commodity. The computational complexity of this problem is analyzed, showing its
NP -hardness in the strong sense, and an original Mixed-Integer Programming formulation
is detailed. We propose a matheuristic algorithm based on a hybridized Very Large-Scale
Neighborhood Search that, utilizing the presented mathematical formulation, explores mul-
tiple search spaces to solve efficiently large instances of the QMCkSFP . High quality
computational results obtained on benchmark test sets are presented and discussed, show-
ing how the proposed matheuristic largely outperforms a state-of-the-art heuristic scheme
frequently adopted in path-restricted flow problems.

Keywords: Quickest flow, k-splittable flow, Matheuristics, Flows over time,
Multicommodity

1. Introduction

Network flows over time, also referred to as dynamic flows, are known to be among the
most suitable modeling tools to support decision making in those contexts where time be-
comes a relevant driver for planning strategies, such as emergency management, transporta-
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tion distribution, production scheduling, economic planning and many other more [3, 4]. The
scientific literature addresses several variants of dynamic flow optimization problems, based
on different objectives and features of the considered operational settings to be modeled.
A major class of optimization problems in this context is based on the notion of Quickest
Flow and seeks for the minimization of the overall amount of time required to transship a
given demand of flow between pairs of nodes on a capacitated network with transit times.
Such modeling approach turns out to be particularly appropriate when one is interested in
minimizing the completion time for a set of operations, for instance in Internet networks,
evacuation and transportation management [5, 6]. In this paper we are concerned with en-
hancing the modeling accuracy to increase the impact of the Quickest Flow optimization
problems in real-world contexts. More in detail, we focus on the need to account for real-
istic restrictions on the number of different paths utilized throughout the dynamic routing,
which is currently not addressed in the literature on flows over time. This aspect results
significant, for instance, in distribution planning problems where paths represent routes for
goods dispatching. In this situation, a number of planned routes exceeding the number of
available vehicles in the fleet would represent an impracticable solution [7]. Similarly, in the
context of emergency transport, it is desirable to obtain evacuation plans where the number
of subgroups for each population is limited, in order to prevent interferences, turbulences,
and congestions that may drastically affect the transportation process [6]. In telecommuni-
cation, the use of a very large number of paths for a quick transmission of data packets can
decrease the overall performance of the protocol, requiring a high cost for path maintenance
in the network devices and to reconstruct the original information at destination [8, 9]. All
the above mentioned examples show how imposing a realistic number of paths represents
an essential modeling need, which is not yet captured neither by the basic variant of the
Quickest Flow Problem [10], nor by the Quickest Path Problem [11]. Indeed, spreading the
flow on an unlimited and arbitrarily high number of different paths, as for the case of the
Quickest Flow Problem, does not represent a valid option in many real cases. On the other
hand, a limitation to only one single path for each source-destination pair, as for the Quickest
Path Problem, is often far too restrictive and equivalently not realistic.
In this work we aim at bridging this gap, introducing a novel dynamic flow problem, namely
the Quickest Multicommodity k-Splittable Flow Problem (QMCkSFP ). It explicitly ac-
counts for a limited number (k) of paths to be allowed in dynamic flow routing over a net-
work, combining the requirement of a quickest (dynamic) multicommodity flow with path
restrictions on each distinct commodity. In the next paragraph we provide an overview of
the main contributions on Quickest Flow optimization problems and static variants of the
k-Splittable Flow Problem.

Related results from the literature. The concept of flows over time, originally named as dy-

namic flows, has been introduced to integrate the temporal dimension into the mathematical
modellization on networks. Firstly posed by Ford and Fulkerson [12, 13] in 1958 and 1962, a
dynamic digraph presents for each arc a transit time and a capacity attribute. This setting
captures the amount of time required for the flow to travel through the arcs and the maximum
flow units that can enter each arc at every time instant. The time can be considered both as
continuous or discrete and the arc labels can vary over time or not. Relevant static problems
have been extended to the dynamic context asking for a completion of an optimal routing
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within a given fixed time horizon, see for example the Maximum Dynamic Flow Problem
and the Minimum Cost Dynamic Flow Problem [12, 13, 14]. Ford and Fulkerson [12, 13]
presented a general procedure to tackle dynamic problems as static ones in a specific network
named the Time Expanded Network (TEN), whose size linearly depends on the observed
time horizon. Any polynomial algorithm developed for the static environment can be applied
to solve the problem of interest in the TEN graph but might result in a pseudo-polynomial
algorithm due to possible non-linear dependence of the time horizon in the input size. The
same authors have shown how to efficiently construct a Maximum Dynamic s-t flow: a path
decomposition is first applied to the solution of a static minimum cost flow obtained in the
original network, then temporally repeated flows are sent among the decomposed paths as
long as there is enough time left to reach the destination t within the time horizon.
Novel problems find their roots right in the dynamic environment, for instance the Quickest
Transshipment Problem and the Earliest Arrival Flow Problem where the exact time hori-
zon of the process is not known a priori [15, 16, 17]. For a complete overview of dynamic
problems we refer to Aronson [3], Kotnyek [18], Köhler et al. [4], Skutella [19]. In many
general cases the NP -hardness of the previously mentioned problems has been proved: see
Klinz and Woeginger [14] for the Minimum Cost Dynamic Flow Problem, Hall et al. [20] for
the extension of dynamic problems to the multicommodity case. A relevant minsum-maxmin
bicriteria dynamic problem is the Quickest Flow Problem (QFP ) that asks for sending an s-t
flow taking into account the capacity limitations of inflow on the arcs and such that the last
unit of flow arrives at destination as quickly as possible, thus minimizing the makespan of
the process. The QFP was shown to be solvable in strongly polynomial time by Burkard et
al. [21] in 1993 by performing the Ford and Fulkerson’s repeated flows technique within the
Megiddo’s parametric search. A recent formulation of the QFP can be found in Lin [22]. Its
multicommodity extension, namely the QMCFP , presents heterogeneous flows that share
the same arc capacities while being transshipped. This additional request makes the prob-
lem weakly NP -hard [20, 23]. A FPTAS scheme for the QMCFP has been developed
by Fleischer [24]: it approaches the problem in condensed-time networks and provides an
approximated solution with performance guaranteed (1 + ǫ) with ǫ > 0. A related problem
is the Quickest Path Problem (QPP ). Extensively treated in the literature it forces the s-t
flow to be routed on a single path [2, 11]. The problem of k-quickest paths ranking has been
addressed by Pascoal et al. [2, 25, 26] and applied to the routing of data packets in Internet
networks in Cĺımaco et al. [5]. Melchiori and Sgalambro [6] considered its NP -hard multi-
commodity variant to solve instances of emergency transportation problems in an evacuation
scenario. The produced evacuation plans are easy to be implemented and able to drastically
reduce congestion phenomena.
The k-Splittable Flow Problem (kSFP ) has been widely studied on static networks start-
ing from the seminal paper of Baier et al. [1]. An instance of the Maximum s-t kSFP
requires to maximize the flow between a pair of nodes such that it can be decomposed in
at most k paths. The authors proved the strongly NP -hardness in directed graphs even
for the single commodity case and for different constant values of k. They further pre-
sented a 1/2−approximation algorithm for the problem. In Koch and Spenke [7] a com-
prehensive overview of approximation and complexity results for the Maximum kSFP is
presented. Through a reduction process from the 3SAT problem they extended the strongly
NP -hardness to undirected graphs and derived that the best bound on the approximability
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of the problem for all constant values k ≥ 2 equals 5/6, unless P = NP . Complexity in
the case of the parameter k being a function of the network parameters is investigated too.
Several arc and path-flow formulations for the single and multicommodity Maximum and
Minimum Cost kSFP can be found in the works of Truffot et al. [27], Truffot and Duhamel
[28] and Gamst and Petersen [29], where ad-hoc pricing and branching strategies within a
Branch&Price framework have been proposed for their resolution. A local search heuristic
for the Multicommodity Maximum kSFP has been designed by Gamst [30] in 2014. It
iteratively looks for a shortest path in a reduced capacitated graph and assigns flow to it
accordingly to one among three designed strategies that differently account for congestion
phenomena. The change of strategy occurs after k paths are identified with their respective
flows for each commodity. The solution with the maximum total routed flow obtained by
applying the three strategies is then returned. Jiao et al. [31] proposed three heuristics
for the bi-objective Multicommodity kSFP minimizing congestion and costs. The strate-
gies differ themselves on the type of relaxation applied to the original problem to obtain an
initial solution satisfying the commodity demands. Caramia and Sgalambro [32, 33] dealt
with the Maximum Concurrent kSFP , where the aim is to maximize the routable demand
fraction. They presented an exact algorithm based on Branch&Bound rules and a fast two
stage heuristic algorithm. The heuristic routes the flow using an augmenting path algorithm
and then performs a local search routine in order to reroute it.
The Randomized Rounding heuristic (RR) has been frequently employed to design approx-
imation algorithms for k-Splittable Flow Problems [34]. This is the case of the Unsplittable
Flow Problem (k = 1), the Minimum Congestion and the Maximum Concurrent kSFP
[9, 35, 36]. In particular the RR technique in presence of the balance condition assumption,
i.e. if the maximum demand is bounded from above by the minimum edge capacity, is the
best known approximated approach for the Maximum Concurrent kSFP . In our work we
will make use of the RR for comparison purposes. A more detailed description will be pro-
vided in Subsection 3.3.
The concept of path restrictions has been rarely addressed in dynamic networks. The only
result can be found in Martens and Skutella [37], where a (3 + 2

√
2)-approximation algo-

rithm for a single commodity Dynamic k-Splittable Flow Problem with a continuous time
parameter is provided.

Contribution of this paper. The contribution of this work is organized as follows in the re-
mainder of the paper. In Section 2 we introduce the Quickest Multicommodity k-Splittable
Flow Problem (QMCkSFP ), providing an original path-based Mixed-Integer Linear Pro-
gramming formulation for the problem. A computational complexity analysis is addressed
in the last part of the section, showing how the QMCkSFP falls into the class of strongly
NP -hard problems. In Section 3 a matheuristic algorithm designed ad-hoc to find efficiently
good quality solutions for large instances of the QMCkSFP is detailed. The algorithm is
a hybrid Very Large-Scale Neighborhood Search that employs a mathematical programming
strategy in its exploration routine. At each iteration a neighborhood is constructed by iden-
tifying a collection of paths for each commodity and then explored to optimality by solving,
via a MIP -solver, the path-based formulation of Section 2 restricted to the current selected
paths. The improvement search proceeds through a Variable Neighborhood Descent scheme
generating multiple large neighborhoods by increasing the cardinality of the identified sets.
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In Subsection 3.3 we present the Randomized Rounding heuristic (RR) utilized for com-
parison purposes providing implementation details of its adaptation from the static to the
dynamic environment. Section 4 presents the design of experiments and the computational
results. In Subsection 4.1 a proof-of-concept of our model is provided by solving a set of re-
duced size instances to optimality via a commercial MIP -solver making use of the introduced
path-based formulation. Subsection 4.2 is devoted to the evaluation of the matheuristic’s
performance. It starts with a detailed description of the benchmark test sets utilized in the
experiments and presents the tuning process carried out on the matheuristic’s parameters.
The next paragraph is dedicated to prove the correctness and effectiveness of the developed
algorithm. To this aim a comparison is performed on a set of small to medium-size instances
against the Quickest Multicommodity Flow Problem, i.e. the relaxation of the considered
problem with no upper bounds on the number of paths. In the last part of the subsection
we test performances of our matheuristic against those of the RR algorithm on two different
benchmark test sets, where the first collects networks of increasing size in terms of number
of nodes and arcs and the second network structures with an extremely high number of
commodities. Conclusions and future research aims are described in the last Section 5.

