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Abstract
A technique termed gradual multifractal reconstruction (GMR) is formulated. A contin-
uum is deined from a signal that preserves the pointwise H lder exponent (multifractal)
structure of a signal but randomises the locations of the original data values with respect
to this (φ = 0), to the original signal itself (φ = 1). We demonstrate that this continuum
may be populated with synthetic time series by undertaking selective randomisation of
wavelet phases using a dual-tree complex wavelet transform. That is, the φ = 0 end
of the continuum is realised using the recently proposed iterated, amplitude adjusted
wavelet transform algorithm [Keylock, C. J. 2017. Phys. Rev. E 95, 032123] that fully
randomises the wavelet phases. This is extended to the GMR formulation by selective
phase randomisation depending on whether or not the wavelet coeicient amplitudes ex-
ceeds a threshold criterion. An econophysics application of the technique is presented.
The relation between the normalised log-returns and their H lder exponents for the daily
returns of eight inancial indices are compared. One particularly noticeable result is the
change for the two american indices (NASDAQ 100 and S&P 500) from a non-signiicant
to a strongly signiicant (as determined using GMR) cross-correlation between the re-
turns and their H lder exponents from before the 2008 crash to afterwards. This is also
relected in the skewness of the phase diference distributions, which exhibit a geographi-
cal structure, with asian markets not exhibiting signiicant skewness in contrast to those
from elsewhere globally.

Keywords: Wavelets, multifractal, H lder exponent, surrogate data, econophysics

1. Introduction

A wide range of data have been analysed in terms of their multifractal properties.
These include turbulence [1, 2], economic time series [3, 4, 5], rainfall data and land-
scape surfaces [6, 7], images [8], and medical time series [9, 10]. Characterizing the
multifractality in terms of the variation of pointwise H lder exponents, αp(x, t) provides
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local information (in time or space) on the scaling behavior of a signal and, thus, how
the energy of the phenomenon under consideration is transfered to small scales and dis-
sipated. A globally uniform, constant H lder exponent, arises in a Brownian motion
where α̂p(x, t)⟩ = 0.5, or fractional Brownian motion where 0 < α̂p(x, t) < 1 [11], where
the hat indicates a value that is constant everywhere (either theoretically or to the pre-
cision of the estimation procedure). Signiicant departure from such a scenario leads
to intermittent behaviour where large changes can suddenly become manifest because
αp ≪ ⟨αp⟩, where the angled braces indicate the average of a quantity that varies more
than estimation precision. Stochastic processes with a range of H lder exponents can
be realised by multifractional Brownian motions [12], stochastic cascading models for
wavelet coeicients [13], or from a Fokker-Planck model for the signal s increments [14].

Being able to predict these periods of uncertainty is of obvious importance in haemo-
dynamics, or econophysics, and there has been a signiicant corpus of work on the mul-
tifractal analysis of inancial time series [15]. Broadly speaking these fall into ive main
types of study:

1. Multifractal structure of markets [16, 17];

2. Market and informational eiciency [18, 19];

3. Volatility forecasting [20, 21];

4. Portfolio allocation [22]; and,

5. High frequency trading analyses [23], leading to volatility hedging models [5].

The technique developed in this paper is perhaps of greatest relevance to work in the
irst, third and ifth of these.

More generally, characterizing intermittency can provide clues as to the physical
processes governing system behavior, permitting models of partially speciied or complex
systems to be constructed [24, 25, 26]. Such nonlinear phenomena are not always readily
amenable to analysis by conventional statistical hypothesis testing, yet given a dataset of
observations, particularly if they are expensive to obtain or are intrinsically unique (for
example a rainfall record at a point or the history of trading prices for a company), it
is not always possible to obtain replicates. Therefore, the method of surrogate data was
developed by Theiler and co-workers [27] within nonlinear physics to provide a means to
obtain bootstrapped conidence intervals on observations that would permit the testing
for nonlinear efects such as the existence of multiple values for the H lder exponents in
one dataset. From the perspective of the reined surrogate data algorithm of Schreiber
and Schmitz [28], surrogates are constructed to match the histogram of the data values
and to converge asymptotically on the Fourier amplitude spectrum of the original data,
with the Fourier phases randomized. Hence, any nonlinear structure in the data such as
intermittency, will only be preserved by chance in the surrogates. Adopting a signiicance
level, a, and a two-tailed statistical test, if (2/a)−1 surrogates are generated and the value
for the data on the chosen metric (perhaps some measure of the dispersion of the H lder
exponents such as their range or standard deviation) is outside that for the surrogates,
then a signiicant diference is deemed to exist.

Such hypothesis tests yield a binary result so there either is, or is not, a signiicant
diference between the data and linearised surrogates. Given two datasets where the
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null hypothesis has been rejected, is one of them more complex than the other based on
the metric used to determine nonlinearity [29]? This question can be answered using the
gradual wavelet reconstruction (GWR) approach [30], where rather than solely employing
a Fourier domain-based randomisation, a set amount of phase information is locked
in place before randomisation using a wavelet transform [31]. Varying the proportion
of wavelet energy ixed in the surrogate data, ρ, from 0 (Schreiber and Schmitz-type
surrogate) to 1 (the original data without any change) and generating surrogates at each
ρ means that the hypothesis can be tested against a continuum deined by ρ. With this
GWR method it is then possible to

• Test the relative complexity of diferent data series using the same metric [32, 33];

• Bootstrap data with the right degree of nonlinearity preserved in the surrogates
[34];

• Deine boundary conditions for numerical models and examine the efects on the
simulation as a function of ρ [35]; and

• Test the relative sensitivity of diferent metrics of nonlinearity on a particular
dataset [30].

