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Robotic devices have great potential in physical therapy owing to their repeatability, reliability and 
cost economy. However, there are great challenges to realize active control strategy, since the 
operator’s motion intention is uneasy to be recognized by robotics online. The purpose of this paper 
is to propose a subject-specific electromyography (EMG)-driven musculoskeletal model to estimate 
subject’s joint torque in real time, which can be used to detect his/her motion intention by forward 
dynamics, and then to explore its potential applications in rehabilitation robotics control. The 
musculoskeletal model uses muscle activation dynamics to extract muscle activation from raw EMG 
signals, a Hill-type muscle-tendon model to calculate muscle contraction force, and a proposed 
subject-specific musculoskeletal geometry model to calculate muscular moment arm. The 
parameters of muscle activation dynamics and muscle-tendon model are identified by off-line 
optimization methods in order to minimize the differences between the estimated muscular torques 
and the reference torques. Validation experiments were conducted on six healthy subjects to evaluate 
the proposed model. Experimental results demonstrated the model’s ability to predict knee joint 
torque in high- accuracy with the coefficient of determination ( 2

R ) value of 0.934 0.013 and the 
normalized root-mean-square error (RMSE) of 11.58% 1.44% .  
 

Keywords:  EMG signals; musculoskeletal modeling; rehabilitation robotics; control strategies. 

1.   Introduction 

Elderly people are vulnerable to neurologic impairments such as stroke and paralysis. 
Many of these survivals suffer from motor impairments that seriously affect their daily 
lives. In recent years, there is an increasing interest in developing robotics for 
rehabilitation and various robot control strategies have been proposed.1, 2 Robotics can 
relieve the therapists from the heavy rehabilitation task and facilitate repetitive, 
systematic and prolonged rehabilitation training.3 Despite the advantages of assistive 
robotics in rehabilitation, it is difficult to realize human-active control strategy on 
robotics. On one hand, to realize the robot-aided rehabilitation training, a human-robot 
interface must be established to help the robot understand the motion intention of the 
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operator.4 On the other hand, the robotic assistance should be adjustable to meet the 
needs of patients in different rehabilitation stages.  

EMG signals have been widely used in human-robot interface design since they are 
the direct measures of muscle’s electrical activity. Recently, several well-developed 
methods using EMG signals to distinguish the operator’s different motion patterns have 
been proposed.5-7 Robot control performance by using this kind of method largely 
depends on the classification accuracy. The main drawback of this method relates to two 
separated movements, an active patient-triggered phase and a passive robot-driven 
phase.8 As a result, the patient only applies voluntary efforts in the first phase and has no 
interaction in the second phase. In this situation, the rehabilitation course is actually 
charged by the robot. On the other hand, a continuous motion must be divided into some 
discrete motion patterns. To make the discrete motions more approximate to the original 
ones, the number of patterns must be increased. However, the increase of patterns will 
lead to the decrease of classification accuracy and make the classification algorithm more 
complex.9  

To overcome these shortcomings, recent researches have worked toward using EMG 
signals to estimate joint torque applied by the operator. This torque estimation based 
method aims at providing operators with continuous assistance. Generally speaking, there 
are two approaches that can be used to transform the EMG signals into joint torque: 
black-box and musculoskeletal model. A black-box method using recurrent artificial 
neural network to estimate torque of elbow was proposed by Song et al.10 Kiguchi et al. 
designed an exoskeletal robot to assist elbow motion and a fuzzy neuro algorithm was 
applied to establish the relation between EMG signals and elbow joint torque.11  The main 
advantage of black-box method is that the complex and nonlinear relationship between 
EMG signals and joint torque can be avoided and only input and output training samples 
are required.  