2. Problem definition, formulation and complexity

In the Quickest Multicommodity k-Splittable Flow Problem (QMCkSFP ), we are given
a dynamic digraph D = (V ,A), with V being the set of nodes and A the set of directed arcs;
each arc (i, j) is associated with labels defining a strictly positive capacity cij, i.e. the maxi-
mum number of flow units that can concurrently enter the arc during a time interval, and a
non-negative travel time λij, specifying the number of time intervals needed to traverse the
arc from the tail to the head. The planning horizon over which we observe the phenomena
is discretized into a finite set T of time intervals. During this period arc attributes are as-
sumed time-independent. A set H of commodities is given, each associated with an amount
of demand/population σh, a source node oh and a destination node dh.
The aim of the QMCkSFP is to find a routing where commodities are shipped through at
most k different paths (namely, paths differing from each other at least in one arc) and the
number of time instants needed to accomplish the process (makespan) is minimized. Paths
are not required to be different, but if they are, the number of different paths used by each
commodity cannot exceed the parameter k. Whilst computing the optimal dynamic routing
for the commodities, shared arc capacities have to be obeyed and the holdover of each pop-
ulation is allowed only at the respective source node. In the following we provide a complete
mathematical path-based Mixed-Integer Linear Programming formulation to describe the
introduced optimization problem, whose notation is extensively presented in the box.
The formulation presents fractional variables xh

pt representing flows over times for each com-
modity and path, being all paths for commodity h collected into the Ph set. Two sets of
binary variables, yht and zhp are introduced to allow the linearization of the makespan mini-
mization and to impose the k-splittable flow constraints, respectively. Recall each commodity
population might be divided into many subgroups to be routed on multiple paths and sched-
uled at diverse starting times, hence arriving at destination at different time instants. Each
arrival time t for commodity h is recorded by activating the related binary variable yht while
each path used by commodity h for demand transshipment enables the variable zhp .
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Notation:

V set of nodes,
A set of arcs,
T set of considered time intervals,
H set of commodities,
cij capacity of arc (i, j),
λij travel time/delay of arc (i, j),
(oh, dh, σh) source, destination, demand/population of commodity h,
Ph set of paths for the commodity h,
up = min(ij)∈p cij bottleneck of path p,
δpij binary indicator is 1 if arc (i, j) is traversed by path p,
lp =

∑
(ij)∈A δpijλij length of path p,

tpi time required to reach node i following path p,
Cht = min{σh,

∑
p∈Ph:(lp≤t) up} maximal population of h allowed to arrive at time t,

xh
pt amount of flow of commodity h leaving the source at time t through p,

yht binary variable is 1 if some flow of commodity h arrives at destination at time t,
zhp binary variable is 1 if path p is chosen by commodity h.

The objective function seeks to minimize the overall makespan, represented by the ζ vari-
able, i.e. the number of time instants necessary to complete the transshipment of all the
commodity demands. Constraints (2) identify for each commodity the time arrivals for each
subgroup of the population, imposing a lower bound to the total makespan. Constraints
(3) are used to couple flow variables x with time-related activation variables y: if no units
of flow of commodity h arrive at destination at time t, then the flow routed on any path
p of commodity h at time t − lp must be equal to zero. The maximum amount of flow of
commodity h that can reach its destination at a given time t, i.e. Cht, is here adopted as
a parameter to enhance constraints’ tightness. Constraints (4) force each commodity to use
at most k different paths. The amount of flow to be transshipped over the time horizon is
stated by Constraints (5) while arc capacities at each time step are accounted by Constraints
(6). Coupling Constraints (7) impose the amount of flow on a given path to be null on every
time instant if the path has not been selected.
A feasible dynamic flow for the QMCkSFP is therefore completely identified by a set of at
most k paths for each commodity h, namely {ph1 , ph2 , . . . , phk} with corresponding flow values
at each time step xh

pt satisfying the network arc capacities and the commodity demands.
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min ζ (1)

tyht ≤ ζ ∀h ∈ H, t ∈ T . (2)
∑

p∈Ph

xh
p(t−lp) ≤ Chty

h
t ∀h ∈ H, t ∈ T . (3)

∑

p∈Ph

zhp ≤ k ∀h ∈ H. (4)

∑

p∈Ph

∑

t∈T

xh
pt = σh ∀h ∈ H. (5)

∑

h∈H

∑

p∈Ph

δpijx
h
p(t−t

p
i )
≤ cij ∀(i, j) ∈ A, t ∈ T . (6)

xh
pt ≤ upz

h
p ∀h ∈ H, p ∈ Ph, t ∈ T . (7)

yht ∈ {0, 1} ∀h ∈ H, t ∈ T . (8)

zhp ∈ {0, 1} ∀h ∈ H, p ∈ Ph. (9)

xh
pt ≥ 0 ∀h ∈ H, p ∈ Ph, t ∈ T . (10)

ζ ≥ 0 (11)

Complexity. We prove the strongly NP -hardness of the above introduced QMCkSFP by
reduction from the Minimum Cost kSFP . The complexity of the latter can be easily deduced
from the works of Baier et al. [1] and Koch and Spenke [7] even for the single commodity
version and for any constant k ≥ 2. Figure 1 depicts the construction of the network used in
the reduction process, starting from the dynamic network on the left. Consider two nodes
s, t in it (intermediate nodes and arcs are purely indicative); a one-unit planning horizon
T = {0, 1}, rational capacities on the arcs and zero travel times except for the outgoing arcs
of s for which we set λsj = 1, ∀j ∈ δ+(s). Expand this digraph over the considered time
horizon applying the time-expansion procedure defined by Ford and Fulkerson [12, 13]. In
detail, construct two time layers by replicating the nodes of the original graph and rename
them with an apex according to the layer; depict each original arc as an arc with tail and
head in the same time layer iff its travel time is zero, for example (i, j) → (i0, j0) and
(i, j) → (i1, j1), otherwise as an arc connecting nodes at different time layers, for example
(s, j) → (s0, j1); link time replica of each node through an holdover dashed arc expressing
the possibility of keeping part of a population at the node for one unit of time. The figure
on the right is obtained by adding to the generated TEN graph an extra node v and by
connecting it with incoming arcs from nodes t0 and t1. We construct an instance of the single
commodity Minimum Cost kSFP in this static network setting a demand of σ units that
has to be transshipped from s0 to node v; costs are equal to zero except of arc (t1, v) with
cost equal to one. It is trivial to see that a feasible s0-v k-splittable flow of cost equal to σ
exists in the static digraph iff a quickest s-t k-splittable flow with makespan 1 exists within
the planning horizon. We can thus conclude that the single commodity Quickest kSFP is
strongly NP -hard, being at least as hard as the single commodity Minimum Cost kSFP .
The result is valid for the multicommodity version as well.
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Fig. 1: Reduction process: the initial dynamic digraph with travel times on the arcs on the left and the final
static digraph on the right.

3. Matheuristic approach description

The strongly NP -hard complexity proved in the previous section motivates the design of
efficient metaheuristic methods to cope with realistic size instances of the QMCkSFP and
to provide high quality solutions in reasonable computational times. The proposed algorithm
falls in the class of matheuristic techniques, integrating the path-based formulation described
in Section 2 into a metaheuristic framework. Matheuristics, sometimes called model-based

metaheuristics, represent nowadays an attractive topic in the field of optimization. Such
resolution techniques hybridize (meta)heuristics and mathematical programming algorithms
in several schemes [38, 39, 40, 41], thus combining time efficiency and methodological rigor.
In this section we provide a full description of our algorithm detailing its single features. We
reserve Subsection 3.3 for introducing the competing approach used in the computational
experiments.
The developed matheuristic builds on a MIP -based Very Large-Scale Neighborhood Search
employing a Variable Neighborhood Descent (V ND) scheme for constructing and visiting
multiple large neighborhood structures. Recall that the standard V ND technique introduced
by Hansen and Mladenovic [42] performs a local search on multiple neighborhood structures
ordered in list N s, s = 1, . . . , smax to enhance intensification and avoid stopping at local
optima. Any time an improved solution is found while exploring a certain neighborhood, the
V ND restarts the local search with the first neighborhood centered at the new incumbent;
otherwise it moves to the next structure in the list. Our hybridization of the standard
Very Large-Scale Neighborhood Search scheme occurs in the local search routine where a
mathematical programming method is embedded to explore the large search space. Indeed,
each neighborhood structure matches a restricted collection of paths for each commodity and
its exploration is realized by solving to optimality the related path-based model of Section 2
via calling a commercial MIP -solver, thus providing the local optimum in the current large
neighborhood. In the following paragraphs we detail information about the matheuristic,
whilst its pseudocode description is provided in Algorithm 1.
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Algorithm 1 Matheuristic for the QMCkSFP

Matheuristic’s Parameters:

L; length of the candidate paths’ lists

s-max; length of the neighborhood structures’ list

r-max; maximum number of re-iterations without improvement for each neighborhood

∆; growth factor of the neighborhood structures

Other Input Parameters:

k; flow split parameter

time-lim; matheuristic time limit
Output: (x̄, val(x̄)) a feasible solution and its makespan

Initialization

s := 1;
r := 1;
val(x̄) := MAX-VAL;

1: Generation of the candidate paths’ lists

for h ∈ H:
Lh ← Pascoal(L, h);

2: Construction of the initial solution

for h ∈ H:
Ph ← Lh[0 : k − 1];

(x0, val(x0))← solveMIP (Ph, val(x̄));
(x̄, val(x̄))← (x0, val(x0));

3: Improvement phase

do{
for h ∈ H: ⊲ construction of the neighborhood
N s

h ← generateNeigh(h, x̄, s,∆);
Ph ← N s

h;

(x, val(x))← solveMIP (Ph, val(x̄)); ⊲ exact local search

if (val(x) < val(x̄)): ⊲ acceptance decision
(x̄, val(x̄))← (x, val(x)); ⊲ re-centering
s← 1; ⊲ restart from initial neighborhood
r ← 1;

else:
if (r < r-max):

r← r + 1;
else if (s < s-max):

s← s + 1; ⊲ generate next neighborhood
else:

s← 1;
r← 1;

}while(time ≤ time-lim);
return (x̄, val(x̄));
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3.1. Generation of candidate paths and initial solution

Each neighborhood structure considered in our matheuristic is meant to identify a finite
collection of paths for each commodity. Thus, we restrict the number of candidates focusing
on a large set of promising paths for each commodity and let the neighborhood structures
extract their choices from it. More in detail, we generate for each commodity a finite list of
feasible paths ordered accordingly to their transmission time, i.e. the time required for trans-
shipping the demand along it. A path is considered as feasible if at least a unit of population
can complete the transshipment within the planned time horizon. The construction of the
lists is performed by adopting the lazy version of the Chen’s approach presented in Pascoal
et al. [2, 26] for ranking quickest loopless paths, together with the Yen’s algorithm [43]. The
utilized method keeps in memory an array of shortest loopless paths, each of them obtained
in a specific subgraph of the original graph. At every iteration the best shortest path in the
array w.r.t. the transmission time is selected and replaced with the next shortest loopless
path found in the related subgraph. The output is thus a list of quickest paths ranked in
increasing order of transmission time. We apply this algorithm to each commodity and get
the Lh lists (see Instruction 1 of Algorithm 1). The length L of each list must be calibrated
in order to balance the tradeoff between quality and speed.
The initial solution, see Instruction 2 of Algorithm 1, is build as follows: for each commodity
the first k paths in the respective candidates’ list Lh are selected, the path-based model
presented in Section 2 is fed with such paths by populating the Ph sets, the MIP -solver
is called, and finally the optimal solution is returned together with its associate makespan
value.

