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Highlights:

1) Land use is the main factor explaining N cycle genes abundance and GHG fluxes 

2) Soil aggregates size is a minor factor explaining N genes abundance and GHG fluxes 

3) Cropland showed the lowest abundance for bacteria, fungi, nifH, narG, nirS and nosZ

4) Effect of aggregate sizes on N genes abundance was only found in forest sites

5) Aggregates 0.5 � 1.0 mm showed the highest N functional genes abundance in forest sites
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28

29 Abstract

30 Soil structure is known to influence microbial communities in soil and soil aggregates 

31 are the fundamental ecological unit of organisation that support soil functions. However, still 

32 little is known about the distribution of microbial communities and functions between soil 

33 aggregate size fractions in relation to land use. Thus, the objective of this study was to 

34 determine the gene abundance of microbial communities related to the nitrogen cycle and 

35 potential greenhouse gas (GHG) fluxes in six soil aggregate sizes (0-0.25, 0.25-0.5, 0.5-1.0, 1-2, 

36 2-5, 5-10 mm) in four land uses (i.e. grassland, cropland, forest, young forest). Quantitative-PCR 

37 (Q-PCR) was used to investigate the abundance of bacteria, archaea and fungi, and functional 

38 guilds involved in N-fixation (nifH gene), nitrification (bacterial and archaeal amoA genes) and 

39 denitrification (narG, nirS, and nosZ genes).  Land use leads to significantly different 

40 abundances for all genes analysed, with the cropland site showing the lowest abundance for all 

41 genes except amoA bacteria and archaea. In contrast, not a single land use consistently showed 

42 the highest gene abundance for all the genes investigated. Variation in gene abundance between 

43 aggregate size classes was also found, but the patterns were gene specific and without common 

44 trends across land uses. However, aggregates within the size class of 0.5 � 1.0 mm showed high 

45 bacterial 16S, nifH, amoA bacteria, narG, nirS and nosZ gene abundance for the two forest sites 

46 but not for fungal ITS and archaeal 16S. The potential GHG fluxes were affected by land use but 

47 the effects were far less pronounced than for microbial gene abundance, inconsistent across 

48 land use and soil aggregates. However, few differences in GHG fluxes were found between soil 

49 aggregate sizes. From this study, land use emerges as the dominant factor that explains the 

50 distribution of N functional communities and potential GHG fluxes in soils, with less pronounced 

51 and less generalized effects of aggregate size.

52

53 Keywords: Quantitative-PCR; nitrogen-fixation; nitrification; denitrification; soil aggregates; 

54 land use



3

55

56 1. Introduction

57

58 Soil is a complex and heterogeneous matrix made up of an intricate organisation of 

59 pores filled with water and gas, mineral particles, and organic matter influencing the 

60 microorganisms that live within. Soil aggregates are essential for soil fertility (Amézketa, 1999; 

61 Bronick and Lal, 2005) and some fertile soils have been described as soils dominated by 0.25 � 

62 10 mm soil crumbs (Shein, 2005). The vast variation in the size of aggregates, as well as their 

63 physico-chemical properties provides a huge diversity of microhabitats for microorganisms 

64 influencing carbon and nutrients dynamics within the soil. This study starts from the premise 

65 that soil aggregates are a fundamental ecological unit of organisation that support soil functions. 

66 These soil functions include biomass production, soil water retention and transmission, nutrient 

67 transformation, contaminant attenuation, C and N, P, K sequestration, and a major terrestrial 

68 pool of genetic diversity. The microbial community has been found to vary with the size of soil 

69 aggregates, and to be linked to the specific environmental conditions in the different sizes of 

70 aggregates. Previous studies showed differences in microbial community structure, diversity 

71 and abundance/biomass between soil aggregates of different size, which was correlated to the 

72 quality of organic matter available (Blaud et al., 2012; Davinic et al., 2012), the size of the pores 

73 (Kravchenko et al., 2014) or tillage (Helgason et al., 2010). 

74 Although the distribution of microbial communities in soil aggregates has been studied, 

75 much less is known about the distribution of the microbial functional guilds among soil 

76 aggregates and how their sizes influence microbial functions. The size of soil aggregates in 

77 relation to their porosity (i.e. size and number of pores) was found to affect the GHG fluxes, with 

78 CO2 emissions found to be higher in microaggregates (< 0.25 mm) than in macroaggregates (> 

79 0.25 mm) in cropland sandy loam soil  (Sey et al., 2008; Mangalassery et al., 2013). Similar 

80 results were found for CH4 in cropland sandy loam and clay loam soil (Mangalassery et al., 

81 2013), but the contrary was found in paddy rice soil (Ramakrishnan et al., 2000). Only a few 
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82 studies have investigated specific microbial functional guilds such as N fixation (Mendes and 

83 Bottomley, 1998; Poly et al., 2001; Chotte et al., 2002; Izquierdo and Nüsslein, 2006) and 

84 denitrifiers (Beauchamp and Seech, 1990; Lensi et al., 1995) in soil aggregates. The biomass and 

85 composition of diazotrophs varies with the size of soil aggregates which was correlated with 

86 total C and N, and soil texture (Poly et al., 2001; Izquierdo and Nüsslein, 2006). Aggregates 

87 within size classes 0.6 � 2.0 mm and < 0.075 mm (from tundra, pasture and forest) were found 

88 to have the highest diazotroph richness (Izquierdo and Nüsslein, 2006) and microaggregates (< 

89 0.25 mm) to host between 30% and 90% of the diazotrophic population (Mendes and 

90 Bottomley, 1998; Chotte et al., 2002). In contrast, denitrifiers were found to occur mainly in 

91 microaggregates, where nearly 90% of the potential denitrification activity can occur (Lensi et 

92 al., 1995). Hence, the diazotroph and denitrifier communities seem to exploit specific and 

93 different anaerobic niches within different soil aggregate size classes, although the drivers of 

94 these communities in different soil aggregate sizes remains unclear. 

95 The type of land use and management directly influences the physico-chemical 

96 properties of soil aggregates as well as the distribution of microbial communities, their 

97 functions and resulting nutrient transformations and GHG fluxes. For example, the soil 

98 aggregates turnover rate is increased by soil tillage  (Six et al., 2004), which decreases the C 

99 storage within the aggregates (Bossuyt et al., 2002), but can also decrease N2O fluxes (Ball, 

100 2013). Furthermore, the type of vegetation and input of organic manure influence the aggregate 

101 size distribution and the contents of organic C and N within soil aggregates (Pinheiro et al., 2004; 

102 Six et al., 2004; An et al., 2010). Subsequently, bacterial and fungal community composition was 

103 found to differ between land use types (Lauber et al., 2008) and also microbial activity such as 

104 nitrification (Hayden et al., 2010). 

105 The above leads to the overarching hypothesis that in conjunction with land use, 

106 different microbial functions are preferentially hosted or fostered by specific size classes of 

107 aggregates. The specific objectives of the current study were: i) to assess the difference in 

108 microbial genes abundance between different soil aggregate size classes and bulk soil from 
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109 different land uses, ii) to assess the difference in greenhouse gases fluxes between soil 

110 aggregate sizes classes and bulk soil from different land uses, iii) to identify possible 

111 relationships between microbial gene abundances, potential GHG fluxes and the physico-

112 chemical characteristics of the soil aggregates. 