Given that the ρ = 0 surrogates in GWR remove multifractal characteristics, this formu-
lation is very useful for studying the properties of multifractal signals as a function of ρ.
For example, an analysis of the velocity increments in turbulence highlighted the impor-
tance of two (from four) parameters in a Fokker-Planck model for these increments for
the nonlinear structure of turbulence [36]. Gradual wavelet reconstruction showed both
that these terms, which are an order of magnitude smaller than the other two terms, are
signicantly diferent to zero in turbulent lows and that they are crucial for controlling
the multifractal behaviour.

On the other hand, there are important research questions that one might seek to
address where the hypothesis concerns additional properties of a signal, conditioned
on a given multifractal structure. In which case, the Fourier-domain randomisation at
ρ = 0 in GWR does not provide an optimal starting point for analysis, and a new form
of surrogate generation algorithm is needed. An example of such analyses that is of
practical relevance in a number of ields, including econophysics, is the extent to which
the multifractality is coupled to the values of the signal itself. If this is the case, prediction
of intermittent events is potentially facilitated. Note too that such processes are no longer
just multifractal processes even though they have a measurable multifractality. Instead,
processes where there is some functional relation between the H lder exponents, αp of
the signal and the signal itself are termed self-regulating processes [37, 38, 39].

Given the starting point of an algorithm that preserves the multifractal structure of
the data but generates no signiicant coupling between the αp(t) and the values of the time
series, y, except by chance, a procedure similar to GWR can be formulated. We term this
Gradual Multifractal Reconstruction or GMR and it builds up any such a coupling in a
systematic way. Hence, the relative strength of self-regulation may be deined in terms
of a threshold value for the control parameter for GMR, φ, that demarcates a change
from a signiicant diference between data and surrogates, to no signiicant diference.
Clearly, such a framework is not restricted to the analysis of the degree of coupling
seen in self-regulating processes, but is suiciently generic to permit the analysis of any
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higher order property of a time series conditioned on the multifractal structure. Hence,
another potential application would be to the study of oscillating singularities in time
series [40, 41, 42, 43], with GMR able to detect diferences between the number or
strength of such oscillations. However, the focus of this paper is the development of
the GMR framework and its utility for analysing self-regulation in inancial markets.
More speciically, having formulated GMR we study the degree of self-regulation in the
log-returns from eight international inancial indices and consider the geography of the
interconnected inancial system on the basis of our results.

2. Gradual multifractal reconstruction (GMR)

A decade ago, an algorithm was proposed for generating surrogate data that respects
the multifractal characteristics of a data set [44]. More recently, we have proposed an
algorithm that goes further and seeks to not merely replicate the distribution function of
the H lder exponents, but their local values. This new algorithm also fulils the constraint
in the Schreiber and Schmitz algorithm that the histogram of the original data values is
preserved, while also more accurately mimicking the multifractal characteristics [45]. It
is this algorithm that we use as the basis for GMR, and we briely recount how it works
here. First, however, we deine the pointwise H lder function, αp(t), of a time-series,
which is the quantity that multifractal analyses based on structure functions [46, 47],
wavelet transform modulus maxima [2, 48] or multifractal detrended luctuation analysis
[49] seek to characterize. We then consider how multifractality may be determined from
wavelet coeicients because the principle behind our base algorithm for GMR is the
constrained phase randomisation of complex-valued wavelet coeicients.

2.1. Pointwise H lder exponents and multifractality
Given a signal, y(t), a position in time, t0, and assuming that αp ∈ {0, . . . , 1} (singularity

structure governed by irst derivatives), we seek the βp, for which

|y(t) − y(t0)| ≤ cp|t − t0|
βp (1)

The value for αp(t0) is then the supremum of this set of legitimate βp values. The pointwise
H lder function of H lder series is then the time series of these values, αp(t).

The algorithm developed by Schreiber and Schmitz for testing the nonlinear struc-
ture of time series [28] was termed the iterated, ampitude-adjusted Fourier transform
or IAAFT. In order to preserve the original values in the time series, our base algo-
rithm also includes an iterated amplitude adjustment step, leading to an approach we
termed the iterated, amplitude adjusted wavelet transform (IAAWT) [45]. There are
very strong similarities between the structure of the two algorithms but there is a fun-
damental diference: while the IAAFT approach is based on preservation of Fourier
amplitudes and randomization of Fourier phases, the IAAWT is based on preservation
of the amplitudes of wavelet coeicients and randomization of their phases. As a well-
known stochastic method for generating multifractal signals is based on the hierarchical
generation of wavelet coeicients on a dyadic tree that are then inverted using a suitable
real-valued wavelet transform [13], and as the real, irst derivative-of-Gaussian wavelet
transform underpins the wavelet transform modulus maxima approach to characteris-
ing multifractality [2], we can adopt a complex-valued wavelet transform and retain the
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wavelet amplitudes while randomising the phases to preserve the H lder function. This
is analogous to the retention of Fourier amplitudes and randomisation of phases in the
IAAFT. Key concepts in wavelet-based multifractal analysis are reviewed by Venugopal
et al. [7] while mathematical details are given by Jafard [50]. The key idea follows from
the Frisch-Parisi conjecture [46] that

D(αp) = min
m

(αpm − ξm + 1). (2)

Thus, the singularity spectrum that characterises the set of H lder exponents in the
signal, D(αp), is given by an inverse Legendre transform involving moment order m, and
ξm the structure function for the time series for moment, m. Given two values for the
time series, yt and yt+τ, the structure function is given by

⟨|yt − yt+τ|
m⟩ ∝ |τ|ξm . (3)