3.2. Improvement phase

The aim of this phase is to iteratively improve the current best solution by exactly
exploring multiple large search neighborhoods. It represents a crucial step that strongly
influences the result of the overall approach: as a rule of thumb, the better the generated
neighborhoods, the closer the solution to a global optimum. The process stops when a time
limit is reached and the best solution found is then returned.

Neighborhood structures. We construct a neighborhood by linking its structure to a finite
collection of feasible paths from the Lh lists for each commodity. In particular, all paths
used by the current incumbent (at most k for each commodity due to Constraints (4))
are included; additional paths are selected at random from the candidates’ lists until the
desired cardinality is fulfilled. Elements of a neighborhood are thus all the feasible solu-
tions to the QMCkSFP where only the identified paths can be used. We express a given
neighborhood centered at the incumbent solution x̄ as N s(x̄) =

⋃
h∈H N s

h(x̄), with each
N s

h(x̄) ↔ {ps1(x̄), ps2(x̄), . . . , psS−1
, psS}, being S the common cardinality. Moving forward

in the list of neighborhood structures the number of paths to be identified for each commod-
ity increases by a factor of the parameter k i.e. |N s

h(x̄)| = S = k (s∆+1) for all h ∈ H being
1 ≤ s ≤ s-max and ∆ a matheuristic’s parameter that permits to control the growth factor
of the neighborhood structures (see Instruction 3 of Algorithm 1). Note that the value of
the ∆ parameter affects the number of feasible paths to be identified when constructing a
new neighborhood in the list. Hence, a variation on its value allows to regulate and balance
speed and accuracy in the exploration of the search space.
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Exact local search. Once the collections of paths have been identified by the current neigh-
borhood, the Ph sets of the path-based formulation are updated accordingly, i.e. Ph =
N s

h(x̄), ∀h ∈ H. The generated model is then solved to optimality by means of a MIP -
solver. To speed up the execution times and perform a higher number of run, the large
search space is restricted imposing an upper bound on the makespan which must be at most
equal to val(x̄)−1. Note that by considering increasingly larger collections of paths, the size
of the model to be solved increases but the solver gets wider degrees of freedom to identify
an optimal multicommodity combination of routes and flow schedules over time.

Acceptance decision. The upper bound introduced in the path-based model guarantees that a
feasible solution returned by the exact local search represents a new incumbent for the original
QMCkSFP . In this case the new solution is accepted and the matheuristic algorithm
restarts with the first neighborhood structure in the list centered at the updated incumbent.
If no improvement is obtained in the current neighborhood, the r-max parameter is checked
to choose between re-generating a new neighborhood with the same size or skipping to the
next neighborhood structure. The s-max parameter states the end of the neighborhoods list
and once reached the algorithm is forced to restart from the first structure.

3.3. A competing approach

We adopt the Randomized Rounding algorithm (RR) as a competing approach to our
matheuristic on very large-size instances where optimal values are not available as a bench-
mark for quality solution. The RR algorithm was proposed by Raghavan and Tompson [34]
and frequently employed to tackle large instances of static k-Splittable Flow Problems, see
for example Bia loń [9] and Caramia and Sgalambro [33]. In the static framework the RR
initially solves the relaxation of the path-restricted original problem where no limitation on
the maximum number of paths is imposed, namely the free-flow relaxation. Then, it de-
composes the so obtained optimal flow into paths making use of the |A| × |H| × |T | Ford
and Fulkerson’s algorithm [44]. For each commodity, k of the decomposed paths are selected
at random with a probability equal to their assigned flow and the original k-splittable for-
mulation is employed to optimally reroute the commodities’ demands on them. The path
selection process is repeated to improve the quality of the current best solution till a maxi-
mum number of rounds or a time limit is reached.
We adapt the RR heuristic to our dynamic case as follows. The free-flow relaxation of the
problem, equivalent to the QMCFP , is solved to optimality through a binary search that
explores the given time horizon by iteratively looking for a feasible multicommodity flow on
a restricted TEN . The solution that accomplishes the transshipment in the minimum time
is then returned as the optimal solution to the free-flow relaxation QMCFP . The obtained
flow is decomposed into paths in the original dynamic graph each with its respective flow
over time, i.e. (p,

∑
t∈T xh

pt), p ∈ Ph. The steps described so far can be viewed as the RR
initialization procedure to generate a list of candidate paths. From our tests this approach
results to require longer, but still acceptable, times w.r.t. the Pascoal’s strategy adopted
in the first stage of our matheuristic. The RR initial solution is constructed by choosing
at random k of the decomposed paths for each commodity each path with a probability
proportional to its associated flow over time, by storing them into the Ph sets and by solving
to optimality the restricted path-flow formulation of the original QMCkSFP , see Section
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Table 1: Grid test set: b identifies the commodities’ combination and k varies in {1, . . . , 6}.

Instance nodes arcs commodities Instance nodes arcs commodities
g-2-b-k 50 185 1,2,3,4,5 g-7-b-k 175 710 6,12,18,24,30
g-3-b-k 75 290 2,4,6,8,10 g-8-b-k 200 815 7,14,21,28,35
g-4-b-k 100 395 3,6,9,12,15 g-9-b-k 225 920 8,16,24,32,40
g-5-b-k 125 500 4,8,12,16,20 g-10-b-k 250 1025 9,18,27,36,45
g-6-b-k 150 605 5,10,15,20,25

2. Note that Constraints (4) in this case are redundant. The improvement step, named here
the randomization phase, randomly reprocesses the k path selection and the related MIP
resolution. The heuristic stops when a time limit is reached, providing the best solution
found w.r.t. the objective function.

4. Computational Experiments

In this section we present computational experiments conducted to solve the QMCkSFP
with the proposed matheuristic. In all experiments we gave our algorithm 1 hour of running
time and 72 time instants as time horizon to perform the transshipment. In Subsection 4.1
we provide a proof-of-concept of our model, evaluating the performance of the matheuristic
against a Branch&Cut-based MIP -solver solving to optimality the developed path-based
formulation. This is done on a set of grid networks of reduced size. In Subsection 4.2
we present the three benchmark testbeds from the literature of static k-Splittable Flow
Problems that have been selected and adapted to our dynamic framework: the Grid test
set, the Dense test set [33] and the Carbin test set [45]. The matheuristic’s parameters
tuning conducted using the irace package is then discussed. In the next paragraphs we
present different experiments performed with the so-calibrated matheuristic: first on the
Grid test set we prove the correctness and effectiveness of our matheuristic using the free-
flow relaxation of the problem as a benchmark value. Second, on the Dense test set we assess
the scalability of the developed algorithm w.r.t. the size of the networks. Finally, we evaluate
the matheuristic’s performance when the number of commodities to be routed is extremely
high if compared to the size of the network structure: to this aim, the Carbin test set is
considered as a final benchmark in our computational framework. In the second and the
third set of experiments the matheuristic is compared against the RR algorithm described
in Subsection 3.3. All techniques are implemented in the C++ language and experiments
conducted using the ILOG CPLEX v.12.6.0.0 solver in parallel deterministic mode (up to
20 threads) on a 64bit Intel Xeon CPU at 2.80GHz with 64 GB memory, running Ubuntu
14.04.2.

4.1. Solving the path-based formulation to optimality on reduced size instances

In this first computational experiment we compare our algorithm against CPLEX solving
the QMCkSFP formulation presented in Section 2. The testbed is composed of a collection
of grid instances of reduced size, such that a complete enumeration of all the available paths
for each commodity is possible and the resulting dimension of the MIP s can be handled
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Table 2: Dense test set: the number of commodities is fixed to 5 and k varies in {1, . . . , 6}.

Instance nodes arcs Instance nodes arcs
d-10-k 10 45 d-100-k 100 4950
d-20-k 20 190 d-150-k 150 11175
d-30-k 30 435 d-200-k 200 19900
d-40-k 40 780 d-250-k 250 31125
d-50-k 50 1225 d-300-k 300 44850
d-60-k 60 1770 d-350-k 350 61075
d-70-k 70 2415 d-400-k 400 79800
d-80-k 80 3160 d-450-k 450 101025
d-90-k 90 4005 d-500-k 500 124750

Table 3: Carbin test set: a identifies the level of congestion and k varies in {1, . . . , 6}.

Instance nodes arcs commodities
Ba01-k 32 96 48
Ba03-k 32 96 48
Ba05-k 32 320 48
Ba07-k 32 320 48

by the solver. Each instance has been tested with 3 different combinations of commodities
and from the unsplittable to the 6-splittable case. CPLEX was given 3600 seconds of time
limit and 72 time instants as time horizon. The matheuristic’s parameters have been set
as follows: the length L of the lists of candidate paths to 100, the re-iteration parameter
r-max to 1000, the ∆ growth factor parameter to 1 and the length of the neighborhood struc-
tures’ list s-max to ⌊(L − k)/(k ∆)⌋. The complete results of the experiment are provided
in Appendix A where the name s-a-b-k in the first column identifies a grid instance with a
connected layers each with 3× 3 nodes and 24 directed arcs from 1 to 10 time periods long;
arcs within the same layer present a very large capacity while arcs connecting different layers
represent bottlenecks for the demand flows; the number of commodities equals b(a− 1) and
k stands for the flow split parameter. The next four columns recall features of the instance
in terms of the number of nodes and arcs, “nodes” and “arcs” columns, number of commodi-
ties, “h” column, and the flow split parameter, “k” column. In the next five columns some
key results obtained by our matheuristic are reported: the makespan of the initial solution,
“init sol” column, the time “t” in seconds needed for its construction, i.e. phase 1. and 2.
of Algorithm 1, the makespan of the best solution identified after the improvement phase,
“best sol” column, the time “t” in seconds needed for its identification and the number of
intermediate incumbents found during the one-hour local search procedure, “moves” column.
The last two columns present the optimal solution obtained by CPLEX “opt sol” and the
computational time “t” required for the resolution of the problem.
Results show that the best solution provided by our matheuristic matches the optimal solu-
tion returned by the exact method in all the considered instances. In 50% of the cases the
optimal solution is found by our matheuristic instantly in the initialization phase; in the rest
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of the cases it is reached in average after two intermediate moves and in less than one second
while CPLEX requires at least an order of magnitude higher of time. The significant increase
in the computational times in the last instance s-3-3-k is motivated by the large number of
variables CPLEX has to deal with in this specific network: one commodity presents around
44000 paths, a value that is almost 75 times larger than the average number of paths oc-
curred in the previous instances. Due to the need of feeding the formulation with an explicit
enumeration of the complete set of feasible paths for each commodity, an extended com-
parison on further higher-size instances would result impracticable. Nevertheless, with this
preliminary experiment we proved that our matheuristic is able to obtain the same optimal
solutions of CPLEX in considerably smaller computational times.

4.2. Evaluation of the matheuristic’s performance

We proceed to validate the proposed algorithm and test its performances in terms of so-
lution quality, scalability and computational times. We first present the features of the con-
sidered benchmark test sets, then we describe the thorough parameter tuning performed and
finally the experiments conducted on each type of test sets with the so-calibrated matheuris-
tic are analyzed in separate paragraphs.