However, this kind of method can not provide insight into the biomechanical process 
of human movement. A possible solution to this problem is to estimate the torque applied 
by operators based on musculoskeletal model. A systematic review on model based 
muscle force and joint torque estimation methods was presented by Erdemir et al.12. 
Moreover, a musculoskeletal model based assist-as-needed (AAN) control method was 
proposed by Carmichael,13, 14 where a musculoskeletal model was developed to calculate 
the operator’s strength with respect to different tasks. However, their model was not 
specific to the subjects’ different muscle-tendon properties. A generic model (model 
parameters were collected from published data) was employed to analysis the strength of 
all subjects. Since they primarily focused on the assistance needed to perform different 
tasks, using the generic model to estimate strength is suitable. But if quantitative analysis 
is need for each patient’s physical capability, the generic model will be inappropriate. To 
this end, an off-line parameter identification procedure was performed to adjust the 
musculoskeletal model to match specific subjects.15 Similarly, a musculoskeletal model 
to study movements of elbow joint was developed by Pau et al.16 In their studies, only 
EMG signals collected from the involved muscles were used to predict elbow motions. 
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Therefore, the additional data processing steps with respect to other information such as 
joint kinematics can be omitted.  

Knee is the largest and most complicated joint in human body, which plays an 
important role in human motions. Currently, there are few musculoskeletal models for 
knee joint have been developed. Moreover, some researchers did not study the subject-
specific musculoskeletal geometry, which is vital to calculate muscle contraction force 
and to understand each muscle’s contribution to total muscular torque. To match specific 
subjects, the geometry path can be scaled based on relative distances between pairs of 
markers obtained from a motion-capture system. However, the motion-capture system is 
quite expensive. Furthermore, the applications of these models were limited to clinical 
diagnosis and management of orthopaedic conditions.12, 16 Hence, their potential 
applications in robot control and rehabilitation need to be further investigated.  

In this paper, a subject-specific musculoskeletal model for knee joint is presented to 
estimate the subject’s joint torque, which can greatly reflect the subject’s motion 
intention. In order to adjust the musculoskeletal model parameters to specific subjects, 
off-line identification processes are carried out. Furthermore, the model is re-calibrated to 
investigate whether the proposed model with subject-specific musculoskeletal model can 
improve prediction accuracy compared to models with generic musculoskeletal geometry. 
After this, preliminary experiments are conducted to explore its potential applications in 
robot active control. Finally, a detailed discussion of benefits and limitations of the 
proposed model and model based control approach is also presented and compared with 
the existing methods. 

2.   Methods 

Musculoskeletal model can be used to elucidate the biomechanical process of human 
motion which begins with the neural command and ends with the joint kinematics. 
Generally, the model can be divided into three parts, namely, muscle activation dynamics, 
Hill-type muscle-tendon model and musculoskeletal geometry.17, 18 In this work, the 
musculoskeletal model in relation to knee joint is taken into account. The model includes 
eight muscles which were supposed to be main actuators for knee joint rotation. Muscles 
that contribute to knee extension are Rectus Femoris (RF), Vastus Lateralis (VL), Vastus 
Medialis (VM) and Vastus Intermedius (VI). In addition, Biceps Femoris long/short head 
(BFL, BFS), Semimembranous (SM) and Semitendinosus (ST) are four knee flexors.19 

2.1.  EMG pre-process and muscle activation dynamics 

 Muscle activation, represented by ( )a t , implies the amount of force that the neural 
system requires the muscle to generate. Extracting muscle activation from raw EMG 
signals is necessary for estimating muscle contraction force. The raw EMG signals were 
pre-processed by a high-pass filter with a 25Hz cut off frequency, and then were rectified 
and normalized. After the normalization was done, the resultant signals were low-pass 



4 Qingsong Ai, Bo Ding, Quan Liu,Wei Meng 

 
filtered (cut off frequency 3 Hz) to simulate the muscle’s natural property that acts as a 
low-pass filter. The processed EMG signals are expressed by ( )e t , which was input to a 
model to obtain the neural activation ( )u t , as expressed in Eq.(1) , where d  is the 
electromechanical delay and 1,   and 2  are proportional coefficients. In order to make 
the equation stable and limit its solution (0 to 1), the constrains as shown in Eq.(2) must 
be met. After ( )u t  was determined, a simple solution20 can be used to calculate the 
muscle activation by using Eq.(3), where A is the nonlinear shape factor that varies from 
-3, when the relationship is highly exponential, to 0, when the relationship is linear. 
                                      1 2( ) ( ) ( 1) ( 2)u t e t d u t u t                                              (1) 
                    1 1 2 2 1 2 1 2,  ,  1.0c c c c            and 1 21, 1c c                       (2) 