113

114 2. Material and methods

115

116 2.1 Study area

117 The study area is originated from the Critical Zone Observatory Marchfeld/Fuchsenbigl 

118 area (Banwart, 2011) located east of Vienna, Austria, in the National Park ��Donau-Auen�� on a 

119 floodplain of the Danube River (Fig. S1). The mean annual temperature in the area is ~9 °C and 

120 mean annual precipitation ~550 mm. The study sites are located along a chronosequence 

121 starting from a young river island (created <70 years; average inundation frequency: 10 day yr-1) 

122 named �young forest�, and sites disconnected from the river through a flood control dike: forest, 

123 grassland and cropland. The young forest is impacted by flood events, and covered by �soft-

124 wood� dominated by Salicetum albae, while the forest site is covered by �hard-wood� 

125 dominated by Fraxino-Ulmetum (Schubert et al., 2001), respectively. The grassland site was 

126 converted from forest to grassland (presently Onobrychido viciifoliae-Brometum) between 

127 1809 and 1859 and is currently cut twice a year. The cropland site was grassland before 1781 

128 and was converted to intensive cropland in the first half of the 20th century. Cropland site was 

129 conventionally managed, with annual tillage and NPK mineral fertilisers. The field is under crop 

130 rotation (maize, sugar beet, barley and wheat), with summer wheat the year of the sampling 

131 which was shortly harvested before the soil sampling. According to Lair et al. (2009), the topsoil 

132 (0-10 cm) of the young forest was deposited after 1986, whereas a topsoil age of approx. 250-

133 350 years on the forest, grassland, and cropland site can be estimated . The soils are classified as 

134 Epigleyic Fluvisol (young forest) and Mollic Fluvisols (forest, grassland and cropland; (IUSS 

135 Working Group WRB, 2014). The Epigleyic Fluvisol is at least one time of the year impacted by 
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136 groundwater and is located close to the Danube River. In contrast, the Mollic Fluvisols have no 

137 impact of groundwater and are characterized by a fast OC accumulation in the topsoil. In our 

138 study area Mollic Fluvisols develop towards a Chernozem.

139

140 2.2 Soil sampling and fractionation

141 The soil sampling was identical at all sites and was performed in September 2011 under 

142 dry soil moisture conditions (capillary potential pF 3.8 - 4.0). At each site, three sampling spots 

143 (70 x 70 cm) were randomly selected within a circle of about 30 m radius. The soil layer from 5 - 

144 10 cm soil depth was sampled to avoid the main rooting zone in grassland and the litter layer in 

145 forest sites, focusing on the similar mineral soil layer across sites. The soil samples were 

146 manually dry sieved to obtain 6 soil aggregate size classes: < 0.25, 0.25 - 0.5, 0.5 - 1, 1 - 2, 2 - 5, 

147 and 5 - 10 mm. The soil fraction > 10 mm was not included in the study as it was composed of a 

148 wide range of aggregates and large clumps (100 � 500 g per clump). During dry sieving, visible 

149 roots were removed. Sieving continued with freshly excavated soil until ~200 g of soil 

150 aggregates was obtained for each aggregate size class. Additional bulk soil samples were 

151 collected at each site and sampling spot. Soil aggregate size fractions and bulk soil samples were 

152 stored at 4 °C and samples for DNA extraction at -20°C before subsequent analysis. Dry-sieving 

153 was chosen over wet-sieving to avoid any bias due to dry/wet cycles with wet-sieving that could 

154 have direct effect on GHG emissions (Kaiser et al., 2015). Despite knowing that the sieving 

155 method affects the gene abundance quantification, dry-sieving can nonetheless reveal 

156 differences in gene abundance between soil aggregate sizes (Blaud et al., 2017).

157

158 2.3. DNA extraction and quantitative-PCR

159 Total nucleic acids were extracted from 0.20 to 0.55 g of fresh soil aggregates from all 

160 size classes and from bulk soil samples with PowerSoil® DNA Isolation Kit (Mo-Bio laboratories, 

161 Carlsbad, CA, USA) according to manufacturer�s instruction, except for the final step where the 

162 nucleic acids were eluted in 100 μl of sterile nuclease free water instead of solution C6. 
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163 Microbial abundance was investigated by Quantitative-PCR (Q-PCR) targeting specific genes or 

164 genetic regions. Bacterial and archaeal communities were targeted via the 16S rRNA genes, 

165 while the fungal community abundance was investigated by targeting the ITS region. The 

166 different communities involved in most steps of the N-cycle were investigated: the nitrogen 

167 fixing microorganisms were quantified based on the nifH gene; nitrification was investigated by 

168 targeting the ammonia oxidising bacteria (AOB) and archaea (AOA) via the amoA gene, and 

169 denitrifiers were targeted via the narG gene coding for the nitrate reductase, the nirS gene 

170 coding for the nitrite reductase and the nosZ gene coding for the nitrous oxide reductase (Table 

171 S1). 

172 Q-PCR standards for each molecular target were obtained using a 10-fold serial dilution 

173 of plasmids carrying a single cloned target gene or relevant part thereof. Standard curve 

174 template DNA and the �no template control� (NTC) were amplified in duplicate in the same plate 

175 as the environmental samples. Q-PCR amplifications were performed in 25 µl volumes 

176 containing 12.5 µl of iQ� SYBR® Green Supermix (Bio-Rad, Hemel Hempstead, UK), 8.5 µl of 

177 nuclease-free water (Ambion, Warrington, UK), 1.25 µl of each primer (10 µM) and 1 µl of 

178 template DNA using a CFX96� Real-Time System (Bio-Rad, Hemel Hempstead, UK). 

179 Amplification conditions for all Q-PCR assays are given in the supplementary material and Table 

180 S1. The efficiency of the Q-PCR assays was above 90%, except for fungi and AOA (~70%). The r2 

181 were > 0.99, except for nifH and nosZ genes (~0.97). 

182

183 2.4. Microbial respiration

184 Greenhouse gas fluxes from the aggregate size fractions and the bulk soil were 

185 measured from field moist bulk soil and soil aggregates (pF 3.8 -4.0; hereafter named �field 

186 moisture�) and from moistened samples (40 � 60 % of field capacity) by adding distilled water 

187 48 hours before flux measurements started (hereafter named �elevated moisture�). Soil 

188 temperature was set to 20 °C. The soil moisture was increased because at the time of soil 

189 sampling the soil moisture content was low (pF 3.8-4.0), potentially reducing microbial activity 
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190 and subsequent GHG fluxes. For full details on the GHG measurements, refer to the 

191 supplementary material.

192 Fluxes of CO2 and NO were measured with a fully automated laboratory measuring 

193 system as described in detail by Schindlbacher et al. (2004) and Schaufler et al., (2010). Carbon 

194 dioxide was measured with a PP Systems WMA-2 (Amesbury, MA, USA), infrared CO2 analyser, 

195 and NO was measured with a HORIBA APNA-360 (Kyoto, Japan) chemoluminescence NOx 

196 analyser. Determination of N2O and CH4 fluxes was done manually by closed chamber technique. 

197 The analysis was done immediately after gas sampling by gas chromatography (AGILENT 

198 6890N) connected to an automated system sample-injection (AGILENT TECH G1888, Network 

199 HEADSPACE-SAMPLER) at an oven temperature of 40 °C. Nitrous oxide was measured by a 63Ni-

200 electron-capture detector and CH4 by a flame ionization detector. 

201

202 2.5. Physico-chemical analysis of bulk soil and aggregates 

203 The soil moisture content, organic C, total N, N-NO3
-, N-NH4

+, P-PO3-
4, and carbonate 

204 concentration, C/N, and soil texture (i.e. sand, silt and clay contents) were measured for each 

205 aggregate size class and bulk soil. Three different fractions of soil organic matter (SOM) were 

206 determined by simultaneous thermal analysis (STA) according to Barros et al. (2007): labile 

207 SOM, stable SOM and refractory SOM. Particle size distribution in the various aggregate size 

208 classes as well as the SOM fractions (STA) were measured on one composite sample for each 

209 site (i.e. mixture of the 3 replicates at each site). For full details of the methods used, refer to the 

210 supplementary material.

211

212 2.6 Statistical analysis

213 To test the effects of land use and soil aggregate size on microbial gene abundance, GHG 

214 fluxes and soil aggregate characteristics, analyses of variance (ANOVA) were performed with 

215 land use and soil aggregate size as factors (3 and 6 degrees of freedom (df) respectively). The 

216 normality of the model residuals and the homoscedasticity of the variances were checked before 
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217 statistical analysis. When one or both of these conditions were not met, the data were log 

218 transformed to comply with the conditions. However, if log transformation did not lead to 

219 normality or homoscedasticity or could not be applied (presence of negative values for GHG), 

220 one-way ANOVA was performed to test the effect of land use within each aggregate size class 

221 separately. 

