
This is a repository copy of Phase transitions in shock compressed bismuth identified 
using single photon energy dispersive X-ray diffraction (SPEDX).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/125901/

Version: Published Version

Article:

Briggs, R., Suggit, Matthew J., Gorman, M. G. et al. (6 more authors) (2017) Phase 
transitions in shock compressed bismuth identified using single photon energy dispersive 
X-ray diffraction (SPEDX). Journal of Physics: Conference Series. 042038. ISSN 1742-
6596 

https://doi.org/10.1088/1742-6596/950/4/042038

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Phase transitions in shock compressed bismuth
identified using single photon energy dispersive X-
ray diffraction (SPEDX)
To cite this article: R Briggs et al 2017 J. Phys.: Conf. Ser. 950 042038

 

View the article online for updates and enhancements.

Related content

Structural Study of Molten Silicon by
Energy Dispersive X-Ray Diffraction
Method
Susumu Takeda

-

Angle Dispersive X-ray Diffraction
Beamline on Indus-2 Synchrotron
Radiation Source: Commissioning and
First Results
A K Sinha, Archna Sagdeo, Pooja Gupta
et al.

-

Phase Transitions in Silicon-Germanium
Alloys under Pressure
G. Queisser, W. A. Grosshans and W. B.
Holzapfel

-

This content was downloaded from IP address 144.32.224.27 on 05/01/2018 at 15:07



1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

AIRAPT IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 950 (2017) 042038  doi :10.1088/1742-6596/950/4/042038

Phase transitions in shock compressed bismuth

identified using single photon energy dispersive

X-ray diffraction (SPEDX)

R Briggs1, MJ Suggit2, MG Gorman1, A Coleman1, R Heathcote3, A

Higginbotham4, S Patel2, JS Wark2 and MI McMahon1

1SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The
University of Edinburgh, Edinburgh, EH9 3FD, UK
2Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford,
OX1 3PU, UK
3Department of Physics, University of York, Heslington, York, YO10 5DD, UK
4Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot,
OX11 0QX, UK

E-mail: m.i.mcmahon@ed.ac.uk

Abstract. We present evidence for phase transitions in shock-compressed bismuth using the
SPEDX x-ray diffraction technique. Experiments were performed on the Vulcan laser at the
Central Laser Facility, RAL, Didcot, UK. We observed diffraction from the (110) bcc peak of
Bi-V, and from its calculated lattice parameter the pressure was determined to be approximately
17 GPa. Upon further compression (higher laser intensities), no further diffraction from solid
phases was observed. Shock melting of bismuth is thought to occur between 18 and 27 GPa.
Diffraction results at lower pressures as a function of delay time are also presented.

1. Introduction

Dynamic compression of materials using high-power lasers allows access to extreme P-T states
that lie well beyond the current limits of diamond anvil cell techniques. Laser facilities such
as the National Ignition Facility are capable of compressing samples to 10s of megabars (> 1
TPa), whilst ensuring that the sample remains sufficiently cool to investigate solid-solid phase
transitions [1]. However, collecting X-ray diffraction data from such samples is difficult, as the
very high laser intensities used to produce the nanosecond-duration plasma X-ray source create
a hostile environment in which the X-ray background from the drive lasers can eclipse any
diffraction signal from the sample [2]. Obtaining X-ray diffraction from dynamically-compressed
samples is therefore challenging at even modest pressures. Single photon energy dispersive X-ray
diffraction (SPEDX) is a relatively new diffraction technique that uses CCD cameras in single
photon counting mode to directly record the energy of X-rays diffracted from a laser-compressed
sample [3]. Two X-ray CCDs record the diffraction at different Bragg angles, with each camera
covering a wide range of k-space, allowing for recording of a significant number of Bragg peaks
arising from the sample’s crystal structure.

Recent shock experiments on bismuth, combined with in situ synchrotron X-ray diffraction,
have revealed complex structural dynamics and phase transitions upon shock release [4]. After
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peak compression to the Bi-V phase (body centered cubic; bcc) at ∼ 10 GPa, the pressure in
the sample then released to ambient pressure via three successive phase transitions – Bi-V (bcc)
→Bi-III (host-guest) → Bi-II → Bi-I – within 30 ns. More recently, we showed that on shock
release from pressures above 11 GPa Bi-V melts within 3 ns [5].