                                                       
( ) 1( )

1

Au t

A

e
a t

e





                                                           (3) 

2.2.  Hill-type muscle-tendon model 

This section explains how to calculate the muscle force by using Hill-type muscle-
tendon model. The relationship between the length of muscle-tendon mtL , the muscle 
fiber length mL  and tendon length tL  can be described by Eq.(4), where   is the 
pennation angle. Muscle-tendon force F  can be obtained according to Eq.(5), where tF  
is the tendon force, mF  the muscle fiber force, max

mF  the maximum isometric muscle 
force, 

mL  the normalized muscle fiber with respect to the optimal muscle fiber length 
o
mL , 

mV  the normalized muscle fiber contraction velocity with respect to maximal 
muscle contraction velocity maxV  and a  the muscle activation explained above. ( )mAF l , 

( )mVF v  and ( )mPF l  are the normalized active force-length, force-velocity and passive 
force-length function, respectively.21  
                                                         cosmt m tL L L                                                    (4) 

  max[ ( ) ( ) ( )]cosm mmm A V PF F F L F V a F L                                 (5) 
Once the muscle fiber length mL  and its contraction velocity mV  are determined, the 

muscle force can be calculated by using Eq.(5). However, it is difficult to obtain mL  
directly, since it can only be measured by medical devices such as magnetic resonance 
imaging (MRI) systems or ultrasonic scanner, which are not available in laboratory 
environment. Actually, mL  can be indirectly obtained by Eq.(4), and mtL  can be 
estimated by the muscle path and knee joint kinematics, which will be discussed in the 
next section. Moreover, tL  can be computed by the normalized tendon-force relationship 

( )t tF L  presented as in Eq.(6), where   is the optimal tendon strain and s
tL  is the tendon 

slack length. Finally, the muscle-tendon force can be estimated according to Eq.(7).22 A 
block diagram (Fig. 1) was provided to make the calculation process more explicit. 
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Fig.1. Block diagram of muscle-tendon contraction dynamics 

2.3.  Subject-specific musculoskeletal geometry model 

Moment is the product of force and its moment arm. To compute a muscle-tendon 
moment arm, muscle paths are required to determine the muscle’s length and its line of 
action. Generally, muscle paths can be determined by the aforementioned medical 
devices. However, the use of medical devices is expensive and time-consuming.23 It is 
therefore many researchers employed a generic musculoskeletal geometry model 
established with reported data collected from cadavers to calculate muscle-tendon length 
and moment arm. However, the generic musculoskeletal geometry may not suitable for 
specific individuals and subject-specific musculoskeletal geometry is essential for the 
improvement of moment prediction accuracy. To match the specific subject, the 
geometry path can be scaled based on relative distances between pairs of markers 
obtained from a motion-capture system. However, the motion-capture system is quite 
expensive. A practical solution is proposed here to tackle this problem. For simplicity, the 
muscles are assumed as straight lines.17 Since the muscle path can be affected by the size 
of bones, the length of body segment and attachment sites, muscles’ origin coordinates 
and insertion coordinates are estimated based on the skeletal morphologic parameters 
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measured from lower extremity and the related regress equations.24 A typical subject’s 
muscle paths in the standard standing pose can be found in Table 1. 

1B



1 

1

1B



1
U

STMa

STLmt

 

Fig.2. Illustration of musculoskeletal geometry model 

Once the static muscle paths are determined, the subject-specific musculoskeletal 
geometry model can be established and the dynamic muscle-tendon moment arm can be 
obtained. Without loss of generality, the calculation of just ST’s moment arm is described. 
As shown in Fig.2, the dash line represents the static standing pose and the solid line 
indicates the dynamic pose. A is the origin point, B is the insertion point and O is the 
center of knee joint. Hence, the muscle-tendon length and moment arm can be 
determined by the following equations.    

                                                                                             
                                           

11

2 2
12 cosST AO AO B OB O

Lmt l l l l                                        (8) 

                                                               1sinST BOMa l                                                (9). 