With a wavelet transform providing a multiresolution analysis as a function of the scale,
j, (a surrogate for τ) and the coeicients of a irst derivative-of-Gaussian wavelet at
scale j characterising the increments, wt, j ∼ |yt − yt+τ| then following Jafard (1997), if we
are close to a singularity of order αp, we will ind that in a window, |τ|, that the local
behaviour scales as

|yt+τ − yt |
m ≈ |τ|αpn. (4)

With a dimension to these singularities of D(αp) there are approximately |τ|−D(αp) boxes
with size |τ| that cover the signal. Hence, the contribution of this singularity to the
integral used to evaluate the structure function ⟨|yt−yt+τ|

m⟩ is approximately |τ|αpm+1−D(αp).
The key result to link the wt, j to the increments explicitly is the partition function [51],
which for the wavelet transform modulus maxima method [2], is given by

Z(q, j) =
∑
ℓ

|w( j, ξℓ)|
q, (5)

where q ∈ ℜ is a selected power that measures the scaling behaviour of Z(q, j), ξ is a
maximum of the wavelet transform modulus maxima, and ℓ is an index for these maxima.
Scaling exponents are calculated by

ϕ(q) = lim inf
j→0

log Z(q, j)

log j
, (6)

and these scaling exponents can be related to the support of the multifractal distribution
via a Legendre transform [48, 50]:

ϕ(q) = min[q(αp + 1/2) − D(αp)]. (7)

2.2. The base algorithm for GMR - the IAAWT algorithm
The key idea underpinning the IAAWT is therefore the phase-randomization of complex-

valued wavelet coeicients. The analytic signal of some real signal, y(t) is given by
ya(t) = y(t) + i y(H)(t), where y(H)(t) is the Hilbert transform of y(t), which is a convolution
operator with a ilter given by h(t) = 1/(π t):

y(H)(t) =

∫ ∞
−∞

h(β) y(t − θ)dβ. (8)
5



Because the Fourier transform of h(t) lies completely in the imaginary plane, it follows
that a Hilbert transform approach can be used to perform a complex-valued wavelet
transform. A pair of dyadic wavelet trees may be designed to form a Hilbert transform
pair [52] and we employ the dual-tree complex discrete wavelet transform [53, 54]. Given
two ilters g(t) and h(t) and their Fourier transforms G(ω) and H(ω) then it may be shown
that if G(ω) = H(ω)e−iω/2 for |ω| < π then their associated wavelets form a Hilbert pair
[55], which can be achieved for orthogonal wavelets by ofsetting the scaling ilters by
one half sample. In order to accomplish this operation efectively, Kingsbury proposed
the Q-shift dual tree where, below the coarsest scale, all ilters are even length, but no
longer linear in phase [53]. By designing the ilters to have a delay of 1

4
sample and

by using the time reverse of one set of ilters in the other tree, the required 1
2

sample
delay can be achieved. In this paper we use symmetric, biothogonal ilters with support
widths of 13 and 19 values for the irst level of the algorithm and Q-shift ilters with a
support of 14 values for all other levels on the dual tree. The Q-shift dual tree approach
retains properties that make undecimated transforms advantageous for use in surrogate
generation, such as shift invariance [56], but at a computational cost that is merely double
that for a standard discrete wavelet transform (DWT).

The IAAWT algorithm may now be stated. Given a signal, y(t) of length N = 2J:

1. Undertake the dual-tree complex DWT and obtain amplitudes, Ak, j and phases,
ωk, j over all J scales for the k = 1, . . . , 2J− j complex valued w

(0)

k, j
at each j;

2. Randomly sort the original time series to give a time-series, z(0);

3. Take its dual-tree complex DWT to derive randomised wavelet phases, ω(0)

k, j
for each

scale and position;

4. Produce new w
(1)

k, j
by combining the original amplitudes with the randomised phases:

w
(1)

k, j
= Ak, jexp(iω

(0)

k, j
) (9)

5. Iterate the following steps until a convergence criterion is met, where at each step,
s:

(a) Take the inverse wavelet transform to give a new time series, z(s)(t) and then
apply the amplitude adjustment step used in the IAAFT algorithm, where
a mapping is established between y(t) and z(s)(t) by rank-order matching to
permit the values of z(s) to be replaced by the value in y(t) with the same rank;

(b) Take the dual-tree complex DWT and obtain the new phases, ω(s)

k, j
. Combine

these with the original amplitudes, Ak, j to give the w
(s+1)

j,k
using the s th iterated

variant of eq. (9).

2.3. Relevant principles from gradual wavelet reconstruction
Given the IAAWT base model [45], instead of the IAAFT [28], the ethos of GMR is

the same as that for GWR. Hence, the key principles underpinning GWR are stated:

a. A control parameter (ρ for GWR) deines a continuum between 0 (Fourier phase
randomised data) and 1 (the original data);
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b. Surrogate data are derived for various choices of ρ using a maximal overlap discrete
wavelet transform [57];

c. We express ρ as a proportion of the total energy content, E, of the wavelet coei-
cients of signal:

Eρ =

N∑
k=1

J∑
j=1

|wk, j|
2. (10)

It is important to note that with such an undecimated transform, each wk, j has the
same weight in the analysis and there are a total of J × N coeicients. With all
|wk, j|

2 placed in descending rank order (with their position indexed by r), we seek
the smallest value for r such that

∑J×N
r=1 |wr |

2

Eρ

≥ ρ; (11)

d. These coeicients are ixed in place in the template of wavelet coeicients and the
others are randomised for each scale, j in turn in an analogous way to the IAAFT
algorithm but applied in the wavelet domain [56, 30];

e. The inverse wavelet transform of this set of coeicients then gives a time-series with
a constrained degree of phase randomisation;

f. With a set of suitably constrained surrogate time series at diferent ρ, given a metric
for nonlinearity or multifractality, the value for the data is compared to that for
the surrogates. The values for ρ that yield no signiicant diference and those where
there is a signiicant diference are delimited.