Here we present evidence for phase transitions in shock-compressed bismuth using the SPEDX
diffraction technique. Experiments were performed on the Vulcan laser at the Central Laser
Facility, RAL, Didcot, UK. We observe diffraction from the (110) bcc peak of Bi-V, and from the
measured lattice parameter the sample’s pressure was determined to be ∼ 17 GPa. Upon further
compression (higher laser intensities) no diffraction from crystalline Bi was observed, consistent
with the incipient melting thought to occur between 18 and 27 GPa [6]. Also presented and
discussed are lower-pressure diffraction data on compressed Bi to < 10 GPa.

2. Experimental methods

The experiment was carried out at the TAW, Vulcan facility (Central Laser Facility, Rutherford
Appleton Laboratory, Didcot, UK). Two laser beam pathways were used to either drive the
sample target package (with 1 or 2 drive beams) or to generate a broadband X-ray spectrum
from a backlighter target foil (Fig. 1). The drive lasers delivered up to 200 J of 527 nm light onto
target using a flat top laser pulse with pulse length of 6 ns, which shock-compressed samples
to pressures of ∼ 20 GPa and below. The drive spot was 3.2 mm in diameter, generating
intensities of ∼ 1011-1012 W/cm2. Similar laser intensities were shown to shock compress Bi
to peak pressures of ∼ 14 GPa using the same ablating material [5]. Hydrocode simulations in
Gorman et al. revealed a steady shock in 15 µm of Bi with a 20 ns pulse length. The flat top
laser pulse of 6 ns used in these experiments ensures a steady shock within the diffracting layers
of the sample (since X-ray diffraction here is collected in reflection geometry).

Six beams were used to drive the x-ray backlighter, delivering up to 600 J of 1053 nm light
in 1 ns with a spot size of < 1.0 mm and intensities of ∼ 1014 W/cm2.

In vac. CCD Camera

Sample wheel (15 targets)

Backlighter wheel (15 targets)

Shield & Collimator

In vac. CCD Camera

Two drive beams

 (< 150 J, 6 ns)

Six backlighter beams

 (~200 J, 1 ns)

X-ray pathways

time (ns)

In
te

n
si

ty
 (

W
/c

m
2
)

Figure 1. Experimental setup within the TAW target chamber.

Samples consisted of 50 µm Bi metal foil coated with 20 µm of CH-N polyimide ablator
with a 100 nm Al flash coating. Backlighter targets (used to generate a quasi-white light source
between 3-9 keV) were mixed-metal coatings, produced by the CLF target fabrication group.
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Both sample and backlighter targets were mounted on a multi-target wheel that was remotely
controlled to rotate and align new targets after each shot, a technique developed to increase the
shot rate during each experimental shift.

Two in-vacuum X-ray CCD cameras were used to collect scattered X-rays at two different
Bragg angles. The experimental setup is shown in Fig. 1. The two cameras were placed
approximately 50 cm from the sample wheel and were shielded with thick Al tubes to reduce the
background noise. Plastic filtering was also added to the end of the Al tubes to preferentially
reduce the number of background photons near 3 keV that were generated from the mid-Z
backlighter samples. Both cameras were water-cooled via an external chiller to minimize the
number of dark counts recorded by the CCDs. The X-rays were collimated using a Mo collimator
with Pb shielding, thereby ensuring that only an X-ray spot size of ∼ 0.5 mm2 was incident
upon the driven area of the sample.

The two drive laser beams were timed with respect to each other such that the samples could
be studied before, during and after the shock wave reached the bismuth sample. This allowed
us to collect ambient diffraction from undriven targets at early times, diffraction from driven
samples at the peak compression, and observe possible phases on shock release from the peak
state, such as liquid-Bi or Bi-III / Bi-II, as observed by Hu et al. in their synchrotron-based
study [4].

140

120

100

80

60

40

20

0

C
o

u
n

ts
 (

a
.u

.)

65432
Energy (keV)

140

120

100

80

60

40

20

0

C
o

u
n

ts
 (

a
.u

.)

65432
Energy (keV)

0 ns 

+1 ns 

+2 ns 

+3 ns 

Bi-II tick marks Bi-III tick marks

0 ns 

+1 ns 

+2 ns 

+3 ns 

Bi-I (0 GPa)Bi-I (0 GPa)

Figure 2. SPEDX diffraction data collected at low pressure P < 5 GPa with tick marks (grey
shaded lines) of the Bi-II (left) and Bi-III (right) crystal structures. Filled circles identify the
ambient Bi-I diffraction peaks.