 

Table 1 The muscle paths of a typical subject 

Muscle 
Origin Coordinates(cm) Coordinate 

System 
Insertion Coordinates(cm) Coordinate 

System x y z x y z 

BFS 1.196 11.825 2.134 femur 0.183 33.570 5.417 tibia 
BFL -5.103 -4.810 1.826 pelvis 0.183 33.570 5.417 tibia 
ST -5.103 -4.810 1.826 pelvis -0.390 32.858 -1.848 tibia 
SM -5.021 -4.741 0.895 pelvis -0.390 32.858 -1.848 tibia 
RF 4.218 3.501 2.047 pelvis  3.905 2.435 -0.767 femur 
VL 1.584 18.723 3.435 femur 3.905 2.435 -0.767 femur 
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VM 0.210 17.009 1.427 femur 3.905 2.435 -0.767 femur 
VI 2.782 27.898 2.762 femur 3.905 2.435 -0.767 femur 

 

3.   Model identification and validation 

3.1  Parameter identification  

In order to make muscle-tendon model parameters match specific subjects, 
identification experiments should be carried out. As aforementioned, d , 1c , 2c  and A  are 
four parameters used to define the muscle activation dynamics. It is assumed that all 
involved muscles share the common activation dynamics. Hence, only 4 activation 
parameters need to adjust. As to the muscle-tendon model, max

mF , o
mL , s

tL , maxV  and   
are five anatomical parameters that reflect the force-generating ability of each muscle. 
Among these muscle parameters, max

mF , o
mL  and s

tL  have shown high sensitivities25, 26 
and maxV  can be set to 10 o

mL . Thus only three parameters need to be identified for each 
muscle-tendon model. Since 8 muscles were taken into consideration, a total of 24 
muscle-tendon model parameters should be identified by optimization methods. 
Combining forward and inverse dynamics, these parameters can be tuned based on the 
principle that the net joint moment estimated by the EMG-driven forward dynamics 
model are supposed to be in accordance with moment obtained by inverse dynamics,18 as 
given by Eq.(10) and Eq.(11), where netM  is the net knee joint moment, 

mus i i
i

M ma F   is the joint moment generated by muscles, graM  the gravitational 
moment of the lower limb, passM  the passive joint moment. 
                                                 =net mus pass graM M M M                                           (10) 

                                                             net kM J                                                           (11) 
Note that it is difficult to model the passive joint moment due to the complexity of 

joint components and construct. In addition, it is found that most values of the passive 
joint moment were small when the joint angles were within a certain range (e.g. 

50 80k    ). And  when the joint angles were close to the joint limits, the passive 
joint moment would rise sharply.27 In terms of rehabilitation training, the range of 
movement (ROM) is always moderate, thus, passM  was neglected for simplicity, and then 
the net joint netM  can be determined by musM  and graM . Furthermore, netM  can also be 
calculated by Eq.(11), where J  is the moment of inertial of the lower limb and k  is the 
angular acceleration obtained by differentiating the angular position twice. Finally, the 
principle of parameter identification process can be simplified as shown in Eq.(12). 

                                                       = kmus gra JM M                                                     (12) 

3.2.  Model validation  
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The goal of the model validation procedure is two fold: 1) to evaluate the feasibility 

and effectiveness of the proposed EMG-driven musculoskeletal model. 2) to test whether 
the proposed model with subject-specific musculoskeletal geometry can improve the 
prediction accuracy compared to models with generic musculoskeletal geometry.  

The validation experiments were conducted on six healthy subjects. In the experiment, 
without taking into account the effects of ground reaction force (GRF), each subject was 
asked to sit on a chair with his/her feet being off the ground. After the maximal EMG 
signals were collected during the maximum voluntary contraction (MVC) experiments, 
the subjects were asked to perform extension and flexion movements of knee joint at 
arbitrary speed. Note that when the subject was in a sitting position, the knee angle k  
was limited to vary from about -60 to 90 degree, where the negative values indicate the 
knee flexion. Specially, k  will be 0 when the subject is at rest. During the experiment, 
raw EMG signals were recorded by the EMG acquisition equipment (DataLOG MWX8, 
Biometrics Ltd. UK) and sampled at the rate of 1000 Hz. It is assumed that the 
activations of SM and BFS are equal to ST and BFL, respectively and the activation of 
VI can be calculated using the activations of VL and VM.20 For each subject, only five 
muscles (RF, VL, VM, BFL, ST) were thus taken into consideration (The EMG 
electrodes placements can be found in Fig.6). At the meantime, angular position of knee 
joint was recorded by a wearable angular transducer. The subjects were asked to have 
enough rest after each trial to eliminate the effects of muscle fatigue. 