Benchmark instances. Three benchmark testbeds from the literature of static k-Splittable
Flow Problems have been selected and adapted to our dynamic framework as follows. The
Grid test set includes 9 networks, each of them tested with 5 different combinations of
commodities and from the unsplittable setting to the 6-splittable case. Table 1 presents
features of the set: a grid instance named g-a-b-k has a connected layers each with 5×5 nodes
and 80 directed arcs from 1 to 10 time periods long; bottleneck arcs are placed only between
different layers. The type of the commodities’ combination and the flow split parameter are
identified by the b and k values, respectively. Instances have been calibrated in order to get
a fixed optimal value of 24 when solving the free-flow relaxation of the problem, i.e. the
QMCFP . Note that its optimal makespan is a valid lower bound for the QMCkSFP for
any value of k, as the multicommodity flow is unrestricted during the transshipment. A valid
certificate of optimality for our matheuristic is therefore a makespan value exactly equal to
24 time instants. The quantitative and qualitative analysis carried out on this experiment is
presented in “The Grid test set” paragraph.
Table 2 reports the features of the Dense test set, identifying each of the considered 18
instances as d-a-k with a representing the number of nodes and k the value of the flow split
parameter varying in {1, 2, . . . , 6}. As in a dense instance each node i is connected only to
node j s.t. i < j, the number of arcs results to be equal to a(a − 1)/2. Their lengths have
been randomly chosen between 1 and 10 time units. The number of commodities is fixed
to 5 in all the test set. We report our comprehensive analysis on this experiment in the
paragraph “The Dense test set”.
The Carbin test set is composed of 8 networks divided into two subgroups according to the
ratio mean capacity of arcs/mean demand of commodities : the Bs subgroup presents a small
congestion ratio while the Bl a large one. Each instance has 32 nodes, 48 commodities and
a number of arcs equal to 96 or 320. Arcs lengths range in the [1, 10] interval. The collection
is presented in Table 3 with each row Bab-k representing the Carbin instance with level a
of congestion ratio and k as flow the split parameter, always varying from the unsplittable
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to the 6-splittable case. Results are analyzed and interpreted in the last paragraph of the
current subsection.

Parameter tuning. A parameter tuning process has been conducted on our matheuristic,
tailored on the benchmark test sets to be solved. For this purpose the automatic algorithm
configuration method irace [46] has been applied to the following matheuristic’s parame-
ters: the length L of the candidates’ lists, the r-max parameter and the growth factor of
the neighborhood structures ∆. Their domains have been set to L = {50, 100, 150}, r-max

={500, 1000, 1500} and ∆ = {0.5, 1, 1.5}, respectively. The remaining matheuristic’s param-
eter s-max directly depends in turn on the cardinality L of the lists. Thus, all the parameters
affecting the matheuristic are involved in the tuning process.
For the configuration process we divided the Grid, Dense, and Carbin test sets into 9, 18 and
4 classes respectively, according to the instances’ number of nodes in the first two cases and
on the number of arcs and congestion ratio in the third case. The basic version of irace has
been called separately for each class with a budget of 500 runs for each tuning process and
a CPU time limit of 500 seconds for each run. The obtained optimal configurations of the
parameters are presented in Table 4 for each Dense class, d-class-x, Grid class, g-class-x and
Carbin class, B-class-x. From the tuning results we can evince that the irace applications
span the configuration combinations without exhibiting evident tendencies apart from the
case of the ∆ parameter assuming value 0.5 that appears in only one optimal setting out
of the 31 total classes. Also, the combination of (L,∆, r-max) = (100, 1, 500) in the Dense
classes is preferred among the other combinations in 28% of the cases. Note that the unique
instance class with optimal setting ∆ = 0.5 collects the smallest and simplest networks
among all the three considered test sets and this parameter value is combined with a lower
randomization parameter to speed up the exploration routine. In the next experiments the
matheuristic has been tuned accordingly to the obtained optimal settings.

The Grid test set. Appendix B collects the complete results of this experiment where the
free-flow relaxation is employed to provide a benchmark value to the matheuristic’s solutions.
Each row reports the instance features in terms of number of nodes, arcs, commodities and
flow split parameter in the“nodes”, “arcs”, “h”and“k”columns, respectively. Then it presents
the makespan value and the computational time for the initial and the best solutions provided
by our matheuristic, see the“init sol”, “t”, “best sol”and“t”column respectively. The number
of encountered improvement in the makespan value is reported in the“moves”column. Recall
that a makespan of 24 time instants represents a valid certificate of optimality being equal
to the lower bound. Hence, we mark these provably optimal solutions with the symbol ∗.
Table 5 collects some results aggregated by the flow split parameter value. Columns report
the averages of the above presented key indicators computed on the whole Grid test set. The
last column “gap (%)” shows the average distance of our best solutions from the lower bound
provided by the QMCFP .
The matheuristic provides, as expected, initial and best solutions with a makespan always
greater than or equal to the free-flow relaxation. The results get closer to this lower bound
when increasing the k parameter: in the unsplittable setting the optimal transshipment is
performed within 24 time instants only in 13.34% of the instances with an average gap of
20.65%. In the 2-splittable and 3-splittable cases the percentage of instances closing at
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Table 4: Irace tuning results for the L, ∆, r-max parameters

Instance class L ∆ r-max Instance class L ∆ r-max

d-class-1 100 0.5 500 g-class-1 100 1 500
d-class-2 100 1 1500 g-class-2 50 1.5 500
d-class-3 100 1 500 g-class-3 50 1 500
d-class-4 100 1 500 g-class-4 50 1.5 500
d-class-5 100 1 1500 g-class-5 50 1.5 1000
d-class-6 100 1 500 g-class-6 100 1 1000
d-class-7 100 1 500 g-class-7 100 1.5 1000
d-class-8 150 1 500 g-class-8 50 1 1500
d-class-9 50 1 1500 g-class-9 50 1.5 1000
d-class-10 50 1.5 1500 B-class-1 150 1.5 1500
d-class-11 150 1 500 B-class-2 100 1.5 1500
d-class-12 150 1.5 1500 B-class-3 50 1.5 1500
d-class-13 50 1.5 500 B-class-4 50 1 500
d-class-14 50 1.5 1500
d-class-15 100 1 1500
d-class-16 100 1.5 1000
d-class-17 100 1 500
d-class-18 50 1 1500

the lower bound grows to 42.23% and 82.23% respectively, with a consequent significant
reduction in the average gap that reaches 5.10% and 1.67%, respectively. This simply results
from the higher degree of freedom granted by the flow split parameter to route the flows.
In 28.89% of the instances the matheuristic has been able to construct an initial solution
with exactly the free-flow makespan, thus a provably optimal solution, without the need
of any improvement step. This reveals the efficacy in these specific cases of the employed
initialization procedure to perform the best path selection for each single commodity. In
the remaining instances, either the improvement phase identified better solutions during the
one-hour process, 87.50% of the cases, or it stayed sticked to the initial solution found with
a zero value in the “moves” column. Note that in the latter case the algorithm might have
potentially reached the optimal value but no guarantees can be ensured. Some instances,
see for example the g-3-5-k and g-10-4-k, present a considerable total improvement of the
initial solution with several intermediate incumbents. This suggests that there exists some
cases where the best path choice for each independent commodity performs bad for the
overall simultaneous multicommodity transshipment. From a computational time point of
view we can deduce that an increase in the dimension of the networks or in the number
of commodities within the same grid graph reflects in an increase of time to construct the
initial solution. Instead, a change in the flow split value has no influence on it, see the
second column in Table 5. This behavior can be motivated by the generation step of the
candidates’ lists performed for each single commodity in subgraphs of the original one and
independently of the flow split parameter value. Except for a few cases, the best solution
has been found by the matheuristic in the very early part of the search process, with an
average time always smaller than 4 minutes in all the k-splittable cases as shown in Table
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5. The general limited number of intermediate incumbents, in average around 2 moves, and
some statistics on the total number of iterations show that the matheuristic is capable of
performing a quick and efficient neighborhood search despite the growing dimension of the
problems, this also thanks to the introduction of the lower bound to speed up the MIP
problems. This preliminary analysis confirms the validity of the considered lower bound and
the correctness of our algorithm both in its initialization and final outputs.

Table 5: Aggregated results on the Grid test set

k init sol t (s) best sol t (s) moves gap (%)
1 35.64 3.22 28.96 222.16 2.20 20.65
2 30.44 3.18 25.22 58.22 2.29 5.10
3 27.33 3.31 24.40 156.09 1.76 1.67
4 26.60 3.42 24.20 126.84 1.47 0.83
5 26.11 3.44 24.09 21.60 1.24 0.37
6 25.76 3.56 24.07 61.27 1.07 0.28

Table 6: Aggregated results on the Dense test set

Matheuristic RR Comparison
k t (s) t (s) moves t (s) t (s) moves ratio ratio

init sol best sol init sol best sol init sol best sol
1 3.28 61.94 0.33 263.83 1020.50 3.17 0.8208 0.9556
2 3.33 19.06 1.22 96.50 1283.78 4.89 0.7363 0.8746
3 3.72 74.94 2.33 95.00 1651.61 5.83 0.7142 0.8468
4 3.61 232.61 2.72 94.50 1450.00 4.00 0.9038 0.8306
5 3.94 58.94 2.94 94.56 1511.72 4.11 0.9700 0.8285
6 3.94 65.61 3.28 94.28 786.22 2.44 1.0611 0.8017

Table 7: Aggregated results on the Carbin test set

Matheuristic RR Comparison
k t (s) t (s) moves t (s) t (s) moves ratio ratio

init sol best sol init sol best sol init sol best sol
1 2.13 588.5 3.38 12.13 784.25 4.63 1.0827 0.9255
2 2.13 75.00 2.00 12.13 171.63 2.88 0.9997 0.9717
3 3.13 515.38 1.38 11.88 167.88 2.38 0.9938 0.9725
4 4.75 368.13 1.13 12.13 419.63 2.00 1.0284 0.9950
5 5.13 346.38 0.75 12.13 74.25 2.13 1.0171 0.9950
6 5.63 101.00 0.75 12.25 158.63 0.88 1.0631 1.0033
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Fig. 2: Comparison of the two algorithms’ performance depending on the k parameter and on the number
of nodes.

The Dense test set. In this experiment we compare our algorithm against the RR heuristic
on the Dense test set. As for our algorithm, we gave the RR a time limit of one hour
for the improvement phase, a time horizon of 72 instants for rerouting the flows through
the selected paths and we fed its formulations with the current best upper bound to the
makespan. The complete results obtained with the two strategies are collected in tables and
reported in Appendix C. The first four columns present features of the instance: nodes,
arcs, the number h of commodities and the k parameter. The next five columns refer to our
matheuristic, while the remaining to the RR heuristic. For each resolution technique and each
instance we report the same values as in the Grid tables: the initial solution makespan and its
construction time, the best solution makespan and its computational time and the number
of intermediate incumbents. In Table 6 we report for both strategies some average results
aggregated by the flow split parameter: the average time to construct the initial solution,
“t(s) init sol” column, the one to identify the final best solution, “t(s) best sol” column,
and the average number of intermediate solutions, “moves” column. Further indicators are
presented in the last two columns“ratio init sol”and“ratio best sol”: each entry of the former
represents the ratio between the initial solution provided by our matheuristic and the one
provided by the RR averaged among all the complete Dense test set. Similarly, entries of the
latter express the same idea applied to the best final solutions identified by the algorithms.
From the results we can evince that our matheuristic considerably outperforms the RR w.r.t.
several aspects. In particular, in 76.85% of the cases the initial solution constructed by our
algorithm has a strictly better value than the one provided by the competing approach, it
becomes the 85.18% if we include equality. Moreover, this initial advantage appears more
significant on instances with a smaller value of the k flow split parameter. This preliminary
analysis shows the effectiveness of the initialization phase of our matheuristic: feeding the
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Fig. 3: Average ratio between the best solution and the solution found after a given time for both methods.