3. Results

We first investigated shock-compressed Bi at low pressures (P< 10 GPa) by using laser intensities
of ∼ 1011 W/cm2. From a previous experiment on Bi we were able to generate a pressure versus
laser-intensity calibration for the same target configuration (pressure-intensity calibrated to P
< 20 GPa) [5]. Figure 2 shows diffraction data obtained just before the shock entered the Bi (0
ns profile) and then three further diffraction profiles obtained at increasing time delays. These
low-pressure data reveal new diffraction peaks that cannot be fitted with either the compressed
Bi-I or Bi-V crystal structures. It is possible that the peaks arise from Bi-II, only stable between
2.55 and 2.7 GPa, and the vertical grey lines shown in (Fig. 2 left) show the expected Bi-II peak
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positions at ∼ 2.7 GPa [7]. Whilst there is a reasonable agreement with the observed peaks at
+1 ns (Fig. 2 left), at +2 ns a new peak appears at ∼ 3.75 keV that does not fit very well
to the Bi-II structure. Fits to the Bi-III crystal structure are shown in Fig. 2 right. Both the
Bi-II and Bi-III crystal structures have some agreement to the position of this peak (Bi-II peak
within 0.6 keV, Bi-III within 0.3 keV), but it should be noted that the Bi-II peak (-201) has a
calculated intensity that is significantly weaker than the strong Bi-III (310) peak at this energy.

When the laser intensity was increased to beyond ∼ 1012 W/cm2 heavy filtering of the
CCD cameras was required in order to reduce the large drive noise at 3-4 keV (Fig. 3). For
data collected using such drive laser intensities, the total number of counts in the signal was
significantly reduced and some weak fluorescence peaks were also observed. The position of
these fluorescence peaks on the CCD cameras are independent of the Bragg angle (the peaks
are present at the same energy on both cameras) and we can therefore easily distinguish them
from the diffracted Bi photons. Figure 3 shows an example of data collected from a driven
target that shows evidence of the high-pressure Bi-V phase. The fluorescence peaks arising from
the backlighter foils are identified in Fig. 3 with filled circles above them. By knowing the
Bragg angle of each detector (obtained using ambient diffraction from Ta/Bi and calibrating the
detector angles), the peak position of the Bi-V (110) reflection (∼ 4.03 keV at 35◦) can be used
to determine the lattice parameter for the driven sample, which was found to be 3.68 Å. From
the known equation of state of Bi [8], this gives an estimated sample pressure of ∼ 17 GPa.
All of the remaining peaks can be fitted to the ambient Bi-I phase arising from uncompressed
material ahead of the shock wave (rectangular tick marks in main figure).
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Figure 3. Diffraction data collected from the two CCD cameras at different Bragg angles.
Triangles indicate the location of Bi-V peaks at a pressure of 17 GPa. Filled circles identify
peaks that are present at the same energy on both cameras, and which are therefore fluorescence
peaks from the backlighter foil.
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Recent experiments carried out at the LCLS x-ray free electron laser (XFEL) indicate that
melting of the bismuth should also be observed on shock release from pressures above 11 GPa [5].
Unfortunately, the weak diffraction signal from the liquid is difficult to extract in the current
experiment as it is overwhelmed by diffraction from several high-pressures phases. In some
later shots in the campaign, we used higher laser energies than those where the Bi-V phase was
observed and found that we were no longer able to observe any Bragg peaks from the Bi-V
phase. This could be an indication that shock melting had occurred (previously reported to
occur between 18 and 27 GPa [6]) as the Hugoniot crosses the melting curve. However, the drive
noise was significantly higher for these data collections and the expected liquid diffraction peak
is overlapped by the drive noise. In several cases the detectors were also unable to operate in
single photon counting mode, since excessive numbers of noisy pixels from the drive saturated
the CCD camera, overwhelming the diffraction signal from the liquid.

4. Conclusions

X-ray diffraction studies of bismuth under shock compression have been carried out and reveal
phase transitions at low pressure (P < 10 GPa) and observe the high-pressure Bi-V phase at
P ∼ 17 GPa, the highest pressure that Bi-V has been observed on the shock Hugoniot. It
is not yet clear as to what structure/structures the samples transform to at low pressures,
and further work is planned to investigate the lower-pressure phase transitions using different
detector angles. This would both improve our ability to distinguish Bi-II and Bi-III peaks, and
move key Bragg peaks away from the region of drive noise for the highest energy drives. We
will plan to investigate using the SPEDX technique in a transmission geometry, using thinner
sample targets, thereby completely removing the drive noise signal present on the CCD camera,
and enabling the weak liquid diffraction signal to be observed.
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