( )a t mtL

iF
iMa

k
2

2
kd

dt





 

Fig.3. Block diagram of parameters identification process 

Two groups of optimization process were performed to achieve the goals of the 
validation procedure. In the first group G1, the muscular moment was estimated by the 
proposed model with the subject-specific musculoskeletal geometry. In the second group 
G2, the subject-specific musculoskeletal geometry was replaced by a generic model. For 
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each group, both raw EMG signals and kinematics data were input to the optimization 
model as shown in Fig.3 to identify the parameters of musculoskeletal model. In order to 
make the resultant parameters physiologically meaningful and improve the optimization 
performance, the initial values of model parameters were obtained from the reported data 
and were allowed to vary within the limited ranges. In this study, the off-line 
optimization process was done by using MATLAB Simulink. And a nonlinear least 
square method with the Levenberg Marquardt algorithm was adopted to adjust the 
parameters during the identification process to minimize the differences between the 
estimated moment and the reference moment. 

3.3.  Results 

Without loss of generality, typical results of two subjects (S4 and S6) were selected to 
elucidate the process. The raw EMG signals measured from lower limb are illustrated in 
Fig.4. Comparisons between the estimated muscular torque and the reference torque are 
shown in Fig.5. Furthermore, a summary of estimation performance of the model of all 
subjects is presented in Table 2 and the tuned model parameters for all six subjects are 
presented in Table 3. 
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Fig.4. Raw EMG signals. The black line indicates the EMG signals measured from extensors and the gray line 
represents the EMG signals obtained from flexors. 
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Fig.5. Comparison of torque (+, knee extension; -, knee flexion). The black solid line is the estimated muscular 
torque in the first group G1 and the black dashed line represents the estimated torque in the second group G2. 
The gray line indicates the reference torque calculated by Eq.(12).  

Fig.4 clearly shows that the muscle activation pattern varies from subject to subject. 
For example, the EMG values of RF measured from subject 4 were notably smaller that 
that collected from subject 6. However, for each subject when performing knee extension 
movements the main actuators are the same, namely, RF, VL, VI and VM. Conversely, 
the knee flexion is attributed to contractions of BFL, BFS, ST and SM, and the EMG 
signals measured from quadriceps femoris are negligible during this movement. One can 
see that the EMG signals obtained from extensors/flexors are always changing 
simultaneously, although they are different in amplitude. This co-activation of different 
muscles can be termed as muscle synergy, which was suggested as an efficient way to 
facilitate complex movements.28 Combining with Fig.5, one can note that the estimated 
muscular torque increased with the EMG values. The main reason for this is that the 
active muscle force is proportional to muscle activation according to Eq.(5). As 
mentioned earlier, the subject could freely perform knee extension/flexion movements 
and the GRF was ignored, consequently the estimated muscular torque is approximate to 
the gravitational torque which changed sinusoidally during the experiments. 

 

Table 2 Summary of prediction performance of the model 

Subject Group 
Coefficient of 

determination( 2R ) 
Maximum moment 

deviation M  (Nm) 
Normalized    RMSE 

(Nm) 

S1 
G1 
G2 

0.935 
0.905 

1.50 
1.62 

10.68% 
14.46% 

S2 
G1 
G2 

0.923 
0.911 

1.40 
1.42 

11.20% 
12.60% 

S3 
G1 
G2 

0.949 
0.925 

1.20 
2.09 

10.78% 
13.35% 

S4 
G1 
G2 

0.946 
0.886 

1.06 
2.24 

10.49% 
16.46% 

S5 G1 0.936 1.31 12.03% 
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G2 0.893 2.06 17.38% 