222 Similarly, to test the effect of soil moisture level on GHG fluxes for each land use, two-way 

223 ANOVA was applied with soil aggregate size and soil moisture level as main factors. 

224 To test the effect of aggregate size within each land use on microbial gene abundance, 

225 GHG fluxes and soil aggregate characteristics, one-way ANOVA was performed with aggregates 

226 size as a factor (df = 6) for each land use separately, insuring conditions were met as described 

227 previously. When significant (P < 0.05) effects were found for ANOVA, the Tukey HSD (honest 

228 significant difference) test was used to reveal the significance of the differences between class 

229 pairs.

230 In order to get insight into the potential drivers of microbial gene abundances and GHG 

231 fluxes, Spearman�s rank correlation coefficients ρ (-1 ≤ ρ ≤ 1) were calculated between 

232 microbial gene abundance, GHG and soil characteristics, across all the land uses to reveal the 

233 factors explaining the differences due to land use, or for each land use to reveal the factors 

234 explaining the differences due to soil aggregate size classes. To display the correlations, 

235 heatmaps were constructed using the library �gplots� from R software, were colours represent 

236 the direction and strength of the correlation. 

237 All statistical analyses were performed using R v3.2.1 (R Development Core Team, 2015) 

238 and a significance level of P <0.05 was used throughout.

239

240 3. Results

241 3.1 Variation in soil aggregates characteristics

242 The physico-chemical parameters of soil aggregates significantly differed between land 

243 use, and between aggregates size classes. The soil aggregate mass distribution showed the same 
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244 pattern for all the land uses, with the size class 2.0 � 5.0 mm being the most abundant (20 � 40 

245 w/w %), and size classes < 0.25 mm the least (< 10%; Fig. S2). Young forest and forest showed 

246 significantly higher soil water content for most soil aggregate sizes in comparison to cropland 

247 and grassland (Fig. S2). The cropland soil had the lowest soil organic C (SOC) and total N 

248 concentrations (~25 and ~1.5 g kg-1 soil, respectively), whereas the grassland soil showed the 

249 highest concentrations (~50 and ~3 g kg-1 soil, respectively; Fig. S3). Grassland showed 

250 significantly lower N-NO3
- concentration for soil aggregates > 0.5 mm (~10 times) than the 

251 other sites, but significantly higher N-NH4
+ for the bulk soil (~5 times) and some soil aggregates 

252 (Fig. S4). The P-PO3-
4 in cropland was significantly lower than the other sites in aggregates 1 � 2 

253 mm, while in young forest P-PO3-
4 was significantly higher for 0.5 � 1 mm in comparison to 

254 grassland and cropland. 

255 Significant differences in physico-chemical parameters between aggregates size classes 

256 were found, mainly at the young forest and forest site, and between the classes < 0.5 mm  and 

257 the other classes. The aggregates size classes < 0.5 mm at the young forest and forest sites had 

258 significantly lower SOC concentrations than bulk soil and most larger size classes, while their 

259 C/N was higher (Fig. S3). Similarly, the water content of < 0.25 mm was significantly lower than 

260 most aggregates sizes at young forest, forest and grassland sites. In contrast, soil aggregates < 

261 0.5 mm at grassland showed significantly higher N-NO3
- concentrations than other soil 

262 aggregate sizes or bulk soil (Fig. S4). The sand content was higher in cropland and lower in 

263 grassland and was higher in aggregate size classes < 0.5 mm regardless of the land use (Fig. S5). 

264 In contrast, the silt content was lower in cropland and higher in grassland, while clay content 

265 was lower in young forest. Both silt and clay contents tend to decrease in aggregate size classes 

266 < 0.5 mm. The different fractions of SOM were lower in cropland and higher in grassland, while 

267 labile SOM was higher in aggregate size classes 2 -5 and 1 -2 mm and stable and refractory SOM 

268 both tend to decrease in aggregate size classes < 0.5 mm (Fig. S6).

269
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270 3.2. Variation in microbial gene abundance between land uses and soil aggregate size classes

271 All microbial gene abundances investigated showed significant differences between land 

272 use types for at least one soil aggregate size class or bulk soil (Fig. 1, Fig. S7-S9, Table S2). The 

273 cropland site consistently (i.e. across bulk soil and soil aggregates) showed lower abundance of 

274 bacterial 16S rRNA, nifH, narG, nirS and nosZ genes, while amoA bacteria (AOB) was lower in 

275 grassland (Fig. S8) and amoA archaea (AOA) in young forest (Fig. 1, S8). In contrast, the forest 

276 site tends to harbour the highest abundance for the different aggregate sizes of bacterial and 

277 archaeal 16S rRNA, AOB and AOA genes (Fig. S7, S8), while the nifH, narG and nirS genes 

278 showed the highest abundance in young forest site (Fig. 1, S8, S9), and nosZ gene in grassland 

279 site (Fig, 1, S9).

280 Significant effects of aggregate size within individual land uses were found (one-way 

281 ANOVA and Tukey HSD) for all microbial amplicon abundances investigated, except archaeal 

282 16S rRNA, fungal ITS, and AOA (Fig. S7-S9). However, significant pairwise differences were only 

283 found for the young forest (for bacterial 16S rRNA, nifH, and narG genes) and forest sites (for 

284 AOB, narG, nirS and nosZ genes). Trends at the young forest site were similar, where genes 

285 abundances were overall found relatively high in 0.5 -1.0 mm aggregates and relatively low in 

286 2.0-5.0 mm and < 0.25 mm aggregates (Fig. 2). For the forest site a similar trend is also found, 

287 the abundances being higher in the 0.25 � 0.5 and 0.5 � 1.0 mm aggregates than in the other 

288 aggregate size fractions (Fig. 2).

289

290 3.3. Changes in potential greenhouse gas fluxes between land uses and soil aggregate size 

291 classes 

292 The types of land use and moisture levels were the main factors differentiating GHG 

293 fluxes, although differences between land uses were not as strong as for microbial abundances 

294 and consistent across land uses. Greenhouse gas fluxes were significantly different between 

295 land use types at both moisture levels for at least one soil aggregate size, except for NO at field 

296 moisture (Fig. S10, S11). The CO2 emissions were significantly different (Tukey HSD) only for 
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297 0.5 � 1 mm and bulk soil between cropland and forest site, and also between grassland with 

298 cropland and young forest sites for the bulk soil (Fig. 3, S10). At elevated moisture, CO2 

299 emissions were consistently significantly lower in cropland compared to grassland sites 

300 regardless of the aggregates size classes and bulk soil (Fig. 3, S10). Overall, the CO2 emissions 

301 were significantly different between soil moisture levels, and mainly higher at the elevated 

302 moisture content than at field moisture content (Fig. S10). The other GHG fluxes showed large 

303 standard deviation (Fig. 3) and overall significant differences between land use types for a few 

304 specific aggregate size classes such as < 0.25 (CH4 elevated moisture), 0.25 � 0.5 (NO, N2O soil 

305 moisture), 1.0 � 2.0 (CH4 both moisture levels and N2O field moisture), 5.0 � 10.0 mm (CH4 and 

306 N2O elevated moisture) (Fig. S10, S11).

307 Within the separate land use types, significant effects of aggregate size at field moisture 

308 were only observed for CH4 at the forest site and for NO at the grassland site. The 0.5 � 1.0 mm 

309 aggregates acted as a sink for CH4 at field moisture while the other aggregates classes were 

310 sources of CH4 (Fig. 4). The aggregate size classes < 0.5 mm from grassland were found to be 

311 sources of NO, while larger size classes were sinks at field moisture (Fig. 4). At elevated 

312 moisture, the bulk soil showed significantly lower CO2 emissions than the aggregates size 

313 classes, while it was a source of CH4 and aggregates size classes (except 2.0 � 5.0 mm) were 

314 sinks (Fig. 4).

315

316 3.4. Relationship between microbial gene abundance, potential greenhouse gases and soil 

317 characteristics

318 When the correlations were performed on all the land uses, bacteria, fungi and nosZ 

319 gene abundances showed similar and significant positive correlations with the following soil 

320 characteristics: labile SOM, stable SOM, refractory SOM, SOC, total N, and silt for all land uses 

321 combined (Fig. 5a). The narG, nirS and nifH gene abundances showed significant positive 

322 correlations with silt and carbonate contents and P-PO3-
4 concentrations (Fig. S2, S4-S5). In 

323 contrast, AOB, AOA and archaea gene abundances showed negative correlations with silt and 
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324 carbonate contents, but positive correlations with soil water content, N-NO3- concentration and 

325 sand content (Fig. 5a). The CO2 emissions at elevated moisture for the combined land uses were 

326 strongly and positively correlated (ρ > 0.5) with the three SOM pools, total N, SOC, carbonate 

327 and silt, but negatively with sand content (ρ = -0.74; Fig. 5b). The CO2 and CH4 fluxes at field 

328 moisture showed significant and positive correlations with the three SOM pools, total N and SOC. 