MIP problem with the top k ranked quickest paths for each commodity is better than relying
on a random selection based on the multicommodity free-flow relaxation’s choices. This can
be further confirmed by looking at those 24.07% of the instances where no improvements
were found by our matheuristic during the one-hour search, see for example almost all the
unsplittable cases d-a-1 or instances d-90-2 and d-300-2. Here the constructed initial solutions
might actually be optimal for the problems and the RR hasn’t been able to provide an initial
or even final solution with a strictly better makespan. We now focus on the computational
times required by the strategies to construct their initial solutions. Recall that in both
situations the initial construction time includes the generation of the lists of candidate paths
and the resolution of the first MIP problem with the selected k paths as input for each
commodity. Our matheuristic presents very fast initial times that slightly increase when
solving bigger instances but never exceed 15 seconds among all the testbed. On the other
side, the initial procedure of the RR heuristic requires longer computational times in 89.81%
of the instances and is much more sensible to the increase in the dimension of the considered
network. In particular, the resolution of the free-flow relaxation reaches just itself a maximum
of 6 minutes in the bigger network. This different computational effort is motivated by the
additional need of the RR heuristic of associating to each candidate path a flow value in
order to deduce probabilities for the random selection procedure. From Table 6 we observe
how a variation in the flow split parameter does not substantially affect the initial times
except for the unsplittable case with the RR strategy, see in particular instances d-70-1,
d-250-1, d-450-1 and d-500-1. In these cases, the competing approach presents problems in
finding a feasible unsplittable flow within 72 time instants requiring several reiteration of
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the selection and resolution process. Such repeated infeasibilities suggest that the random
selection of the paths is an inadvisable strategy in the unsplittable case. Some experiments
were further conducted providing the RR a longer time horizon to reduce/avoid this initial
infeasibility. This resulted in a faster initialization process but no improvements w.r.t. the
final best solution were achieved during the one-hour process.
The improvement phase of our matheuristic reveals its potential, too: despite the few cases of
initial disadvantage, the matheuristic always ends up with an equal or better final solution
(strictly in 80.56% of the cases). Thus, we can deduce how the lists of paths collects a
set of adequate and high-quality candidates that can be efficiently adopted to improve the
solutions. Moreover, the sequential enlargement of the neighborhood, controlled by s and
∆, and its construction rule allow for a better and fast exploration of the large feasible
region. In terms of computational time efficiency, our method needed substantially less time
to identify the final best value in almost all instances, particularly in the 2-splittable case as
shown by the aggregated results in Table 6. Within 32 minutes the improvement phase of the
matheuristic has already found all the final best solutions (95.37% even within 10 minutes),
while in 32.41% of the instances the RR is still conducting a fruitful randomization search.
The graphics in Fig. 2 represent the behavior of the algorithms depending on the k parameter
and on the size of the digraph in terms of number of nodes, case 2a and 2b respectively. We
report on the y-axis the ratio between the final best solution provided by our matheuristic
and the one by the RR, averaged among all considered Dense instances. Note that case 2a
graphically represents the values of the last column of Table 6. We can observe a decreasing
trend as the parameters increase, with more regularity in the left case, with an average
ratio almost always under value 1.0. This means that the overall box implemented by our
matheuristic, both construction technique and improvement rule, is substantially less affected
by the increase in the number k of allowed paths and in the dimension of the network
w.r.t. the competing approach scheme to provide good final solutions to the problem. This
confirms the scalability and robustness of our proposed approach. Figure 3 analyses how
strategies achieved neighbor improvements over the one-hour time limit. Here the y-axis
shows the ratio between the final best solution and the current best solution at a given time,
averaged among all considered instances (we report values starting from 10 minutes; note
that only after 1600 seconds the RR heuristic founds an initial solution to all the Dense
instances). We can observe that the matheuristic presents a faster overall convergence to its
best solution, with an initial ratio already higher than 0.99. These results are strictly related
to the neighborhood construction rules employed by the methods: relying on a ranked list of
quickest paths instead of a complete randomization selection results a more efficient policy
that allows to get good solutions in shorter times.

The Carbin test set. Instances in this test set presents a number of commodities which is
high if compared to the network size. Such a final experiment is therefore carried out to
stress test the algorithms on instances where a relevant number of commodities must be si-
multaneously routed in the dynamic network. Results of our algorithm and of the competing
RR approach are collected in tables with the same layout as for the Dense case, see Table 7
for the aggregated results and Appendix D for the complete results.
In 50% of the cases our algorithm finds a strictly better initial solution with an additional
22.92% where both initialization procedures identify a solution with the same makespan
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value. The remaining cases of initial advantage of the RR mainly happen in the most con-
gested networks Bs05 and Bs07, see values greater than 1.0 in the “ratio init sol” column
of Table 7. Despite this, our matheuristic ends up with a better or equal final solution in
91.66% of the instances, revealing thus the capabilities of its improvement phase. In only
four instances the RR prevails, see network Bl01, identifying a makespan equal to 38 while
our matheuristic is stuck at solutions with objective value 39. A further insight is given by
the “ratio best sol” column in Table 7: in the 6-splittable group of instances the RR heuristic
outperforms on the average the matheuristic. In all the other cases our algorithm dominates.
In terms of computational times the initialization and exploration procedures adopted in the
matheuristic are faster than those of the RR in 93.75% and 83.33% of the cases, respectively.
Moreover, according to the aggregated results, our matheuristic is faster on the average in
constructing the initial solution for all k-splittable cases. The best average time to compute
the final solution occurs when the flow split parameter equals two.
Overall, the experiment confirms a better performance of the matheuristic, albeit its ad-
vantage on the competing RR approach turns out to be somewhat reduced on this test set
when compared with the results on the Dense instances. Such behavior could be motivated
by a faster growth of the matheuristic MIP problems size when increasing the number of
commodities in combination with s, ∆ and k.

5. Conclusions and outlook

In this work a novel dynamic flow problem is introduced, the Quickest Multicommodity
k-Splittable Flow Problem (QMCkSFP ), integrating a number of concepts and modeling
features from the literature on k-splittable flows within the class of Quickest Flow optimiza-
tion problems. An increased amount of real-world applications enabled by k-splittable flows
motivate the interest in the proposed problem, which accounts for realistic restrictions on
the number of different paths utilized throughout the dynamic routing, a feature that had
not been previously addressed in the literature on flows over time. The strongly NP -hard
complexity of the problem is proved and a path-based Mixed-Integer Linear Programming
formulation is provided and embedded within a matheuristic approach, designed ad-hoc to
solve efficiently large instances of the QMCkSFP . The proposed matheuristic is a Very
Large-Scale Neighborhood Search algorithm, hybridized in its exploration routine with an
exact mathematical programming technique. Following a Variable Neighborhood Descent
scheme, the algorithm iteratively constructs large neighborhoods identifying for each com-
modity a collection of paths with a given cardinality. The elements of the collections are
selected, according to a set of heuristic rules, from a large list of promising quickest paths
generated during the initialization phase. The matheuristic explores to optimality each con-
structed neighborhood by means of the presented path-based formulation, fed with such
restricted collections of paths, and the best solution found during the overall computational
process is finally returned.
The computational experience presented in the paper provides an exhaustive proof-of-concept
for the correctness and effectiveness of the proposed matheuristic resolution strategy and the
associated MIP formulation, gaining provably optimal solutions on some small to medium-
size instances. In some cases, the optimality of the solutions could not be checked due the
lack of benchmarks: suitable exact approaches such as those based on column generation
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could be considered in the future as a tool to certify optimality for such solutions. On very
large-size benchmark instances and even in presence of a large number of commodities, the
matheuristic reveals its high level of efficiency, outperforming the solution quality and com-
putational times of the considered competing approach, which is based on the Randomized
Rounding heuristic, a state-of-the-art scheme for path-restricted flow optimization problems.
A relevant future development for this research is represented by the adoption of the proposed
QMCkSFP formulation and the associated matheuristic algorithm to cope with real-world
problems in evacuation management and transportation planning. This could require an
adaptation of the problem to account for specific further operational features, hence posing
new challenges from the modeling and algorithmic perspective.
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Appendix A.

Instance Matheuristic CPLEX
nodes arcs h k init t best t moves opt t

sol (s) sol (s) sol (s)
s-2-1-1 18 57 1 1 31 0 31 0 0 31 24
s-2-1-2 18 57 1 2 22 0 21 0 1 21 9
s-2-1-3 18 57 1 3 19 0 19 0 0 19 10
s-2-1-4 18 57 1 4 19 0 18 0 1 18 9
s-2-1-5 18 57 1 5 19 0 18 0 1 18 8
s-2-1-6 18 57 1 6 19 0 18 0 1 18 8
s-2-2-1 18 57 2 1 37 0 37 0 0 37 35
s-2-2-2 18 57 2 2 24 0 24 0 0 24 25
s-2-2-3 18 57 2 3 24 0 22 0 2 22 24
s-2-2-4 18 57 2 4 24 0 21 0 3 21 23
s-2-2-5 18 57 2 5 22 0 21 0 1 21 22
s-2-2-6 18 57 2 6 21 0 21 0 0 21 24
s-2-3-1 18 57 3 1 35 0 35 0 0 35 92
s-2-3-2 18 57 3 2 24 0 24 0 0 24 43
s-2-3-3 18 57 3 3 23 0 20 0 2 20 41
s-2-3-4 18 57 3 4 23 0 19 2 4 19 40
s-2-3-5 18 57 3 5 23 0 19 3 4 19 39
s-2-3-6 18 57 3 6 20 0 19 1 1 19 41
s-3-1-1 27 90 2 1 23 0 23 0 0 23 32
s-3-1-2 27 90 2 2 23 0 19 0 2 19 24
s-3-1-3 27 90 2 3 19 0 19 0 0 19 22
s-3-1-4 27 90 2 4 19 0 19 0 0 19 23
s-3-1-5 27 90 2 5 19 0 19 0 0 19 22
s-3-1-6 27 90 2 6 19 0 19 0 0 19 23
s-3-2-1 27 90 4 1 38 0 38 0 0 38 56
s-3-2-2 27 90 4 2 38 0 33 0 1 33 56
s-3-2-3 27 90 4 3 38 0 31 2 3 31 54
s-3-2-4 27 90 4 4 33 0 30 0 2 30 54
s-3-2-5 27 90 4 5 33 0 30 0 3 30 54
s-3-2-6 27 90 4 6 31 0 30 0 1 30 53
s-3-3-1 27 90 6 1 42 3 35 7 2 35 66662
s-3-3-2 27 90 6 2 29 0 29 0 0 29 82717
s-3-3-3 27 90 6 3 28 0 28 0 0 28 78536
s-3-3-4 27 90 6 4 28 0 28 0 0 28 75298
s-3-3-5 27 90 6 5 28 0 28 0 0 28 75411
s-3-3-6 27 90 6 6 28 1 28 1 0 28 79853

Table A.8: Experiments on reduced size instances
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Appendix B.