S6 
G1 
G2 

0.916 
0.884 

1.03 
1.82 

14.30% 
19.20% 

Mean 
G1 
G2 

0.934 
0.900 

1.250 
1.875 

11.58% 
15.57% 

SD 
G1 
G2 

0.013 
0.016 

0.187 
0.313 

1.44% 
2.54% 

(Note: RMSENormalized RMSE  SD=Standard Deviation
Peak Moment

 ˈ ) 

Fig.5 illustrates the ability of the proposed EMG-driven musculoskeletal model to 
predict knee joint torque for two subjects when performing extension/flexion movements. 
Despite the differences between subjects such as muscle activation patterns, the proposed 
model can be tuned to track the knee joint torque with an acceptable accuracy. Both the 
shape and magnitude (the green dashed line) of the estimated torque are in good 
agreement with the reference torque. A high level of correlation (the 2R  value ranging 
from 0.916 to 0.949) and a low normalized RMSE (from 10.49% to 14.30%) were 
obtained as presented in Table 2, which demonstrates the feasibility and effectiveness of 
the proposed model. 

 

Table 3 The tuned and published musculoskeletal model parameters 

Muscle/Subject 

S1 S2 S3 S4 S5 S6 Delp 
max

mF (N) 
s
tL (m) 

o
mL (m) 

RF 

789 688 800 793 815 821 780 

0.286 0.297 0.275 0.268 0.273 0.283 0.346 

0.076 0.082 0.084 0.083 0.084 0.095 0.084 

BFS 

259 400 272 141 156 384 431 

0.077 0.127 0.056 0.091 0.089 0.119 0.100 

0.175 0.181 0.175 0.171 0.168 0.186 0.173 

VL 

798 696 727 704 754 657 1870 

0.146 0.208 0.176 0.120 0.1655 0.192 0.157 

0.08 0.101 0.082 0.072 0.083 0.094 0.082 

BFL 

339 343 251 281 242 388 720 

0.279 0.313 0.268 0.268 0.273 0.306 0.341 

0.113 0.124 0.086 0.099 0.099 0.114 0.109 
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VM 

1095 687 1299 611 1100 758 1295 

0.094 0.110 0.146 0.108 0.137 0.104 0.126 

0.072 0.129 0.05 0.072 0.069 0.101 0.089 

ST 

139 182 133 146 111 282 330 

0.259 0.287 0.263 0.260 0.257 0.249 0.262 

0.225 0.249 0.198 0.201 0.205 0.210 0.201 

VI 

502 364 800 414 525 321 1235 

0.145 0.165 0.155 0.116 0.137 0.155 0.136 

0.075 0.104 0.051 0.077 0.087 0.117 0.087 

SM 

420 564 349 356 344 303 1030 

0.256 0.308 0.257 0.325 0.262 0.311 0.359 

0.080 0.113 0.082 0.078 0.092 0.109 0.080 

 
As mentioned before, the model was re-calibrated with a generic musculoskeletal 

geometry in the second group G2. It is evident that there were differences between the 
estimated muscular torques in the two groups and the estimated torque in G1 is in better 
agreement with the reference torque compared with that in G2. In addition, the predicted 
joint torque 2R  reduced from 0.934 to 0.900 and the normalized RMSE values increased 
from 11.58% to 15.57%, as shown in Table 2. More specifically, in G1 the 2R  values are 
higher, the normalized RMSEs and maximum moment deviations are smaller across all 
subjects compared with that in G2, indicating the proposed model is capable of providing 
better representations of the subjects involved in this study. 

Table 3 clearly shows that the identified parameters are different with the published 
data.29 It demonstrates that the muscle-tendon model parameters have large individual-to-
individual variation. When the reported data were directly used to compute joint torque, 
poor prediction performance was observed ( 2R =0.21 and normalized RMSE=142%). 
Hence, it is imperative to identify the subject-specific parameters to make the estimation 
more accurate. 