329 The other GHG fluxes showed significant correlations with only a few specific variables (Fig. 5b). 

330 Most gene abundances were significantly and positively correlated to CO2 emissions at elevated 

331 moisture, except AOB, archaea and AOA genes which were negatively correlated (see 

332 supplementary and Fig. S12 for details). 

333 The heatmaps for the separate land uses did not reveal similar patterns across land use 

334 types but unique to each land use, even for young forest and forest sites where significant 

335 differences in gene abundances between soil aggregate sizes were found (Fig. 6, S13, S14). 

336 Hence, at the young forest site, the N contents and to a lesser extent SOM contents (especially 

337 the labile SOM pool) were positively correlated to bacteria, nifH, AOB, narG and nirS genes (Fig. 

338 6). At the forest site, different parameters explained the differences in genes abundance 

339 between soil aggregate sizes; soil texture explained the distribution of several gene abundances, 

340 with clay content positively correlated with nifH, bacteria, narG and AOB genes and sand with 

341 fungi, while sand content was negatively correlated with nosZ, and nirS genes.

342 The correlations between GHG fluxes and soil properties showed no similar patterns 

343 across land uses and relatively low number of correlations (Fig. S13). At the grassland site, 

344 where most differences in GHG fluxes between soil aggregate sizes were found, the CH4 fluxes at 

345 field moisture were positively correlated to labile, stable and refractory SOM content, but 

346 negatively correlated to these SOM fractions at elevated moisture (Fig. S13). The correlations 

347 between gene abundances and GHG fluxes for each land use are presented in supplementary 

348 material (Fig. S14)

349
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350 4 Discussion

351

352 4.1 Land use is a dominant explaining factor for microbial gene abundance in soil

353 The type of land use was the main factor of the microbial abundance and the nitrogen 

354 cycling community in soils studied. Regardless of the gene investigated, gene abundances were 

355 always affected by the different types of land use. The different types of land use and 

356 management were previously found to affect the abundance of microorganisms (Enwall et al., 

357 2010; Hallin et al., 2009; Lauber et al., 2008; Leininger et al., 2006; Ma et al., 2008; Morales et al., 

358 2010; Wallenstein and Vilgalys, 2005). This study present a comprehensive evaluation of the 

359 distribution of N cycling genes across land uses with similar parent material (fluvial sediments) 

360 and climate (co-located sites).

361 Cropping clearly had a negative effect on the abundance of microorganisms in soil and 

362 most of their N functions. The SOC and total N concentrations explained the distribution of 

363 bacteria, fungi and nosZ gene, highlighting that the depletion of SOC and total N in cropland (Fig. 

364 S3) due to soil management (e.g. tillage), soil erosion and plant harvest, limit the abundance of 

365 microorganisms. Soil tillage was found to have a direct and negative effect on the biomass of 

366 bacteria and fungi (Muruganandam et al., 2009; Helgason et al., 2010), and also on narG gene 

367 abundance (Chèneby et al., 2009). Hence, the negative effect of cropping on microbial 

368 communities is likely due to a combination of factors limiting microbial growth. In contrast, the 

369 AOA and AOB were abundant in cropland, likely due to application of fertiliser (containing NH4) 

370 that maintains AOA and AOB and stimulates nitrification which was supported by the significant 

371 correlations of the ammonium oxidizing microorganisms with NO3
- concentration and soil water 

372 content. However, distinct drivers of each community were also found across land uses, such as 

373 SOC/N and sand content for AOB, and total N, thermally more stable SOM and clay contents for 

374 AOA (Fig. 5a). Thus, it further supports the idea that despite AOA and AOB delivering the same 

375 function, the two communities live in different niches/microhabitats with specific environments 

376 stimulating their activity separately (Prosser and Nicol, 2008). Low soil pH and low NH4
+ 
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377 concentration were found to be important conditions favouring amoA archaea abundance while 

378 the contrary was found for amoA bacteria (Leininger et al., 2006; Verhamme et al., 2011). 

379 However, in the current study the soil pH was above 7 and both bacterial and archaeal amoA 

380 showed strong positive correlation with NO3
- and NH4

+ for archaea, showing that these drivers 

381 are not the only ones responsible for niche differentiation of amoA. Hence, the quantity and 

382 quality of SOM might play an important role in the studied soil, as organic C can differently 

383 inhibit or stimulate ammonia oxidizer (Erguder et al., 2009).

384 The community showing the highest abundance in young forest (i.e. nifH, narG and nirS 

385 genes) showed a strong and positive correlation to phosphate concentration which was higher 

386 in the young forest and could be a limiting factor in the other land use (Table 1, Fig. S3). Their 

387 high abundance could also be related to the location of the site, with a slightly different soil type 

388 (Epigleyic Fluvisol for young forest and Mollic Fluvisols for the other sites) which is also 

389 younger (70 yr against 250-350 yr). Furthermore, the site is located along the Danube River, 

390 subjected to flood (~10 days yr-1), creating anaerobic conditions over long period of time that 

391 would favour the denitrification and N fixation processes. In contrast, the other sites are 

392 protected from flood by a dike. The nifH gene abundance was found to be higher in forest soil 

393 than in agricultural soil (Morales et al., 2010). In contrast, for the communities with higher 

394 abundance at the forest site (i.e. bacterial and archaeal 16S rRNA genes, AOB and AOA), 

395 different variables were correlated, without a common variable explaining microbial 

396 distribution. Hence, this result highlights the complexity of the variables explaining microbial 

397 distribution in forest soil (Levy-Booth et al., 2014). The fungal ITS and nosZ genes showed 

398 similar factors explaining their distribution (i.e. SOC, N, SOM and NO3
-). Fungi in soils were 

399 found to produce N2O, which in return could be reduced into N2 by bacteria, which could explain 

400 the similar factors between fungal ITS and nosZ gene (Maeda et al., 2015). Furthermore, nosZ 

401 gene distribution showed different factors than narG and nirS genes, suggesting that the 

402 different steps of the denitrification do not simultaneously occur within the same microhabitat 

403 which is expected due to the existence of nosZ in bacteria lacking other genes for denitrification 
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404 and the different environment required to perform the different steps of denitrification. Thus, 

405 there is a niche differentiation of the different steps of the denitrification, with SOM quantity 

406 and quality (directly related to the plant residues input and root exudates) playing a key role for 

407 nosZ gene abundance, while narG and nirS genes were both regulated by the P, carbonate and 

408 silt concentration.

409

410 4.2 Soil aggregate size is explaining minor factor for microbial gene abundance in soil

411 Soil aggregate size was a minor factor in explaining nitrogen genes abundance, 

412 compared to land use. The effects of soil aggregate size classes on gene abundances was specific 

413 to the land use type and not present for all genes or land uses studied. Neuman et al. (2013) 

414 found that the size of soil aggregates was the dominant factor in the abundance of bacterial, 

415 archaeal and fungal community, over soil management (i.e. fertilisation). However, they 

416 investigated microaggregates (0.002 � 0.020 mm, 0.020 � 0.063 mm, > 0.063 mm) and the silt 

417 and clay fractions (< 0.002 mm), which could physically protect organisms against 

418 environmental changes. Hence, the current study shows that the sizes of macroaggregates are 

419 not the main factor determining microbial distribution and N functional guilds after land use 

420 type, whereas aggregates < 0.063 mm could have a greater effect on the distribution of 

421 microbial communities. 