An example of gradual wavelet reconstruction for the increment skewness of the height
of bed-forms advected beneath a probe in a hydraulic lume [32] is given in Fig. 1.
The saw-tooth nature of these bed-forms is an intrinsic part of their morphology and is
destroyed in the IAAFT surrogates at ρ = 0. For 0.6 ≤ ρ < 0.9 there is a sudden increase
in the increment skewness as the scales of features responsible for the saw-tooth pattern
begin to get locked in to the surrogates. Subsequent analysis showed that these features
were ripple-like perturbations sitting on top of the primary bed form [32]. For ρ ≥ 0.9

there are minimal diferences between data and surrogates. Undertaking similar analyses
for diferent water discharges (as a surrogate variable for hydraulic forcing) showed that
this threshold value for ρ increased with discharge.

2.4. The GMR algorithm
From 2.2 and 2.3 the key aspects of the GMR algorithm are apparent: We will deine

a control parameter (φ instead of ρ) and with the IAAWT algorithm used to populate
φ = 0 surrogates, we will modify this algorithm to increasingly ix the in place the wavelet
phase information until, at φ = 1, no randomisation is possible and we recover the original
data exactly. Hence, the inal part to the algorithm is the formulation of the means to
ix in place the phase information. Here we draw upon some of the concepts previously
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Figure 1: : Gradual wavelet reconstruction of the normalized increment skewness for elevations of a
water-worked bed created in a hydraulic lume [32] with a water discharge, Q, of 1600 l s−1. The time
increment of separation is 5s, or one sampling interval. As is the case throughout this study, boxplots
show the median value for the surrogates (heavy line), the irst and third quartiles (edges of the box),
with whiskers extending up to the limit for the surrogates or 1.5 times the interquartile deviation. Values
outside this limit are shown as crosses. In order to replicate the observed degree of increment skewness,
given by the horizontal dotted line, a threshold of ρthresh = 0.90 is required. These results are extracted
from Fig. 7 of Keylock, C. J., A. Singh, and E. Foufoula-Georgiou (2014), The complexity of gravel
bed river topography examined with gradual wavelet reconstruction, J. Geophys. Res. Earth Surf., 119,
682 700, doi:10.1002/2013JF002999 (copyright American Geophysical Union) and are reproduced with
the permission of the AGU.

adopted in GWR, but need to modify the energy measure to account for the decimated
nature of the dual tree complex transform:

Eφ =

K∑
k=1

J∑
j=1

|wk, j|
2

2 j
(12)

That is, with j = 1, . . . , J scales, there are K = 2J− j coeicients at each scale, meaning that
more energy will be associated with each wk, j on average at the larger j, necessitating
the introduction of the denominator. By a similar ranking procedure to (11) we may
then seek the smallest r such that

∑K×N
r=1 |wr |

2

Eφ
≥ φ. This selected set of wk, j are ixed in

place on the wavelet coeicient template, while the others are phase randomised using
eq. (9). Hence, while all wm

k, j
in the IAAWT algorithm have the same amplitudes as the

original wk, j, the degree of phase randomisation reduces as φ increases and the number
of coeicients exceeding the energy criterion increases.

3. Application to studying inancial indices as self-regulating processes

We study the normalized log-returns of the closing prices from eight international
inancial indices and attempt to place conidence on any observed coupling between the
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Table 1: The closing price indices studies in this paper using GMR.

Index Country ⟨−→y (t)⟩ σ[
−→y (t)]

×10−3 ×10−3

AORD Australia 0.06 4.3
BSE Sensex India 0.19 6.5
GDAX Germany 0.05 6.7
Hang Seng China 0.02 6.5
JKSE Composite Malaysia 0.22 6.1
NASDAQ 100 USA 0.02 7.6
Nikkei 225 Japan 0.01 6.8
Standard and Poor s 500 USA 0.04 5.4

returns, y(t) and their pointwise H lder exponents, αp(t) using GMR. We consider two
measures of any such relation: the cross-correlation between y(t) and αp(t); and, the
Hilbert-transform-based phase diference. With N = 4096 days in each case, the cross-
correlation function will be of length 2N − 1 and the phase diference time-series will be
of length N. We therefore need a summary metric or set of metrics that characterize
these measures. As detailed below, we use the maximum and minimum values of the
cross-correlation function for the former case, and the mean and skewness of the phase
diference distribution in the latter case. In this section we detail the calculation proce-
dures applied to the data and GMR surrogates. The results of the analysis are considered
in section 4.

3.1. The indices and calculation of normalized log-returns
The eight inancial indices examined in this study are listed in Table 1 together

with statistical moments before normalization. In each case, we took the closing prices
from 5th September 2000 to 15th December 2016, to give 4097 values. We obtain the
normalized log returns, y/(t), [58] according to

−→y (t) = ln[y(t + ∆)/y(t)]

y/(t) =

−→y (t) − ⟨−→y (t)⟩

σ[
−→y (t)]

, (13)

where the angle braces indicate a time average, σ[...] is the standard deviation of the
variable and we set ∆ to one day. These data are shown in Fig.2.