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-2-1-1 50 185 1 1 32 0 32 0 0
g-2-1-2 50 185 1 2 32 0 24∗ 1 4
g-2-1-3 50 185 1 3 28 0 24∗ 0 3
g-2-1-4 50 185 1 4 24∗ 0 24∗ 0 0
g-2-1-5 50 185 1 5 24∗ 0 24∗ 0 0
g-2-1-6 50 185 1 6 24∗ 0 24∗ 0 0
g-2-2-1 50 185 2 1 36 0 36 0 0
g-2-2-2 50 185 2 2 27 0 26 0 1
g-2-2-3 50 185 2 3 24∗ 0 24∗ 0 0
g-2-2-4 50 185 2 4 24∗ 0 24∗ 0 0
g-2-2-5 50 185 2 5 24∗ 0 24∗ 0 0
g-2-2-6 50 185 2 6 24∗ 0 24∗ 0 0
g-2-3-1 50 185 3 1 35 0 35 0 0
g-2-3-2 50 185 3 2 27 0 26 1 1
g-2-3-3 50 185 3 3 26 1 25 1 1
g-2-3-4 50 185 3 4 25 0 24∗ 21 1
g-2-3-5 50 185 3 5 25 1 24∗ 2 1
g-2-3-6 50 185 3 6 25 0 24∗ 2 1
g-2-4-1 50 185 4 1 31 0 31 0 0
g-2-4-2 50 185 4 2 31 1 26 1 4
g-2-4-3 50 185 4 3 29 0 24∗ 8 5
g-2-4-4 50 185 4 4 27 1 24∗ 8 3
g-2-4-5 50 185 4 5 27 0 24∗ 0 2
g-2-4-6 50 185 4 6 27 1 24∗ 4 3
g-2-5-1 50 185 5 1 44 0 34 1 2
g-2-5-2 50 185 5 2 28 0 28 0 0
g-2-5-3 50 185 5 3 26 0 26 0 0
g-2-5-4 50 185 5 4 26 0 25 1 1
g-2-5-5 50 185 5 5 26 1 24∗ 1 1
g-2-5-6 50 185 5 6 26 1 24∗ 1 1
g-3-1-1 75 290 2 1 37 0 37 0 0
g-3-1-2 75 290 2 2 37 0 26 1 6
g-3-1-3 75 290 2 3 26 0 24∗ 2 2
g-3-1-4 75 290 2 4 26 0 24∗ 0 2
g-3-1-5 75 290 2 5 24∗ 0 24∗ 0 0
g-3-1-6 75 290 2 6 24∗ 0 24∗ 0 0
g-3-2-1 75 290 4 1 40 0 34 1 2
g-3-2-2 75 290 4 2 40 0 27 1 4
g-3-2-3 75 290 4 3 30 0 26 0 2
g-3-2-4 75 290 4 4 30 0 25 1 3
g-3-2-5 75 290 4 5 30 0 24∗ 1 5
g-3-2-6 75 290 4 6 26 0 24∗ 1 2

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-3-3-1 75 290 6 1 28 0 28 0 0
g-3-3-2 75 290 6 2 28 0 24∗ 1 3
g-3-3-3 75 290 6 3 28 0 24∗ 1 2
g-3-3-4 75 290 6 4 28 0 24∗ 1 2
g-3-3-5 75 290 6 5 24∗ 0 24∗ 0 0
g-3-3-6 75 290 6 6 24∗ 0 24∗ 0 0
g-3-4-1 75 290 8 1 48 0 32 7 6
g-3-4-2 75 290 8 2 40 0 26 68 4
g-3-4-3 75 290 8 3 40 1 24∗ 98 5
g-3-4-4 75 290 8 4 34 0 24∗ 17 4
g-3-4-5 75 290 8 5 34 0 24∗ 8 3
g-3-4-6 75 290 8 6 34 0 24∗ 1 3
g-3-5-1 75 290 10 1 67 0 39 10 9
g-3-5-2 75 290 10 2 56 0 29 123 7
g-3-5-3 75 290 10 3 35 1 26 15 5
g-3-5-4 75 290 10 4 33 1 25 2 4
g-3-5-5 75 290 10 5 30 0 24∗ 72 4
g-3-5-6 75 290 10 6 30 1 24∗ 5 4
g-4-1-1 100 395 3 1 30 1 30 1 0
g-4-1-2 100 395 3 2 30 0 25 1 4
g-4-1-3 100 395 3 3 30 0 24∗ 1 3
g-4-1-4 100 395 3 4 30 0 24∗ 1 4
g-4-1-5 100 395 3 5 25 0 24∗ 0 1
g-4-1-6 100 395 3 6 25 0 24∗ 1 1
g-4-2-1 100 395 6 1 42 1 42 1 0
g-4-2-2 100 395 6 2 42 1 33 3 4
g-4-2-3 100 395 6 3 34 1 30 1 1
g-4-2-4 100 395 6 4 34 1 28 7 5
g-4-2-5 100 395 6 5 34 1 27 24 3
g-4-2-6 100 395 6 6 31 2 27 9 3
g-4-3-1 100 395 9 1 40 0 33 2 4
g-4-3-2 100 395 9 2 32 0 27 1 1
g-4-3-3 100 395 9 3 32 1 25 4 4
g-4-3-4 100 395 9 4 30 1 24 3 2
g-4-3-5 100 395 9 5 26 1 24∗ 3 2
g-4-3-6 100 395 9 6 26 0 24∗ 1 1
g-4-4-1 100 395 12 1 55 1 31 55 7
g-4-4-2 100 395 12 2 51 1 24∗ 65 7
g-4-4-3 100 395 12 3 27 1 24∗ 1 1
g-4-4-4 100 395 12 4 26 1 24∗ 1 1
g-4-4-5 100 395 12 5 25 2 24∗ 2 1
g-4-4-6 100 395 12 6 25 1 24∗ 1 1

Table B.9: Experiments on the Grid test set
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Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-4-5-1 100 395 15 1 64 1 43 3 2
g-4-5-2 100 395 15 2 37 1 30 25 2
g-4-5-3 100 395 15 3 31 2 26 68 4
g-4-5-4 100 395 15 4 31 3 25 45 3
g-4-5-5 100 395 15 5 30 1 24∗ 563 4
g-4-5-6 100 395 15 6 28 2 24∗ 138 3
g-5-1-1 125 500 4 1 27 0 27 0 0
g-5-1-2 125 500 4 2 27 0 25 1 2
g-5-1-3 125 500 4 3 25 0 24∗ 1 1
g-5-1-4 125 500 4 4 24∗ 0 24∗ 0 0
g-5-1-5 125 500 4 5 24∗ 0 24∗ 0 0
g-5-1-6 125 500 4 6 24∗ 0 24∗ 0 0
g-5-2-1 125 500 8 1 24∗ 1 24∗ 1 0
g-5-2-2 125 500 8 2 24∗ 1 24∗ 1 0
g-5-2-3 125 500 8 3 24∗ 0 24∗ 0 0
g-5-2-4 125 500 8 4 24∗ 1 24∗ 1 0
g-5-2-5 125 500 8 5 24∗ 1 24∗ 1 0
g-5-2-6 125 500 8 6 24∗ 1 24∗ 1 0
g-5-3-1 125 500 12 1 28 2 28 2 0
g-5-3-2 125 500 12 2 25 1 25 1 0
g-5-3-3 125 500 12 3 25 1 25 1 0
g-5-3-4 125 500 12 4 25 1 25 1 0
g-5-3-5 125 500 12 5 24∗ 1 24∗ 1 0
g-5-3-6 125 500 12 6 24∗ 1 24∗ 1 0
g-5-4-1 125 500 16 1 27 1 27 1 0
g-5-4-2 125 500 16 2 26 2 24∗ 7 2
g-5-4-3 125 500 16 3 26 2 24∗ 3 1
g-5-4-4 125 500 16 4 24∗ 1 24∗ 1 0
g-5-4-5 125 500 16 5 24∗ 1 24∗ 1 0
g-5-4-6 125 500 16 6 24∗ 2 24∗ 2 0
g-5-5-1 125 500 20 1 39 2 27 464 7
g-5-5-2 125 500 20 2 31 2 25 169 5
g-5-5-3 125 500 20 3 26 2 24∗ 9 2
g-5-5-4 125 500 20 4 25 2 24∗ 6 1
g-5-5-5 125 500 20 5 25 2 24∗ 2 1
g-5-5-6 125 500 20 6 24∗ 2 24∗ 2 0
g-6-1-1 150 605 5 1 29 0 29 0 0
g-6-1-2 150 605 5 2 27 0 25 1 2
g-6-1-3 150 605 5 3 25 1 24∗ 1 1
g-6-1-4 150 605 5 4 24∗ 0 24∗ 0 0
g-6-1-5 150 605 5 5 24∗ 1 24∗ 1 0
g-6-1-6 150 605 5 6 24∗ 0 24∗ 0 0
g-6-2-1 150 605 10 1 27 1 27 1 0
g-6-2-2 150 605 10 2 25 2 25 2 0
g-6-2-3 150 605 10 3 25 1 24∗ 7 1
g-6-2-4 150 605 10 4 25 2 24∗ 2 1
g-6-2-5 150 605 10 5 25 2 24∗ 3 1
g-6-2-6 150 605 10 6 24∗ 2 24∗ 2 0
g-6-3-1 150 605 15 1 33 2 28 5 3
g-6-3-2 150 605 15 2 29 2 25 30 3
g-6-3-3 150 605 15 3 27 2 24∗ 192 3
g-6-3-4 150 605 15 4 25 2 24∗ 5 1
g-6-3-5 150 605 15 5 25 2 24∗ 2 0
g-6-3-6 150 605 15 6 24∗ 2 24∗ 2 0
g-6-4-1 150 605 20 1 30 3 26 4 2
g-6-4-2 150 605 20 2 24∗ 3 24∗ 3 0
g-6-4-3 150 605 20 3 24∗ 3 24∗ 3 0
g-6-4-4 150 605 20 4 24∗ 3 24∗ 3 0
g-6-4-5 150 605 20 5 24∗ 3 24∗ 3 0
g-6-4-6 150 605 20 6 24∗ 3 24∗ 3 0