422 The presence or absence of differences in gene abundance between soil aggregates in 

423 different land use may be related to the balance between stability and instability of the 

424 microhabitats, hindering or promoting differentiation of specific microhabitats and associated 

425 microbial communities. The low variation in gene abundance for cropland and grassland may be 

426 related to the soil aggregates and organic matter turnover, which is expected to be higher due to 

427 anthropogenic activity such as tillage and plant harvest (Blaud et al., 2014; Six et al., 2002, 2000; 

428 Tisdall and Oades, 1982). The lower variation in microbial abundance between soil aggregate 

429 size fractions in grassland in comparison to young forest and forest, might be explained by a 

430 high organic matter input due to fine grass root system and root exudates, resulting in the 
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431 highest SOC and total N concentration in comparison to the other land uses, and no significant 

432 difference in their concentrations between grassland aggregate sizes classes (Fig. S3). 

433 Furthermore, forest sites were likely to show a more stable temperature and soil moisture 

434 regime throughout the year than cropland and grassland because of the tree cover, as well as a 

435 different quantity and quality of plant input that affected SOM concentration in soil aggregate 

436 size classes (Fig. S6). Overall, specific drivers for each land use are responsible of the 

437 distribution of gene abundance in soil aggregates, such as total N and labile SOM that explained 

438 bacteria, nifH, AOB, narG and nirS genes distribution for young forest, while soil texture, 

439 especially clay content, was explaining most gene distribution in forest. In contrast, for cropland 

440 and grassland organic C and silt content respectively, explained few genes distribution.  

441 At the forest and young forest sites, the size of soil aggregates was an important factor in 

442 the abundance of several microbial communities and functional genes, with specific sizes 

443 harbouring higher gene abundances. Furthermore, a similar pattern of distribution was found 

444 between functional genes at a specific site, suggesting that these functions coexist in similar 

445 niches. Hence, the aggregate size class 0.5 � 1.0 mm consistently showed the highest gene 

446 abundance regardless of the specific microbial functions, possibly hosting a high number of 

447 active microbial functions, and is within the range of soil aggregates that characterise fertile 

448 soils as described by Shein (2005). However, some dissimilarities were present, such as the soil 

449 aggregate size class 1.0 � 2.0 mm which showed high gene abundances at the young forest while 

450 low gene abundances were found at the forest site. Thus, differences between similar land use, 

451 such as tree cover, and soil characteristics may also play a role in gene abundance distribution 

452 within soil aggregate size classes. Although those genes preferentially colonised similar niches, 

453 which differ in their distribution across land uses, different factors were responsible for their 

454 abundances in the young forest and forest site.

455
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456 4.3 Effects of land use and soil aggregate size on potential greenhouse gas fluxes

457 The potential GHG fluxes were affected by land use, soil moisture levels and to a lesser 

458 extent soil aggregate size, but the effects were far less pronounced than for microbial gene 

459 abundance, and inconsistent across land use and soil aggregates. This was partly due to the high 

460 variability in the measure of GHG fluxes, but also revealed differences compared to the 

461 microbial gene abundance. Hence, the effect of land use on the bulk soil samples were mainly 

462 found for CO2 emissions, while for the other GHG only specific soil aggregate sizes revealed the 

463 potential effect of land use. The different effect of land use found on GHG fluxes between soil 

464 aggregate size classes compared to the bulk soil may be linked to different porosity present for 

465 each size and how land use affects it differentially (Rabbi et al., 2016). Thus, working on bulk 

466 soil may mask some potential GHG fluxes (Kravchenko et al., 2014). However, it should be 

467 acknowledged that each soil aggregate size was in artificial conditions for the GHG 

468 measurement (e.g. air fluxes), likely leading to different behaviour than in situ. The CO2 

469 emissions were consistently lower in cropland compared to the other sites regardless of the soil 

470 water content, indicating the potential low microbial activity in cropland due to SOM depletion 

471 also supported by the low bacterial gene abundance, but also strong correlations with most 

472 genes abundance. The other GHG fluxes showed inconsistent effect of land use depending on 

473 soil moisture and soil aggregate size, highlighting the complexity of drivers of CH4, NO and N2O 

474 fluxes. Only few correlations were found between CH4, NO and N2O fluxes and genes abundance, 

475 showing the difficulty to relate gene abundance and GHG fluxes, due to the high variability of 

476 GHG fluxes and possible dissimilarity between genes and activity.

477 Change in soil moisture had significant effects on GHG fluxes, although it varies between 

478 GHG, land use, and soil aggregate size classes. Higher CO2 emissions were consistently found at 

479 elevated soil moisture compared to field moisture across all land use, highlighting the 

480 importance of soil moisture for microbial activity and CO2 emissions (Sey et al., 2008). For CH4, 

481 NO and N2O the effect of increased soil moisture was not as consistent as for CO2, indicating that 

482 other factors limit their fluxes. Surprisingly, increasing soil water content in the current study 
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483 did not necessarily increase the CH4 production, as might be expected because methanogens are 

484 more active in high water content/anaerobic soils. The CH4 was either emitted or consumed 

485 depending on the soil water content for a specific land use and soil aggregate size class. This 

486 indicates that both methanogens and methane-oxidizing bacteria were present in the same soil 

487 aggregates as previously found by Sey et al. (2008) and can co-exist in the same niche. Similarly, 

488 increasing soil water content did not increase the anaerobic process of denitrification 

489 responsible for NO and N2O fluxes, indicating that other factors are regulating these fluxes and 

490 the microorganisms responsible, or the increase in soil water content was not enough to reach 

491 anaerobic conditions. 

492 Overall, the GHG fluxes did not occur in a specific aggregate size class within a land use 

493 as found for microbial gene abundances in forest sites. Previous studies found higher CO2 

494 emissions in microaggregates whilst acting as sinks of CH4 (Sey et al., 2008). However, CO2 

495 emissions were also shown to be highly sensitive to water filled pore space (WFPS), with no 

496 difference in emissions between aggregate size at 60% WFPS; microaggregates acted as sinks of 

497 CH4 at 20% WFPS but a source at higher WFPS (Ramakrishnan et al., 2000; Sey et al., 2008). 

498 However, in the current study, elevated soil moisture did not reveal more significant differences 

499 than at soil moisture in GHG fluxes between soil aggregates, indicating that other factors may 

500 drive differences or that the size of soil aggregate may not be an important driver for GHG fluxes.

501

502 5. Conclusions

503 This study demonstrates that land use is the main factor in explaining abundance of 

504 nitrogen genes and greenhouse gas fluxes, while soil aggregate size class was a minor factor. 

505 This goes against our initial hypothesis suggesting that different microbial functions are 

506 preferentially hosted or fostered by specific size of aggregates. This is due to the stronger 

507 difference in soil physico-chemical characteristics between land use types than between soil 

508 aggregate sizes. Cropping had a clear negative effect on the abundance of most microbial 

509 communities, likely due to the depletion of SOC and total N by tillage, plant harvest, and soil 
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510 erosion. Although soil aggregate size was not a dominant factor, it affected the distribution of 

511 the N functional communities at the semi-natural forest sites, showing that some microbial 

512 functions are probably related to specific microhabitats (i.e. the architecture and distribution of 

513 pores filled with water and air, the availability of organic matter and other nutrients) in soil, 

514 where anthropogenic activity is limited, allowing differences between microhabitats to develop. 

515 However, no specific size of soil aggregates enhanced the abundance of any specific microbial 

516 function across all four land uses. Soil aggregate size had little effect on GHG fluxes, indicating 

517 that the size of soil aggregates may not have much effect on GHG fluxes but it also highlights the 

518 difficulties of measuring GHG fluxes in aggregates. 

519 This study only addresses a single point in time, limiting our understanding of the 

520 distribution of microbial functions over soil aggregates of different size. Further studies are 

521 needed, taking into consideration the dynamics of soil aggregates and its relation with microbial 

522 communities by sampling at multiple time points, work on a wider range of aggregate size 

523 classes (e.g. size classes < 0.25 mm) and land use types. Furthermore, combining microbiology 

524 and soil architecture (e.g. x-ray tomography) as well as nutrient availability in local and time 

525 scale, would fully reveal the physical distribution of microhabitats, the microbial communities 

526 and functions among soil aggregates. Comparing microbial functions between soil aggregates of 

527 varying size from a specific land use (e.g. forest) but from different locations or soil types may 

528 also provide more insight into the role of soil aggregates in microbial functioning.

529
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686 Table

687

688 Table 1. Soil characteristics and soil aggregate size distribution of bulk soil samples on a dry 

689 mass basis. Mean value ± one standard deviation (n = 3) are shown. 