Previous work on the analysis of market eiciency with multiple indices over a similar
time period has demonstrated a change in the H lder exponent with the 2008 change
in market conditions for both corporate bond indices and sovereign bond indices [59].
Hence, our study explores a complementary hypothesis regarding a change in coupling
between H lder exponent and values for the log-returns.

3.2. H lder exponent estimation, and measures and metrics of the normalized log-returns
The method we use to derive αp(t) is a time-domain method [60] that has seen several

applications to nonlinear time-series [61, 62] and follows from the form of eq. (1): we
9
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Figure 2: The normalized log returns, y/(t) for the eight indices considered in this study.

undertake a log-log regression of the signal oscillations, OT±τ, within some distance τ of
T against τ, where OT±τ is given by:

OT±τ = max (yt∈(T−τ,...,T+τ)) −min (yt∈(T−τ,...,T+τ)) (14)

and τ is distributed logarithmically (from 21 to 210 in this study).
Figure 3 illustrates the normalized log-returns, y/(t) and the accompanying H lder

exponents, αp(t) for the NASDAQ 100 index for φ ∈ {0.0, 0.3, 0.6} (surrogate data given
as grey lines). With the original data (black lines), by deinition at φ = 1.0 four approx-
imately equal sub-divisions of φ for the surrogates are shown over the permitted range.
The selected region of the data highlights the 2008 crash. Note that the αp(t) are repli-
cated extremely well for all φ, which is the essential property of the IAAWT algorithm.
As with the IAAFT algorithm, this is not quite perfect because of the imposition of the
original data values following the inverse transform [28]. As φ increases, the y/(t) become
more similar to the original values. One can see that the positive spike at t = 2047 days
is negative in the surrogates (dotted line) for φ = 0. As φ increases, the sign (at φ = 0.3)
and then shape (at φ = 0.6) of this feature is replicated in the surrogates.

In order to characterize the relation between the y/(t) and the αp(t), we use two
diferent measures: the cross-correlation function and the phase diferences. The former
is given for a lag time, τ by

R(τ) =

N−1∑
τ=−(N−1)

(y/(t + τ) − ⟨y/⟩)(αp(t) − ⟨αp⟩)

σ(y/)σ(αp)
. (15)
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Figure 3: : Gradual multifractal reconstruction algorithm applied to the NASDAQ 100 index for three
choices of φ, showing the central region of the 4096 values, and the crash of 2008. The left hand column
shows the normalized log-returns, y/(t) and the right-hand column their αp(t) (black lines) while the grey
lines are the surrogate series with the median convergence error. The surrogate series are ofset vertically
by -15 in the left-hand column and -0.1 in the right-hand column. The vertical dotted line at t = 2047 is
discussed in the text.

The metrics we adopt in this study to summarize the behaviour of this measure are the
maximum and minimum of R(τ) over all 2N − 1 values for τ, which we denote by Rmax

and Rmin, respectively.
Our phase diference approach uses the Hilbert transform (8) to obtain complex valued

variants of the y/ and corresponding αp. Thus, the phases for our two signals are

ψy(t) = tan−1
y
/

(H)
(t)

y/(t)

ψα(t) = tan−1
αp(H)(t)

αp(t)
, (16)

with their diference given by θ(t) = ψy − ψα. The metrics we adopt for this are based on
the irst (mean) and third (skewness) moments of the distribution function, p(θ).

4. Results

4.1. Correlation structure in the data summarised using proper orthogonal decomposition
(POD)

We examine the correlation structure in the data using proper orthogonal decom-
position/ principal components analysis [63, 64] as a means to summarize relations be-
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correlation matrix and the irst three components are shown, explaining 49.6% of the total variance for
the returns and 86.6% for the H lder series.

tween indices. All indices are already suitably normalized for a correlation rather than
covariance-based analysis as shown in (13). We looked at the inter-relations between
the returns and between the H lder functions in the top and bottom rows of Fig. 4,
respectively. The correlations were stronger in the latter case as relected in the higher
proportion of the total variance accounted for in the irst three components. The irst
component in the top row of Fig. 4 clearly separates the two American indices from the
others, while component 2 contrasts the Nikkei and BSE with the Hang Seng (and JKSE
to a lesser extent). The third component in the top row, and to a lesser extent, the
second, highlights relations between the German GDAX and Australian AORD indices.
The irst two components of the H lder POD isolate this latter index as particularly
distinct, with the largest magnitude values on component 1 again being the closely cor-
related American indices. However, the GDAX and Hang Seng indices are not dissimilar
to the american indices on this component. Component 2 contrasts the Australian and
Japanese indices, while component 3 contrasts the small asian markets (BSE and JKSE)
with the European (GDAX) and, to a lesser extent, American markets. Hence, over both
forms of classiication, and the irst three components, all the diferent indices, except
the two from the USA, can be separated on some combination of axes.

4.2. Cross-correlations between normalized log-returns and H lder series
Figure 5 shows the cross-correlation function (in black) for four of the eight indices,

with results shown for three time series windows, corresponding to the periods before,
during and after the stock market crash of 2008. The equivalent functions for each of
the thirty nine surrogate datasets is shown in grey, where φ = 0 (i.e. the generation is
based on the IAAWT algorithm [45]). In none of these cases, or for the eight indices, was
the minimum of R(τ), Rmin, less than the values for the surrogates, indicating there is no
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signiicant negative correlation between the y/ and αp(t). This is interesting because the
maximum and minimum observed cross-correlations are given in Fig. 6, and an efect of
the crash appears to be a stronger negative correlation for days 1366-2731 than is seen
either before or afterwards. Clearly, given the values in the time series, it is possible to
replicate these correlations at random during this period given the multifractal structure,
which has a smaller H lder exponent on average than the earlier and later data as is
discerned from Fig. 2. In contrast, six signiicant diferences for the maximum value,
Rmax can be seen in Fig. 5 and these cases, along with the three instances that arose in
the other four datasets, are highlighted by solid symbols in Fig.6.