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-6-5-1 150 605 25 1 40 3 28 132 4
g-6-5-2 150 605 25 2 33 3 25 99 3
g-6-5-3 150 605 25 3 29 4 24∗ 833 4
g-6-5-4 150 605 25 4 29 4 24∗ 25 3
g-6-5-5 150 605 25 5 29 3 24∗ 10 2
g-6-5-6 150 605 25 6 29 4 24∗ 10 3
g-7-1-1 175 710 6 1 26 3 26 3 0
g-7-1-2 175 710 6 2 24∗ 2 24∗ 2 0
g-7-1-3 175 710 6 3 24∗ 2 24∗ 2 0
g-7-1-4 175 710 6 4 24∗ 2 24∗ 2 0
g-7-1-5 175 710 6 5 24∗ 2 24∗ 2 0
g-7-1-6 175 710 6 6 24∗ 2 24∗ 2 0
g-7-2-1 175 710 12 1 27 4 27 4 0
g-7-2-2 175 710 12 2 27 3 25 40 2
g-7-2-3 175 710 12 3 27 4 24∗ 15 3
g-7-2-4 175 710 12 4 27 4 24∗ 10 2
g-7-2-5 175 710 12 5 27 4 24∗ 59 3
g-7-2-6 175 710 12 6 27 6 24∗ 9 3
g-7-3-1 175 710 18 1 32 4 24∗ 37 4
g-7-3-2 175 710 18 2 25 4 24∗ 7 1
g-7-3-3 175 710 18 3 24∗ 4 24∗ 4 0
g-7-3-4 175 710 18 4 24∗ 4 24∗ 4 0
g-7-3-5 175 710 18 5 24∗ 5 24∗ 5 0
g-7-3-6 175 710 18 6 24∗ 4 24∗ 4 0
g-7-4-1 175 710 24 1 41 7 27 226 6
g-7-4-2 175 710 24 2 35 7 25 262 4
g-7-4-3 175 710 24 3 29 7 25 16 3
g-7-4-4 175 710 24 4 29 7 24∗ 3321 4
g-7-4-5 175 710 24 5 29 7 25 24 4
g-7-4-6 175 710 24 6 29 7 24∗ 2333 3
g-7-5-1 175 710 30 1 37 9 24∗ 2362 7
g-7-5-2 175 710 30 2 32 10 24∗ 16 3
g-7-5-3 175 710 30 3 24∗ 9 24∗ 9 0
g-7-5-4 175 710 30 4 24∗ 9 24∗ 9 0
g-7-5-5 175 710 30 5 24∗ 9 24∗ 9 0
g-7-5-6 175 710 30 6 24∗ 9 24∗ 9 0
g-8-1-1 200 815 7 1 26 3 26 3 0
g-8-1-2 200 815 7 2 26 3 24∗ 15 2
g-8-1-3 200 815 7 3 26 3 24∗ 4 2
g-8-1-4 200 815 7 4 26 3 24∗ 6 2
g-8-1-5 200 815 7 5 26 3 24∗ 5 2
g-8-1-6 200 815 7 6 26 3 24∗ 5 2
g-8-2-1 200 815 14 1 28 6 27 31 1
g-8-2-2 200 815 14 2 27 5 24∗ 10 2
g-8-2-3 200 815 14 3 27 5 24∗ 6 2
g-8-2-4 200 815 14 4 27 5 24∗ 6 2
g-8-2-5 200 815 14 5 27 6 24∗ 7 2
g-8-2-6 200 815 14 6 27 6 24∗ 7 2
g-8-3-1 200 815 21 1 26 8 25 162 1
g-8-3-2 200 815 21 2 26 8 24∗ 271 2
g-8-3-3 200 815 21 3 26 8 24∗ 113 2
g-8-3-4 200 815 21 4 25 8 24∗ 8 1
g-8-3-5 200 815 21 5 25 8 24∗ 9 1
g-8-3-6 200 815 21 6 25 8 24∗ 9 1
g-8-4-1 200 815 28 1 34 10 27 14 5
g-8-4-2 200 815 28 2 25 10 24∗ 15 1
g-8-4-3 200 815 28 3 25 10 24∗ 12 1
g-8-4-4 200 815 28 4 25 10 24∗ 27 1
g-8-4-5 200 815 28 5 25 11 24∗ 12 1
g-8-4-6 200 815 28 6 25 11 24∗ 16 1
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Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-8-5-1 200 815 35 1 57 14 27 1148 6
g-8-5-2 200 815 35 2 35 14 25 35 3
g-8-5-3 200 815 35 3 35 14 24∗ 1267 5
g-8-5-4 200 815 35 4 32 13 24∗ 1369 3
g-8-5-5 200 815 35 5 32 14 24∗ 43 4
g-8-6-5 200 815 35 6 32 15 24∗ 71 3
g-9-1-1 225 920 8 1 24∗ 2 24∗ 2 0
g-9-1-2 225 920 8 2 24∗ 1 24∗ 1 0
g-9-1-3 225 920 8 3 24∗ 1 24∗ 1 0
g-9-1-4 225 920 8 4 24∗ 2 24∗ 2 0
g-9-1-5 225 920 8 5 24∗ 2 24∗ 2 0
g-9-1-6 225 920 8 6 24∗ 2 24∗ 2 0
g-9-2-1 225 920 16 1 25 4 25 4 0
g-9-2-2 225 920 16 2 24∗ 3 24∗ 3 0
g-9-2-3 225 920 16 3 24∗ 3 24∗ 3 0
g-9-2-4 225 920 16 4 24∗ 4 24∗ 4 0
g-9-2-5 225 920 16 5 24∗ 4 24∗ 4 0
g-9-2-6 225 920 16 6 24∗ 4 24∗ 4 0
g-9-3-1 225 920 24 1 31 5 27 7 2
g-9-3-2 225 920 24 2 26 5 25 14 1
g-9-3-3 225 920 24 3 26 5 24∗ 1567 2
g-9-3-4 225 920 24 4 26 6 24∗ 102 2
g-9-3-5 225 920 24 5 25 6 24∗ 14 1
g-9-3-6 225 920 24 6 25 5 24∗ 29 1
g-9-4-1 225 920 32 1 36 7 26 38 2
g-9-4-2 225 920 32 2 27 7 24∗ 9 2
g-9-4-3 225 920 32 3 26 7 24∗ 10 2
g-9-4-4 225 920 32 4 25 7 24∗ 7 1
g-9-4-5 225 920 32 5 25 7 24∗ 8 1
g-9-4-6 225 920 32 6 24∗ 8 24∗ 8 0
g-9-5-1 225 920 40 1 26 8 26 8 0
g-9-5-2 225 920 40 2 24∗ 8 24∗ 8 0
g-9-5-3 225 920 40 3 24∗ 8 24∗ 8 0
g-9-5-4 225 920 40 4 24∗ 9 24∗ 9 0
g-9-5-5 225 920 40 5 24∗ 8 24∗ 8 0
g-9-5-6 225 920 40 6 24∗ 8 24∗ 8 0

Instance Matheuristic
nodes arcs h k init t best t moves

sol (s) sol (s)
g-10-1-1 250 1025 9 1 24∗ 2 24∗ 2 0
g-10-1-2 250 1025 9 2 24∗ 2 24∗ 2 0
g-10-1-3 250 1025 9 3 24∗ 2 24∗ 2 0
g-10-1-4 250 1025 9 4 24∗ 2 24∗ 2 0
g-10-1-5 250 1025 9 5 24∗ 3 24∗ 3 0
g-10-1-6 250 1025 9 6 24∗ 3 24∗ 3 0
g-10-2-1 250 1025 18 1 24∗ 4 24∗ 4 0
g-10-2-2 250 1025 18 2 24∗ 4 24∗ 4 0
g-10-2-3 250 1025 18 3 24∗ 4 24∗ 4 0
g-10-2-4 250 1025 18 4 24∗ 5 24∗ 5 0
g-10-2-5 250 1025 18 5 24∗ 4 24∗ 4 0
g-10-2-6 250 1025 18 6 24∗ 4 24∗ 4 0
g-10-3-1 250 1025 27 1 31 7 26 8 3
g-10-3-2 250 1025 27 2 29 7 25 9 2
g-10-3-3 250 1025 27 3 25 7 24∗ 45 1
g-10-3-4 250 1025 27 4 25 7 24∗ 9 1
g-10-3-5 250 1025 27 5 25 7 24∗ 8 1
g-10-3-6 250 1025 27 6 25 7 24∗ 9 1
g-10-4-1 250 1025 36 1 61 8 27 3022 9
g-10-4-2 250 1025 36 2 48 8 25 1276 5
g-10-4-3 250 1025 36 3 37 9 24∗ 2666 4
g-10-4-4 250 1025 36 4 34 10 24∗ 637 4
g-10-4-5 250 1025 36 5 34 9 24∗ 30 4
g-10-4-6 250 1025 36 6 31 10 24∗ 17 3
g-10-5-1 250 1025 45 1 55 11 26 2221 5
g-10-5-2 250 1025 45 2 29 12 25 15 4
g-10-5-3 250 1025 45 3 27 13 24∗ 20 1
g-10-5-4 250 1025 45 4 27 13 24∗ 17 2
g-10-5-5 250 1025 45 5 27 13 24∗ 16 1
g-10-5-6 250 1025 45 6 27 13 24∗ 21 2
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Appendix C.

Instance Matheuristic RR
nodes arcs h k init t best t moves init t best t moves

sol (s) sol (s) sol (s) sol (s)
d-10-1 10 45 5 1 31 0 31 0 0 41 0 31 0 3
d-10-2 10 45 5 2 31 0 31 0 0 31 0 31 0 0
d-10-3 10 45 5 3 31 0 31 0 0 31 0 31 0 0
d-10-4 10 45 5 4 31 0 31 0 0 31 0 31 0 0
d-10-5 10 45 5 5 31 0 31 0 0 31 0 31 0 0
d-10-6 10 45 5 6 31 0 31 0 0 31 0 31 0 0
d-20-1 20 190 5 1 51 0 51 0 0 56 1 51 1 1
d-20-2 20 190 5 2 30 0 30 0 0 41 0 31 1 2
d-20-3 20 190 5 3 30 0 24 1 5 38 0 24 882 5
d-20-4 20 190 5 4 30 0 21 1 2 27 0 21 1260 5
d-20-5 20 190 5 5 26 0 19 54 3 29 0 19 502 9
d-20-6 20 190 5 6 22 0 18 145 4 28 0 18 57 6
d-30-1 30 435 5 1 63 0 63 0 0 67 3 63 13 1
d-30-2 30 435 5 2 55 0 34 3 2 63 1 36 695 8
d-30-3 30 435 5 3 30 0 25 2 3 32 1 29 163 3
d-30-4 30 435 5 4 27 0 21 5 5 37 1 25 482 5
d-30-5 30 435 5 5 26 0 20 46 5 37 1 22 2579 8
d-30-6 30 435 5 6 26 0 19 12 5 27 1 21 39 4
d-40-1 40 780 5 1 67 0 67 0 0 72 3 67 55 3
d-40-2 40 780 5 2 51 0 37 5 2 48 2 39 467 5
d-40-3 40 780 5 3 30 0 28 0 1 39 2 28 595 8
d-40-4 40 780 5 4 23 0 23 0 0 35 2 24 993 7
d-40-5 40 780 5 5 23 0 20 2 2 40 2 21 1583 6
d-40-6 40 780 5 6 23 0 18 8 3 28 2 20 2172 4
d-50-1 50 1225 5 1 56 0 56 0 0 68 17 56 57 4
d-50-2 50 1225 5 2 30 0 30 0 0 68 3 30 3056 6
d-50-3 50 1225 5 3 30 0 22 4 4 31 3 23 3494 5
d-50-4 50 1225 5 4 22 0 19 2 2 25 3 20 356 3
d-50-5 50 1225 5 5 19 0 17 0 2 25 4 18 164 5
d-50-6 50 1225 5 6 19 0 15 8 4 21 4 17 55 3
d-60-1 60 1770 5 1 53 0 53 0 0 61 7 56 73 3
d-60-2 60 1770 5 2 51 0 30 4 3 54 6 33 1135 6
d-60-3 60 1770 5 3 30 0 22 129 3 38 5 25 2851 6
d-60-4 60 1770 5 4 23 1 18 5 3 30 5 21 2179 4
d-60-5 60 1770 5 5 21 0 16 3 3 28 5 19 2045 5
d-60-6 60 1770 5 6 19 0 14 146 4 25 5 18 43 3
d-70-1 70 2415 5 1 68 0 68 0 0 68 113 68 113 0
d-70-2 70 2415 5 2 52 0 38 1 2 54 8 42 1414 7
d-70-3 70 2415 5 3 30 1 28 1 1 61 8 31 2050 10
d-70-4 70 2415 5 4 30 1 23 2 4 38 8 26 339 7
d-70-5 70 2415 5 5 29 0 21 12 4 31 7 23 2950 5
d-70-6 70 2415 5 6 28 1 19 12 5 28 7 21 94 3