Cropland Young forest Forest Grassland

Location
48°09�N, 

16°41�E

48°07�N, 

16°43�E

48°08�N, 

16°39�E

48°11�N, 

16°44�E

Soil (0-10 cm) age (yr) < 70 250-350 250-350 250-350

Water content (%) 11.3 ± 0.26 14.1 ± 1.11 17.1 ± 0.69 12.0 ± 0.26

Soil pH (H2O) 7.7 ± 0.14 7.5 ± 0.07 7.4 ± 0.17 7.4 ± 0.09

Organic C (%) 2.4 ± 0.36 3.2 ± 0.08 3.8 ± 0.28 5.0 ± 0.60

Total N (%) 0.13 ± 0.01 0.17 ± 0.01 0.25 ± 0.02 0.33 ± 0.04

Corg/N 18.1 ± 1.83 18.5 ± 1.60 15.1 ± 1.02 15.0 ± 0.52

N-NH4
+ (mg kg-1) 1.59 ± 0.29 0.49 ± 0.01 0.57 ± 0.03 4.77 ± 0.98

N-NO3
- (mg kg-1) 20.3 ± 3.07 18.6 ± 4.00 24.3 ± 3.13 1.5 ± 0.66

P-PO4
3- (g kg-1) 0.35 ± 0.10 1.13 ± 0.47 0.85 ± 0.48 0.59 ±0.04

CaCO3 (%) 19.0 ± 1.90 20.6 ± 1.11 20.4 ± 0.62 21.1 ± 1.41

Sand, 63-2000 μm (%) 32.7 20.2 22.5 8.2

Silt, 2-63 μm (%) 43.8 63.4 51.2 63.0

Clay, < 2 μm (%) 23.5 16.4 26.3 28.8

S
o

il
 c

h
a

ra
ct

e
ri

st
ic

s

Soil texture loam silt loam silt loam silt loam

> 10 mm 37.3 ± 9.1 11.3 ± 1.0 11.9 ± 4.4 7.9 ± 2.4

5.0 - 10.0 mm 14.6 ± 2.4 15.5 ± 1.1 18.3 ± 2.7 21.5 ± 2.0

2.0 - 5.0 mm 20.5 ± 4.0 26.1 ± 3.1 31.2 ± 2.2 37.8 ± 3.6

1.0 - 2.0 mm 11.8 ± 2.4 21.8 ± 4.1 23.1 ± 8.4 14.5 ± 0.5

0.5 - 1.0 mm 6.4 ± 3.5 9.3 ± 2.8 5.9 ± 1.7 5.2 ± 0.4
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0.25 - 0.5 mm 7.1 ± 4.6 12.7 ± 2.6 7.5 ± 2.7 6.9 ± 0.1

< 0.25 mm 1.9 ± 1.3 3.3 ± 0.4 2.0 ± 0.8 6.1 ± 0.7
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694 Figures captions
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695

696 Fig. 1 Variation in gene abundance between bulk soil from four land use types. The following 

697 genes and microbial communities were targeted: bacterial and archaea (16S rRNA gene), fungi 

698 (ITS region), N fixation (nifH gene), ammonia oxidizing bacteria and archaea (amoA gene, 

699 named AOB and AOA, respectively), nitrate reductase (narG gene), nitrite reductase (nirK gene) 

700 and nitrous oxide reductase (nosZ gene). All abundances are expressed on the basis of 1 g of dry 

701 soil. Mean value ± one standard deviation (n = 3) are shown. Small letters indicate significance 

702 (P < 0.05) of pairwise differences between land use.

703

704 Fig. 2. Variation in gene abundance between bulk soil and six soil aggregates sizes classes from 

705 young forest and forest. The following genes and microbial communities were targeted: 

706 bacterial and archaea (16S rRNA gene), fungi (ITS region), N fixation (nifH gene), ammonia 

707 oxidizing bacteria and archaea (amoA gene, named AOB and AOA, respectively), nitrate 

708 reductase (narG gene), nitrite reductase (nirK gene) and nitrous oxide reductase (nosZ gene). 

709 All abundances are expressed on the basis of 1 g of dry mass of the bulk soil or the specific 

710 aggregate size fraction. Mean value ± one standard deviation (n = 3) are shown. Small letters 

711 indicate significance (P < 0.05) of pairwise differences between soil aggregate size classes 

712 within a specific land use.

713

714 Fig. 3. Variation in GHG fluxes (μg kg-1 h-1) between bulk soil from four land use types at field 

715 moisture or elevated moisture (40 � 60 % of field capacity). Mean value ± one standard 

716 deviation (n = 3) are shown. Small letters indicate significance (P < 0.05) of pairwise differences 

717 between soil aggregate size classes within a specific land use.

718

719 Fig. 4. Variation in GHG fluxes (μg kg-1 h-1) between bulk soil and six soil aggregates sizes classes 

720 from grassland or forest at field moisture or elevated moisture (40 � 60 % of field capacity). 
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721 Mean value ± one standard deviation (n = 3) are shown. Small letters indicate significance (P < 

722 0.05) of pairwise differences between soil aggregate size classes within a specific land use.

723

724 Fig. 5. Heatmaps of Spearman�s rank correlation coefficients ρ between a) soil properties and 

725 microbial genes abundance, b) soil properties and greenhouse gas fluxes from samples across 

726 six soil aggregates sizes classes (< 0.25, 0.25 � 0.5, 0.5 � 1.0, 1.0 � 2.0, 2.0 � 5.0 and 5.0 � 10.0 

727 mm) and four land uses. AOB: amoA bacteria; AOA: amoA archaea. The ρ values > 0.24 and < -

728 0.24 are significant (P < 0.05).

729

730 Fig. 6 Heatmaps of Spearman�s rank correlation coefficients ρ between soil properties and 

731 microbial genes abundance from samples across six soil aggregates sizes classes (< 0.25, 0.25 � 

732 0.5, 0.5 � 1.0, 1.0 � 2.0, 2.0 � 5.0 and 5.0 � 10.0 mm) and for a) young forest and b) forest sites 

733 separately, which showed significant variation in gene abundance with aggregates size classes 

734 (refers to figure S13 for the other land uses). AOB: amoA bacteria; AOA: amoA archaea. The ρ 

735 values > 0.47 and < -0.47 are significant (P < 0.05).
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Supplementary material and methods

Quantitative-PCR

Q-PCR standards for each molecular target were obtained using a 10-fold serial dilution 

of plasmids carrying a single cloned target gene or relevant part thereof. The standards were 

constructed by cloning the PCR product of the environmental samples of each individual PCR 

assay into pCR2.1 TOPO vector by using the TOPO TA cloning kit (Invitrogen, Breda, the 

Netherlands) according to the manufacturer�s protocol. Cloned inserts were isolated using the 

Qiagen Plasmid mini Kit and checked for concentration and purity on a Nanodrop ND-1000 

spectrophotometer (Isogen). Presence of the gene of interest was confirmed by sequence-

analysis (MWG-Biotech, Germany). The total number of plasmids with cloned target genes in the 

Q-PCR Standard was calculated based on its total DNA concentration (Nanodrop), assuming an 

average molecular mass for each nucleotide pair of 660 pg/ml (Smith et al., 2006).

Standard curve template DNA and the �no template control� (NTC) were amplified in 

duplicate in the same plate as the environmental samples. Five tenfold dilutions were used for 

each Q-PCR assay. Q-PCR amplifications were performed in 25 µl volumes containing 12.5 µl of 

iQ� SYBR® Green Supermix (Bio-Rad, Hemel Hempstead, UK), 8.5 µl of nuclease-free water 

(Ambion, Warrington, UK), 1.25 µl of each primer (10 µM) and 1 µl of template DNA using a 

CFX96� Real-Time System (Bio-Rad, Hemel Hempstead, UK). Standard amplification was used 

for all Q-PCR assays except archaeal amoA, starting with an initial denaturation at 95 °C for 3 

min, followed by 40 cycles of 30 s at 95 °C, 0.5 to 1 min of annealing (annealing temperature and 

time for each primers pairs are given in Table S1), and 30 s at 72 °C. Amplification for the 

archaeal amoA gene followed the procedure as described by (Tsiknia et al., 2013). The 

fluorescence was measured at the end of each synthesis step (i.e. at 81 °C for archaeal amoA and 

at 72 °C for all other genes) 

Threshold cycle (Ct) values and amplicon numbers were determined automatically 

using the Bio-Rad CFX Manager� software. The efficiency of the Q-PCR assays was above 90%, 
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except for fungi and AOA (~70%). The r2 were > 0.99, except for nifH and nosZ genes (~0.97). 