There are three primary aspects of the results for Rmax:

1. There is no simple relation between the magnitude of Rmax and whether or not the
observed result is signiicant;

2. The two American indices exhibit a similar behaviour, with no signiicant Rmax be-
fore the crash, and then a signiicant Rmax emerging during the crash and persisting
afterwards; and,

3. The three smallest markets (AORD, BSE Sensex, JKSE composite) had the highest
Rmax before the crash (two of which were signiicant), while since the crash, the two
U.S. indices have the largest (and signiicant) Rmax.

Of course, all data have diferent autocorrelation scales for both the log returns and their
H lder exponents, so the irst conclusion is not unexpected. However, note that, for a
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given window on the data, there is a relation between Rmax and φthresh, the value of φ from
the GMR at which a signiicant diference is no longer observed. The second conclusion
is useful because we would expect that the NASDAQ 100 and S&P 500 indices exhibit
similar behaviour because they are trying to characterise the same market, and the POD
analyses demonstrated this empirically. Hence, this result indicates a certain robustness
to our method. Note too that these values for Rmax since the crash are, along with the
JKSE value before the crash, the most signiicant according to GMR. The NASDAQ
value for Rmax exceeds that for the maximum of the surrogates even at φ = 0.99 in the
most recent period.

A distinct feature of the results for the smaller asian markets in particular, which is
seen in Fig. 5 for the JKSE index, is the existence of a secondary peak to the cross-
correlation function at negative τ in the middle data window, which is not seen in the
Australian, European or American markets. All the middle window R(τ) functions are
given in Fig. 7, with the asian markets in the right-hand column. This feature is very
prominent in the BSE and JKSE indices at τ ∼ −150 days, with a less pronounced
occurrence in the larger Hang Seng and Nikkei indices at τ ∼ −150.

4.3. Phase diferences between normalized log-returns and H lder series
Histograms for the phase diferences between the y/ and the αp(t) are given in Fig.

8 for each of the three data windows. For the Hang Seng, NASDAQ, S&P 500 and, to
a lesser extent, the GDAX and Nikkei, before the crash there is a very broad peak to
the θ values extending from 0 < θ < π (solid black lines). During the crash, the degree
of skewness drops giving an almost symmetrical distribution with a mode at θ ∼ 0 for
the smaller markets (AORD, BSE, JKSE) and slightly positive for the other cases. More
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recently, the phase diferences are primarily negative for the asian and american markets,
with this tendency less clear in the AORD and GDAX markets.

These observations suggest that the mean and skewness of θ are useful test statistics
to study the signiicance of these patterns using GMR. Signiicant diferences for the
mean of θ at φ = 0 were found for the middle window of the S&P 500 index and the
middle and latter window for the Nikkei 225 index. These diferences for the Nikkei index
were resolved by φ = 0.1 as is shown by the full GMR of these cases in Fig. 9, while that
for the S&P 500 persisted until φ = 0.9.

For the phase skewness, signiicant diferences were observed for the GDAX index
for the irst and second time periods (φthresh = 0.7, φthresh = 0.95, respectively), the most
recent period for the JKSE Composite (φthresh = 0.3), the middle period for the Nikkei 225
index (φthresh = 0.1), and then the most recent two periods for the two american indices.
The full GMR for these two cases is shown in Fig. 10 and the absence of a signiicant
diference for the irst time period in both cases is clear. Results for the period of the
crash appear qualitatively similar at irst glance, with the boxplots converging on the
skewness of the data by φ = 0.8 for the NASDAQ 100 index and φ = 0.95 for the S&P 500
index. However, for the latter case, there is an outlier surrogate dataset at φ = 0.3 that
attains the skewness in the data. For the most recent time period, diferences persist at
φ = 0.99 and what the surrogate series show for both of these indices is that, conditioned
on the observed multifractal structure, the anticipated skewness of the phase diferences
is positive for not just random data values (φ = 0.0), but also with a large proportion of
the wavelet energy ixed in place. In contrast, the observations have a negative skewness.

Finally, we consider the GMR of the phase diference skewness calculated over the full
4096 days rather than in the three windows used previously. We are able to demonstrate
a marked geography to the results as is shown by contrasting the four sets of results in
Fig. 11 with those in Fig. 12. For the JKSE Composite and BSE Sensex indices we
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see in Fig. 11 that there is no signiicant diference between the θ skewness values at
φ = 0 for data and surrogates. For the Nikkei 225 and Hang Seng indices, a signiicant
diference at φ = 0 does not persist and is absorbed by φthresh = 0.1. Hence, the skewness
of the phase diferences is either not signiicant or small for the asian markets. In very
clear contrast, the bottom three rows of Fig. 12 show that there is a signiicant diference
that persists beyond φ = 0.99 for the european and american markets. The australian
case would appear to be intermediate in nature: at φ = 0 it is possible to generate
outlier surrogates with the appropriate negative skew to the phase diferences. However,
imposition of some wavelet phase structure results in signiicant diferences that persist
until φ = 0.95. How these diferences relect diferences in trading behaviour as well as
the nature and strength of inter-market coupling would be a fascinating topic for future
research.