Table C.10: Experiments on the Dense test set
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Instance Matheuristic RR
nodes arcs h k init t best t moves init t best t moves

sol (s) sol (s) sol (s) sol (s)
d-80-1 80 3160 5 1 49 0 49 0 0 70 10 49 317 5
d-80-2 80 3160 5 2 30 0 27 1 1 67 11 30 3430 8
d-80-3 80 3160 5 3 30 1 21 2 3 47 9 25 68 8
d-80-4 80 3160 5 4 27 1 18 2 3 29 9 20 1772 6
d-80-5 80 3160 5 5 27 1 16 5 5 22 9 17 3326 5
d-80-6 80 3160 5 6 21 1 15 7 3 19 9 17 36 2
d-90-1 90 4005 5 1 55 0 55 0 0 70 25 55 210 5
d-90-2 90 4005 5 2 30 0 30 0 0 49 13 32 1703 6
d-90-3 90 4005 5 3 30 0 21 106 3 58 14 24 1896 8
d-90-4 90 4005 5 4 29 0 17 3 3 33 12 20 96 5
d-90-5 90 4005 5 5 27 1 15 12 3 27 12 18 162 6
d-90-6 90 4005 5 6 27 1 13 40 5 19 13 16 2100 3
d-100-1 100 4950 5 1 52 1 52 1 0 63 52 52 1943 4
d-100-2 100 4950 5 2 31 0 30 17 1 69 15 32 1360 5
d-100-3 100 4950 5 3 30 0 23 5 2 52 16 26 1670 8
d-100-4 100 4950 5 4 23 1 18 4 3 32 15 21 1314 7
d-100-5 100 4950 5 5 23 1 16 4 4 27 15 19 1157 5
d-100-6 100 4950 5 6 19 1 14 227 4 21 16 18 1019 2
d-150-1 150 11175 5 1 37 2 37 2 0 63 43 37 2200 5
d-150-2 150 11175 5 2 37 2 21 55 3 39 39 25 115 5
d-150-3 150 11175 5 3 37 2 16 133 3 40 39 20 141 3
d-150-4 150 11175 5 4 22 2 13 913 3 20 39 17 651 2
d-150-5 150 11175 5 5 17 2 12 9 2 17 39 15 1361 1
d-150-6 150 11175 5 6 15 2 11 5 2 17 40 14 187 2
d-200-1 200 19900 5 1 70 2 52 4 1 69 114 58 1011 3
d-200-2 200 19900 5 2 38 3 30 6 1 69 76 36 1838 5
d-200-3 200 19900 5 3 30 3 22 26 2 56 77 27 1071 6
d-200-4 200 19900 5 4 23 2 18 625 3 34 79 22 2282 5
d-200-5 200 19900 5 5 23 3 16 18 3 27 78 20 3671 5
d-200-6 200 19900 5 6 23 3 14 62 4 20 76 19 135 1
d-250-1 250 31125 5 1 57 3 57 3 0 62 470 61 1997 1
d-250-2 250 31125 5 2 39 3 31 6 1 50 139 38 1643 6
d-250-3 250 31125 5 3 30 4 22 7 1 55 131 27 1873 8
d-250-4 250 31125 5 4 22 4 17 118 2 32 132 23 905 2
d-250-5 250 31125 5 5 22 4 15 7 1 23 132 19 1382 2
d-250-6 250 31125 5 6 18 5 13 8 1 20 134 18 386 1
d-300-1 300 44850 5 1 57 4 57 4 0 66 691 63 2852 2
d-300-2 300 44850 5 2 31 4 31 4 0 49 226 39 620 2
d-300-3 300 44850 5 3 30 5 22 13 1 63 219 28 2536 7
d-300-4 300 44850 5 4 22 6 17 72 2 33 212 23 3778 2
d-300-5 300 44850 5 5 21 5 15 21 3 25 221 21 686 3
d-300-6 300 44850 5 6 21 5 13 38 3 20 211 19 574 1
d-350-1 350 61075 5 1 31 11 31 11 0 68 319 35 1130 7
d-350-2 350 61075 5 2 31 11 18 121 2 35 330 23 996 4
d-350-3 350 61075 5 3 31 12 14 49 3 33 327 19 2873 3
d-350-4 350 61075 5 4 31 11 11 446 5 21 326 15 3170 4
d-350-5 350 61075 5 5 31 13 10 382 6 17 316 14 2623 3
d-350-6 350 61075 5 6 31 10 10 136 4 15 318 14 510 1
d-400-1 400 79800 5 1 43 14 31 1068 5 64 238 37 1174 6
d-400-2 400 79800 5 2 31 14 18 77 2 47 210 24 872 3
d-400-3 400 79800 5 3 31 14 13 704 4 42 210 19 3089 5
d-400-4 400 79800 5 4 31 11 11 1903 5 22 209 17 667 2
d-400-5 400 79800 5 5 31 15 10 88 3 18 210 16 790 2
d-400-6 400 79800 5 6 31 15 9 146 5 18 211 14 2719 3
d-450-1 450 101025 5 1 57 11 57 11 0 71 1062 65 3642 4
d-450-2 450 101025 5 2 36 11 31 20 1 62 280 41 1363 4
d-450-3 450 101025 5 3 36 12 22 143 2 64 281 32 2960 6
d-450-4 450 101025 5 4 22 13 18 24 1 39 281 25 2307 4
d-450-5 450 101025 5 5 21 13 15 358 2 31 280 24 596 2
d-450-6 450 101025 5 6 18 13 14 24 1 23 282 22 371 1
d-500-1 500 124750 5 1 56 11 56 11 0 61 1581 61 1581 0
d-500-2 500 124750 5 2 38 12 31 23 1 55 378 43 2400 6
d-500-3 500 124750 5 3 38 13 23 24 1 58 368 32 1517 6
d-500-4 500 124750 5 4 38 12 18 62 3 31 368 26 3549 2
d-500-5 500 124750 5 5 24 13 16 40 2 27 371 24 1634 2
d-500-6 500 124750 5 6 22 14 14 157 2 25 368 21 3655 4
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Appendix D.

Instance Matheuristic RR
nodes arcs h k init t best t moves init t best t moves

sol (s) sol (s) sol (s) sol (s)
Bl01-1 32 96 48 1 39 1 39 1 0 55 9 41 10 10
Bl01-2 32 96 48 2 39 1 39 1 0 39 9 39 9 0
Bl01-3 32 96 48 3 39 2 39 2 0 39 9 38 9 2
Bl01-4 32 96 48 4 39 2 39 2 0 42 9 38 9 3
Bl01-5 32 96 48 5 39 2 39 2 0 39 9 38 9 3
Bl01-6 32 96 48 6 39 2 39 2 0 38 9 38 9 0
Bl03-1 32 96 48 1 59 2 37 72 7 44 11 40 859 3
Bl03-2 32 96 48 2 52 2 37 4 3 41 11 37 29 3
Bl03-3 32 96 48 3 37 4 37 4 0 38 11 37 11 2
Bl03-4 32 96 48 4 37 5 37 5 0 38 12 37 14 2
Bl03-5 32 96 48 5 37 3 37 3 0 38 11 37 12 2
Bl03-6 32 96 48 6 37 2 37 2 0 37 11 37 11 0
Bl05-1 32 320 48 1 16 4 16 4 0 27 11 20 20 4
Bl05-2 32 320 48 2 15 5 15 5 0 21 11 15 121 5
Bl05-3 32 320 48 3 15 5 14 3314 1 22 11 14 66 3
Bl05-4 32 320 48 4 15 4 14 2656 1 22 11 14 14 4
Bl05-5 32 320 48 5 15 4 14 2696 1 17 11 14 21 2
Bl05-6 32 320 48 6 15 6 14 731 1 15 11 14 17 1
Bl07-1 32 320 48 1 17 4 17 4 0 25 11 19 2143 6
Bl07-2 32 320 48 2 17 4 15 306 2 21 11 16 381 4
Bl07-3 32 320 48 3 16 4 15 5 1 18 11 16 12 2
Bl07-4 32 320 48 4 16 4 15 5 1 16 11 15 899 1
Bl07-5 32 320 48 5 16 4 15 7 1 17 11 15 45 2
Bl07-6 32 320 48 6 16 7 15 10 1 17 11 15 19 2
Bs01-1 32 96 48 1 49 1 45 11 1 57 9 45 10 3
Bs01-2 32 96 48 2 45 0 42 1 1 49 9 42 11 2
Bs01-3 32 96 48 3 42 0 41 3 1 46 8 41 11 3
Bs01-4 32 96 48 4 41 1 41 1 0 41 8 41 8 0
Bs01-5 32 96 48 5 41 1 41 1 0 44 8 41 12 3
Bs01-6 32 96 48 6 41 1 41 1 0 41 9 41 9 0
Bs03-1 32 96 48 1 54 1 54 1 0 57 17 54 17 1
Bs03-2 32 96 48 2 52 0 52 0 0 57 17 52 17 2
Bs03-3 32 96 48 3 52 1 52 1 0 52 16 52 16 0
Bs03-4 32 96 48 4 52 1 52 1 0 52 17 52 17 0
Bs03-5 32 96 48 5 52 1 52 1 0 54 17 52 17 1
Bs03-6 32 96 48 6 52 1 52 1 0 52 17 52 17 0
Bs05-1 32 320 48 1 57 2 22 1656 8 29 17 22 2268 5
Bs05-2 32 320 48 2 28 3 16 272 8 24 17 17 415 4
Bs05-3 32 320 48 3 27 6 14 760 5 20 17 16 27 3
Bs05-4 32 320 48 4 27 17 14 264 4 18 17 15 270 3
Bs05-5 32 320 48 5 27 23 14 54 3 18 18 15 20 2
Bs05-6 32 320 48 6 27 23 14 54 3 16 18 14 1159 2
Bs07-1 32 320 48 1 47 2 20 2959 11 30 12 24 947 5
Bs07-2 32 320 48 2 29 2 17 11 2 24 12 19 390 3
Bs07-3 32 320 48 3 24 3 16 34 3 21 12 17 1191 4
Bs07-4 32 320 48 4 24 4 16 11 3 21 12 16 2126 3
Bs07-5 32 320 48 5 17 3 16 7 1 18 12 16 458 2
Bs07-6 32 320 48 6 17 3 16 7 1 20 12 16 28 2

Table D.11: Experiments on the Carbin test set



References
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[4] E. Köhler, R. Möhring, M. Skutella, Traffic Networks and Flows over Time, Springer Berlin Heidelberg,
2009, pp. 166–196.
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[17] M. Schlöter, M. Skutella, Fast and Memory-efficient Algorithms for Evacuation Problems, in: Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, Society
for Industrial and Applied Mathematics, 2017, pp. 821–840.

[18] B. Kotnyek, An annotated overview of dynamic network flows, Tech. Rep. RR-4936, INRIA (2003).

[19] M. Skutella, An Introduction to Network Flows over Time, Springer Berlin Heidelberg, 2009, pp. 451–
482.

30



[20] A. Hall, K. Langkau, M. Skutella, An FPTAS for Quickest Multicommodity Flows with Inflow-
Dependent Transit Times, Algorithmica 47 (3) (2007) 299–321.

[21] E. Burkard, K. Dlaska, B. Klinz, The quickest flow problem, Zeitschrift für Operations Research 37 (1)
(1993) 31–58. doi:10.1007/BF01415527.

[22] M. Lin, P. Jaillet, On the Quickest Flow Problem in Dynamic Networks: A Parametric Min-Cost Flow
Approach, in: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
2015, pp. 1343–1356. doi:10.1137/1.9781611973730.89.

[23] A. Hall, S. Hippler, M. Skutella, Multicommodity Flows over Time: Efficient algorithms and complexity,
Theoretical Computer Science 379 (3) (2007) 387–404.

[24] L. Fleischer, M. Skutella, The Quickest Multicommodity Flow Problem, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.
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