Specificity of the Q-PCR was assessed via a melting curve analysis (increase of temperature from 

annealing temperature to 95 °C by 0.5 °C per step of 0.05 s) at the end of each Q-PCR 

amplification (Ririe et al., 1997). The melting curves for the bacterial and archaeal 16S rRNA, 

nifH, amoA, narG, nirS, and nosZ genes Q-PCR assays showed specificity for the amplified 

targeted genes (i.e. single peak). As expected, the melting curve of the Q-PCR for fungal ITS 

showed the amplification of products of different lengths, due to the variability in length of ITS 

regions among different fungal taxa (Manter and Vivanco, 2007).

Microbial respiration

Greenhouse gas fluxes from the aggregate size fractions and the bulk soil were 

measured from field moist bulk soil and soil aggregates (pF 3.8 -4.0; hereafter named �field 

moisture�) and from moistened samples (40 � 60 % of field capacity) by adding distilled water 

48 hours before flux measurements started (hereafter named �elevated moisture�). Soil 

temperature was set to 20 °C. The soil moisture was increased because at the time of soil 

sampling the soil moisture content was low (pF 3.8-4.0), potentially reducing microbial activity 

and subsequent GHG fluxes.

Fluxes of CO2 and NO were measured with a fully automated laboratory measuring 

system with 13 adapted Kilner jars serving as test chambers in a temperature-controlled 

incubator and connected to a CO2 and a NOx analyser. Twelve test chambers were used as 

incubation chambers. One chamber was used as a reference where no soil was incubated. The 

measuring system is described in detail by Schindlbacher et al. (2004) and Schaufler et al., 

(2010). For CO2 and NO flux determination, air from inside the incubator was drawn through 

the chambers to the CO2 and NOx analysers with a constant flow rate of 1.0 l min−1. To avoid 

accumulation of CO2 and NO in the incubator, the incubator was flushed with compressed 

ambient air (1.0 l min−1). Carbon dioxide was measured with a PP Systems WMA-2 (Amesbury, 

MA, USA), infrared CO2 analyser, and NO was measured with a HORIBA APNA-360 (Kyoto, Japan) 
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chemoluminescence NOx analyser. The measuring time of each chamber was 8 min according to 

achievement of steady state. 

Determination of N2O and CH4 fluxes was done manually by closed chamber technique. 

The soil samples were put into Kilner jars and closed air-tight with a PVC lid. A glass tube, with a 

total volume of 685 cm3, was fitted into the PVC lid and closed air-tight with rubber septa and 

sealed with silicon grease. Twelve ml of the gas sample were extracted from each chamber in 

triplicate at intervals of 15min and injected into sealed and pre-evacuated sampling vials with a 

glass syringe. The analysis was done immediately by gas chromatography (AGILENT 6890N) 

connected to an automated system sample-injection (AGILENT TECH G1888, Network 

HEADSPACE-SAMPLER) at an oven temperature of 40 °C. Nitrous oxide was measured by a 63Ni-

electron-capture detector (ECD; detector: 350 °C) and CH4 by a flame ionization detector (FID; 

detector: 250 °C). Standard gases (Inc. Linde Gas) were used as a reference and contained 0.5, 1 

and 2.5 µl l-1 N2O; 1, 2 and 4µl l-1 CH4. Data were calculated as described in Kitzler et al. (2006). 

Physico-chemical analysis of bulk soil and aggregates 

The moisture content of each aggregate size class and the bulk soil was measured 

gravimetrically at 105 °C. The mass distribution over the predefined aggregate size classes was 

obtained by dry sieving of 100 g bulk soil from each sampling spot in triplicate (i.e. 9 replicates 

per site). Particle size distribution (i.e. the fractions of sand, silt and clay) for each aggregate size 

class and the bulk soil was determined by wet-sieving (20�2000 µm fractions) and 

sedimentation of the < 20 µm fraction in an X-ray sedigraph (Micromeritics Sedigraph 5000ET) 

after removal of organic matter with hydrogen peroxide and dispersion with sodium 

polyphosphate (Soil Survey Staff, 2004). 

Total carbon was quantified by dry combustion (Tabatabai and Bremner, 1991) in an 

elemental analyser (Carlo Erba Nitrogen Analyser 500, Milano, Italy), and carbonate was 

measured gas-volumetrically (Soil Survey Staff, 2004). Soil organic C (SOC) was calculated as 

the difference of total and carbonate C. Soil and aggregate samples were extracted for N-NO3
-, N-
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NH4
-, and P-PO4

- using 2 g of soil and 20 ml of KCl (1 M) shaken for 1 h. Concentration of N-NO3
- 

was determined by the vanadium reduction method (Miranda et al., 2001), concentration of N-

NH4
- by the sodium salicylate-sodium nitroprusside method (Rowland, 1983), and the P-PO4

- 

concentration by the ammonium molybdate�ascorbic acid method (Olsen et al., 1954). 

Three different fractions of soil organic matter (SOM) were determined by simultaneous 

thermal analysis (STA) according to Barros et al. (2007), using 50 mg of oven dried (60 °C) 

samples (Netzsch STA 409 PC). The samples were heated from 25 to 600 °C at a rate of 5 °C min-

1 in a reaction atmosphere of synthetic air (flow rate: 50 mL min-1). According to De la Rosa et al. 

(2008) STA allows the distinction of the amount of total SOM (decomposes between 190 and 

550 °C), into thermally labile SOM (decomposes between 190 and 390 °C), thermally more 

stable SOM (decomposes between 390 and 450 °C), and refractory SOM (decomposes between 

450 and 550 °C). In the labile fraction, SOM consists mainly of carbohydrates and proteins (De la 

Rosa et al., 2008), whereas in the thermally more stable SOM fraction polyphenolic and 

aromatic organic structures dominate (Lopes-Capel et al., 2005). Black carbon present in soil 

burns at higher temperatures within the refractory fraction (De la Rosa et al., 2008).

Particle size distribution in the various aggregate size classes as well as the SOM 

fractions (STA) were measured on one composite sample for each site (i.e. mixture of the 3 

replicates/sampling spot at each site). 
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Table S1. Description of the primers used to target each community and the annealing 

temperature of each Q-PCR assays.

Target 

gene

Primer

Annealing 

temp. (°C) 

and time (s)

References

519F GCCAGCAGCCGCGGTAATBacterial

16SrRNA 907R CCGTCAATTCCTTTGAGTTT

58 (30 s)

Lane (1991);

Stubner and Meuser (2000)

Arch 0025F CTGGTTGATCCTGCCAGArchaeal

16SrRNA Arch 364R ACGGGGCGCACGAGGCGCGA

58 (30 s) Vetriani et al. (1999)

ITS1f TCCGTAGGTGAACCTGCGGFungal

ITS 5.8s CGCTGCGTTCTTCATCG

50 (45 s)

Gardes and Bruns (1993); 

Vilgalys and Hester (1990)

nifHF AAAGGYGGWATCGGYAARTCCACCAC

nifH
nifHRb TGSGCYTTGTCYTCRCGGATBGGCAT

62.5 (60 s) Rösch and Bothe (2005)

amoA_F GGHGACTGGGAYTTCTGGamoA

Bacteria amoA_R CCTCKGSAAAGCCTTCTTC

55.3 (30 s)

Holmes et al. (1995); 

Okano et al. (2004)

amoAF STAATGGTCTGGCTTAGACGamoA

Archaea amoAR GCGGCCATCCATCTGTATGT

55 (35 s) Francis et al. (2005)

NARG F TCGCCSATYCCGGCSATGTC

narG
NARG R GAGTTGTACCAGTCRGCSGAYTCSG

63 (30 s) López-Gutiérrez et al. (2004)

NIRS4Q F GTSAACGYSAAGGARACSGG

nirS
NIRS6Q R GASTTCGGRTGSGTCTTSAYGAA

63 (30 s) Braker et al. (1998)

nosZ1840_F CGCRACGGCAASAAGGTSMSSGT

nosZ
nosZ2090_R CAKRTGCAKSGCRTGGCAGAA

67 (30 s) Henry et al. (2006)
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Table S2. Overview table of the two-way ANOVA with land use and aggregate size as factors. 