5. Conclusion

This paper has formulated a framework for testing hypotheses with regards to the
coupling between a time-series and its accompanying series of H lder exponents, phenom-
ena that have been termed self-regulating processes [37, 39]. The formulation is termed
gradual multifractal reconstruction (GMR) and is not dissimilar to the gradual wavelet
reconstruction (GWR) surrogate data approach to studying nonlinearity in time series
[30]. In both cases a continuum is populated with surrogate data that converge on the
relevant properties of the original data as a control parameter increases in value. How-
ever, while GWR uses the iterated, amplitude adjusted, Fourier transform model [28]
to populate the phase-randomised end of the continuum, GMR uses a recent algorithm
that sets the H lder series as constant but randomises the wavelet phases [45] as the base
model for the φ = 0 end of the continuum. The GMR algorithm then systematically
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reduces the degree of phase randomisation as φ→ 1, until no randomisation arises in the
surrogates at the limit of φ = 1. Thus, for a particular time-series we may ask not only is
there a statistially signiicant degree of coupling between the time-series and its H lder
function, given the latter and the original distribution of values for the former, but we
can determine if two time-series have diferent strengths of coupling by checking to see
if the value for φ at which a signiicant diference no longer arises (φthresh) itself difers.

Our example application is to 4096 normalized log returns, y/(t) for eight inancial
indices from around the globe centred on the 2008 crash, and their H lder series, αp(t).
GMR helps us to show that while it would appear that the minimum of the cross-
correlation between y/(t) and αp(t) increases in strength around the period of the crash,
this is not a signiicant efect. What is particularly signiicant according to GMR is the
transition for the two US indices from a lack of a signiicant maximum cross-correlation
from before the crash to a very signiicant maximum cross-correlation at the present
time. When the Hilbert transform-based phase diference histograms are examined this
is seen as a change from a mean positive phase diference to one where the mode of the
distribution is close to zero but with strong negative skew. Indeed, while the surrogates
tend to give a positive skewness for even high values of φ, the observed skewness for
all the markets, when all 4096 days are considered, is negative. However, GMR reveals
a marked geography to this result, with this negative skewness statistically signiicant
for the GDAX, NASDAQ 100 and S&P 500 indices at φ = 0.99, but not for the asian
indices beyond φ = 0.1. The australian AORD index exhibits characteristics of both
regions as might be anticipated. There would appear to be a weak market size efect as
the Nikkei 225 and Hang Seng indices are the two asian markets where φthresh = 0.1 with
φthresh = 0 for the smaller Indian and Malaysian markets. However, the regional efect
clearly dominates this relatively small diference.

Consequently, we can suggest that GMR provides a potentially useful tool in many
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areas of nonlinear physics where the signiicance of any potential coupling between a
time series and its H lder regularity may be important both for process insights and
for predicting extreme events. Turbulence physics and biomedical time series are two
additional ields where this is likely to be the case [45].

6. Acknowledgements

This research was supported by NERC grant NE/F00415X/1, EPSRC Grant EP/K007688/1,
and Royal Academy of Engineering/Leverhulme Senior Research Fellowship LTSRF1516-
12-89.

References

[1] C. Meneveau, K. Sreenivasan, Phys. Rev. Lett. 59 (1987) 1424 1427.
[2] J. F. Muzy, E. Bacry, A. Arnéodo, Phys. Rev. Lett. 67 (1991) 3515 3518.
[3] K. Matia, Y. Ashkenazy, H. E. Stanley, EPL 61 (2003) 422 428.
[4] S. Drozdz, J. Kwapien, P. Oswiecimka, R. Rak, EPL 88 (2009) 60003.
[5] Y. Wei, Y. Wang, D. Huang, Physica A 390 (2011) 4260 4272.
[6] J. Gagnon, S. Lovejoy, D. Schertzer, Europhys. Lett. 62 (2003) 801 807.
[7] V. Venugopal, S. G. Roux, E. Foufoula-Georgiou, A. Arneodo, Water Resour. Res. 42 (2006).
[8] N. Sarkar, B. B. Chadhuri, Signal Process. 42 (1995) 181 190.
[9] P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, H. E.

Stanley, Nature 399 (1999) 461 465.
[10] L. A. N. Amaral, P. C. Ivanov, N. Aoyagi, I. Hideka, S. Tomono, A. L. Goldberger, H.E.Stanley,

Y. Yamamoto, Phys. Rev. Lett. 86 (2001) 6026 6029.
18



−0.1

0

0.1

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99
ϕ

sk
ew

(θ
)

−0.1

0

0.1

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99

sk
ew

(θ
)

−0.1

0

0.1

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99

sk
ew

(θ
)

−0.1

0

0.1

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99
sk

ew
(θ

) BSE

Hang Seng

JKSE

Nikkei

Figure 11: GMR of the phase diference skewness for the asian markets for all 4096 trading days studied.

[11] B. Mandelbrot, J. W. van Ness, SIAM Review 10 (1968) 422 437.
[12] R. Peltier, J. Lévy Véhel, Multifractional Brownian motion: deinition and preliminary results,

Technical Report 2645, INRIA, 1995.
[13] R. Benzi, L. Biferale, A. Crisanti, G. Paladin, M. Vergassola, A. Vulpiani, Physica D 65 (1993)

352 358.
[14] A. P. Nawroth, J. Peinke, Phys. Lett. A 360 (2006) 234.
[15] T. D. Matteo, Quantitative Finance 7 (2007) 21 36.
[16] A. Serletis, I. Andreadis, Energy Economics 26 (2004) 389 399.
[17] J. Barunik, T. Aste, T. Di Matteo, R. Liu, Physica A 391 (2012) 4234 4251.
[18] L. Zunino, B. Tabakd, A. Figliola, D. Pérez, M. Garavaglia, O. Rosso, Physica A 387 (2008) 6558