Significant P values (P < 0.05) are shown in bold. 

Land use Aggregate size Interaction

F values P values F values P values F values P values

Bacteria 54.458 < 2×10-16 4.154 0.00161 2.754 0.00197

Archaea 9.878 2.51×10-5 0.963 0.459 0.806 0.685

Fungi 9.768 2.79×10-5 1.594 0.166 0.830 0.6559

nifH 97.755 < 2×10-16 1.635 0.155 1.535 0.112

AOB 16.231 1.04×10-7 1.275 0.28353 2.473 0.00511

AOA 88.972 < 2×10-16 0.432 0.855 1.004 0.470

narG 184.079 < 2×10-16 2.843 0.017331 3.314 0.000305

nirS 246.065 < 2×10-16 0.768 0.5986 2.045 0.0216

nosZ 73.592 < 2×10-16 4.694 0.00062 1.889 0.03633

Fig. S1. Study area in the National Park �Donau-Auen� east of Vienna. The continuous black line 

represents a dike built from 1882 to 1905 to prevent flooding of the enclosed land. The 

numbers 1 to 4 indicate the 4 field sites/land uses: site 1: young forest; site 2: Forest, site 3: 

Grassland; site 4: Cropland.
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Fig. S2. Variation in soil aggregate size distribution (%), soil water content (%), and carbonate 

concentration (%) between bulk soil and six soil aggregates sizes classes from four land use 

types. Mean value ± one standard deviation (n = 3) are shown. Land use: * indicates significant 

(P < 0.05) effect of land use. Small letters indicate significance (P < 0.05) of pairwise differences 

between soil aggregate size classes within a specific land use.
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Fig. S3. Variation in organic C (g kg-1 soil) and total N (g kg-1 soil) concentration and C/N ratio 

between bulk soil and six soil aggregates sizes classes from four land use types. Mean value ± 

one standard deviation (n = 3) are shown. Land use: * indicates significant (P < 0.05) effect of 

land use. Small letters indicate significance (P < 0.05) of pairwise differences between soil 

aggregate size classes within a specific land use.
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Fig. S4. Variation in N-NO3
- (mg kg-1 soil), N-NH4

+ (mg kg-1 soil) and P-PO4
3- (mg kg-1 soil) 

concentrations between bulk soil and six soil aggregates sizes classes from four land use types. 

Mean value ± one standard deviation (n = 3) are shown. Land use: * indicates significant (P < 

0.05) effect of land use. Small letters indicate significance (P < 0.05) of pairwise differences 

between soil aggregate size classes within a specific land use. The N-NO3
-, N-NH4

+ and P-PO4
3- 

concentrations were not measured on the < 0.25 mm aggregates from young forest site.
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Fig. S5. Variation in sand, silt and clay contents (%) between bulk soil and six soil aggregates 

sizes classes from four land use types. The measurements were performed on one composite 

sample (mixture of 3 soil replicates).
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Fig. S6. Variation in labile, stable and refractory soil organic matter (SOM; g kg-1 soil) between 

bulk soil and six soil aggregates sizes classes from four land use types. The measurements were 

performed on one composite sample (mixture of 3 soil replicates).
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Fig. S7. Variation in gene abundance of bacteria and archaea (16S rRNA gene) and fungi (ITS 

amplicon) between bulk soil and 6 different soil aggregates sizes classes from 4 different land 

uses. The abundances of microbial communities are express by g-1 dry soil aggregates or by g-1 

dry soil for the bulk soil. Means values ± standard deviation (n = 3) are shown. Land use: * 

indicates significant (P < 0.05) effect of land use on microbial gene abundance. Different 

minuscule letters indicate significant (P < 0.05) differences between soil aggregates sizes 

classes for a specific land use. 
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Fig. S8. Variation in gene abundance of N fixation (nifH gene) and ammonia oxidizing bacteria 

and archaea (amoA gene) between bulk soil and 6 different soil aggregates sizes classes from 4 

different land uses. The abundances of microbial communities are express by g-1 dry soil 

aggregates or by g-1 dry soil for the bulk soil. Means values ± standard deviation (n = 3) are 

shown. Land use: * indicates significant (P < 0.05) effect of land use on microbial gene 

abundance. Different minuscule letters indicate significant (P < 0.05) differences between soil 

aggregates sizes classes for a specific land use.
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Fig. S9. Variation in gene abundance of nitrate reductase (narG gene), nitrite reductase (nirK 

gene) and nitrous oxide reductase (nosZ gene) between bulk soil and 6 different soil aggregates 

sizes classes from 4 different land uses. The abundances of microbial communities are express 

by g-1 dry soil aggregates or by g-1 dry soil for the bulk soil. Means values ± standard deviation (n 

= 3; expect for nosZ gene from cropland of the 1.0 � 2.0 mm soil aggregates, for which n = 2) are 

shown. Land use: * indicates significant (P < 0.05) effect of land use on microbial gene 

abundance. Different minuscule letters indicate significant (P < 0.05) differences between soil 

aggregates sizes classes for a specific land use. 
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Fig. S10. Variation in CO2 and CH4 production (μg kg-1 h-1) between 6 sizes fractions and bulk soil, 

from 4 different land uses at the field moisture or elevated moisture (40 � 60 % of field 

capacity). Means values ± standard deviation (n = 3). Land use: * indicates significant (P < 0.05) 

effect of land use on microbial gene abundance. Different minuscule letters indicate significant 

(P < 0.05) differences between soil aggregates sizes for a specific land use. The CO2 and CH4 

emissions were not measured for the < 0.25 mm soil fractions from young forest site at field 

moisture.
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Fig. S11. Variation in NO and N2O production (μg kg-1 h-1) between 6 sizes fractions and bulk soil, 

from 4 different land uses at the field moisture or elevated moisture (40 � 60 % of field 

capacity). Means values ± standard deviation (n = 3). Land use: indicates significant (*: P < 0.05) 

or no (ns: non-significant P > 0.05) effect of land use on microbial gene abundance. Different 

minuscule letters indicate significant (P < 0.05) differences between soil aggregates sizes for a 

specific land use. The NO and N2O emissions were not measured for the < 0.25 mm soil fractions 

from young forest site at field moisture. NB: the y-scale of N2O is different between plots based 

on field moisture or elevated soil moisture. 
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Fig. S12. Heatmaps of Spearman�s rank correlation coefficients ρ between microbial genes 

abundance and greenhouse gas fluxes from samples across six soil aggregates sizes classes (< 

0.25, 0.25 � 0.5, 0.5 � 1.0, 1.0 � 2.0, 2.0 � 5.0 and 5.0 � 10.0 mm) and four land uses. AOB: amoA 

bacteria; AOA: amoA archaea. The ρ values > 0.24 and < -0.24 are significant (P < 0.05).
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Fig. S13. Heatmaps of Spearman�s rank correlation coefficients ρ between soil properties and a) 

microbial genes abundance or b) greenhouse gas fluxes from samples across six soil aggregates 

sizes classes (< 0.25, 0.25 � 0.5, 0.5 � 1.0, 1.0 � 2.0, 2.0 � 5.0 and 5.0 � 10.0 mm) and for four land 

uses separately. AOB: amoA bacteria; AOA: amoA archaea. The ρ values > 0.47 and < -0.47 are 

significant (P < 0.05).
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Fig. S14. Heatmaps of Spearman�s rank correlation coefficients ρ between microbial genes 

abundance and greenhouse gas fluxes from samples across six soil aggregates sizes classes (< 

0.25, 0.25 � 0.5, 0.5 � 1.0, 1.0 � 2.0, 2.0 � 5.0 and 5.0 � 10.0 mm) and for four land uses separately. 

AOB: amoA bacteria; AOA: amoA archaea. The ρ values > 0.47 and < -0.47 are significant (P < 

0.05). 
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