6566.
[19] A. F. Bariviera, M. B. Guercio, L. B. Martinez, The Econ. Soc. Rev. 45 (2014) 349 369.
[20] L. Calvet, A. Fisher, J. Econometrics 105 (2001) 27 58.
[21] T. Lux, J. Bus. Econ. Stat. 26 (2008) 194 210.
[22] J. F. Muzy, D. Sornette, J. Delour, A. Arneodo, Quantitative Finance 1 (2001) 131 148.
[23] Y. Wei, P. Wang, Physica A 387 (2008) 1585 1592.
[24] U. Frisch, P. L. Sulem, M. Nelkin, J. Fluid Mech. 87 (1978) 719 736.
[25] D. Schertzer, S. Lovejoy, J. Geophys. Res. 92 (1987) 9693 9714.
[26] Z. She, E. Leveque, Phys. Rev. Lett. 72 (1994) 336 339.
[27] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J. D. Farmer, Physica D 58 (1992) 77 94.
[28] T. Schreiber, A. Schmitz, Phys. Rev. Lett. 77 (1996) 635 638.
[29] T. Schreiber, A. Schmitz, Phys. Rev. E 55 (1997) 5443.
[30] C. J. Keylock, Nonlinear Proc.Geophys. 17 (2010) 615 632.
[31] C. J. Keylock, Physica D 225 (2007) 219 228.
[32] C. J. Keylock, A. Singh, E. Foufoula-Georgiou, J. Geophys. Res. 119 (2014) 682 700.
[33] C. J. Keylock, S. N. Lane, K. S. Richards, J. Geophys. Res. 119 (2014) 264 286.
[34] C. J. Keylock, Water Resour. Res. 48 (2012).
[35] C. J. Keylock, T. E. Tokyay, G. Constantinescu, J. Turbul. 12 (2011) N45.
[36] C. J. Keylock, R. Stresing, J. Peinke, Phys. Fluids 27 (2015) 025104.
[37] O. Barri re, A. Echelard, J. Lévy Véhel, Electron. J. Prob. 17 (2012) 1 30.
[38] J. Lévy Véhel, Nonlin. Proc. Geophys. 20 (2013) 643 655.
[39] A. Echelard, J. Lévy Véhel, A. Philippe, Scand. J. Stat. 42 (2015) 485 503.
[40] A. Arnéodo, E. Bacry, S. Jafard, J. F. Muzy, J. Fourier Analys. Appl. 4 (1998) 159 174.
[41] F. Nicolleau, J. C. Vassilicos, Phil. Trans. R. Soc. Lond., Ser. A 357 (1999) 2439 2457.

19



−0.1

0

0.1

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99
ϕ

sk
ew

(θ
)

−0.05

0

0.05

0.1

0.15

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99

sk
ew

(θ
)

−0.1

0

0.1

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99

sk
ew

(θ
)

−0.1

0

0.1

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 0.95 0.99
sk

ew
(θ

) AORD

GDAX

NASDAQ

S&P 500

Figure 12: GMR of the phase diference skewness for the non-asian markets for all 4096 trading days
studied.

[42] J. M. Aubry, S. Jafard, Comm. Math. Phys. 227 (2002) 483 514.
[43] S. Seuret, Math. Nachr. 279 (2006) 1195 1211.
[44] M. Palus̆, Phys. Rev. Lett. 101 (2008) 134101.
[45] C. J. Keylock, Phys. Rev. E 95 (2017) 032123.
[46] U. Frisch, G. Parisi, in: M. Ghil, R. Benzi, G. Parisi (Eds.), Turbulence and Predictability in

Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, Amsterdam, 1985, pp. 84 88.
[47] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, S. Succi, Phys. Rev E 48 (1993) 29.
[48] E. Bacry, J. Muzy, A. Arnéodo, J. Stat. Phys. 70 (1993) 635 674.
[49] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H. E. Stanley,

Physica A 316 (2002) 87 114.
[50] S. Jafard, SIAM J. Numerical Anal. 28 (1997) 944 998.
[51] M. Holschneider, L analyse d objets fractals et leur transformation en ondelettes, Ph.D. thesis, Univ.

of Aix-Marseille II, Marseille, France, 1989.
[52] I. Selesnick, IEEE Trans. Sig. Proc. 50 (2002) 1144 1152.
[53] N. Kingsbury, Appl. Comput. Harmon. Anal. 10 (2001) 234 253.
[54] I. Selesnick, R. Baraniuk, N. Kingsbury, IEEE Signal Proc. Mag. 22 (2005) 123.
[55] I. Selesnick, IEEE Sig. Proc. Lett. 8 (2001) 170 173.
[56] C. J. Keylock, Phys. Rev. E 73 (2006) 036707.
[57] D. B. Percival, A. T. Walden, Wavelet Methods for Times Series Analysis, Cambridge University

Press, Cambridge, U.K., 2000.
[58] S. Kumar, N. Deo, Physica A 388 (2009).
[59] A. F. Bariviera, M. B. Guercio, L. B. Martinez, Econ. Lett. 116 (2012) 426 428.
[60] K. Kolwankar, J. Lévy Véhel, J. Fourier Anal. Appl. 8 (2002) 319 334.
[61] C. J. Keylock, Geophys. Res. Lett. 35 (2008) L11804.
[62] C. J. Keylock, K. S. Chang, G. S. Constantinescu, J. Fluid Mech. 805 (2016) 656 685.
[63] G. Berkooz, P. Holmes, J. Lumley, Annu. Rev. Fluid Mech. 25 (1993) 539 75.
[64] I. T. Jollife, Principal Component Analysis, Springer, Berlin, 2002.

20