4.   Model Applications 

4.1. Preliminary experiments with a lower-limb rehabilitation robot 

The objective of the experiments in this section include: 1) to test whether the 
musculoskeletal model can predict the operator’s motion intention in real time. 2) to 
explore its potential applications in rehabilitation robot control. In this study, preliminary 
experiments were conducted on one of the six subjects with a parallel robot system 
developed by our research group. The robot system mainly consists of a robot platform, a 
DSP controller cabinet and a PC. The robot platform has six degrees of freedom (DOFs), 
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namely, three transitional DOFs and three rotational DOFs. The detailed description of 
the robot system is available in our previous work.30, 31  

PC

Robot 
Platform

DSP 
Controllers

RF

VL
VM BFLST

EMG 
Acquisition 

Device

                                     (a)                                                                  (b) 

 Fig.6. (a) The parallel robot system; (b) EMG electrodes placements for the involved 5 muscles 

In order to realize human-active robot control, the control interface should be capable 
of detecting the participant’s motion intention and be adjustable to meet the requirements 
of different operators. The operator’s muscular moment here can be estimated by the 
proposed EMG-driven model, his/her motion intention can be detected based on forward 
dynamics. Firstly, the angular acceleration can be given by Eq.(13), where   is a 
parameter which was intentionally introduced to represent the level of assistance. Then 
the new angular velocity and angular position can be obtained by Eq.(14) and Eq.(15), 
where i  and i  are the previous angular velocity and angular position at time step i, 
respectively. Similarly, 1i 

  and 1i   are new angular velocity and angular position at the 
next time step i+1, respectively, and  is the sampling period. 
                                                    (1 ) mus graJ M M                                                 (13) 

                                                            1i i                                                              (14) 

                                                       2
1 2i i i

       
                                                   (15) 

Three control modes were designed in the first group of experiments to explore 
applications of the proposed model. In mode a, the parameter   was set to 0 (free mode 
is simulated), which aimed to investigate whether the model based control interface can 
accurately detect the subject’s motion intention in real time. In this situation, the robot 
was controlled to track the subject’s movement trajectory. In mode b,   was set to 0.5 
(assistive mode is simulated), which meant the operator’s muscle strength was augmented 
and it would be easier to drive the robot. In mode c,   was set to -0.5 (resistive mode is 
simulated), indicating the operator’s active effort was weakened and the control task was 
more challenging.  
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Fig.7 Framework for the model based AAN control scheme 

However, it can be seen that in the first group, the robot was controlled to provide the 
predefined assistance, since   was fixed during the experiment. In this situation, the 
control interface did not take into account the subject’s changing needs in real time. To 
evaluate if the musculoskeletal model can be used to automatically adjust the robotic 
assistance, in the second group a model based AAN control scheme was developed. Since 
the subject’s active effort can be estimated by the musculoskeletal model, once the 
required task was determined, the assistance need can be obtained. To this end, the 
framework for the model based AAN control scheme can been given as shown in Fig.7. 
An impedance based force tracking controller was used to guide the robot to provide the 
assistance that governed by the musculoskeletal model and task. For convenience, the 
required task was set to a constant. 

4.2.  Experimental Results  

In this section, the experimental results of robot control are presented. The kinematic 
performances of the robot in the first group are presented in Fig.8. The adjustment 
process of robotic assistance in the second group is presented in Fig.9.  As stated before, 
in the free mode the robot was controlled to synchronously track the subject’s trajectory. 
The tracking performance is acceptable as shown in Fig.8 (a), where close agreement in 
shape and magnitude were observed. The average RMSE value was 4.11°, indicating 
the proposed model based control interface is capable of detecting the operator’s motion 
intention in real time. The main reason for the tracking error is that the EMG signals are 
sensitive to many uncertain factors such as skin noise and electrode placement.  

The results of assistive mode illustrated in Fig.8 (b) clearly show that the ROM of 
robot was larger than the subject’s ROM. In contrast, the robot’s ROM reduced distinctly 
in resistive mode, although the ROM of subject remained almost the same. It 
demonstrates that in assistive mode the subject can drive the robot to reach a certain 
ROM with less effort compared with that in resistive mode where the subject’s 
contribution was weakened, and it required more voluntary efforts to complete the task. 
Therefore, different control modes can be achieved by adjusting the parameter   to cater 
for the requirements of different patients.   
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(c) Results of resistive mode 

Fig.8. Comparison of kinematic performance in the first group of experiments. The dashed lines are the 
subject’s movement trajectories and the solid lines represent the robot’s movement trajectories. 

The results of the second group illustrated in Fig.9 clearly show that during the 
experiment, both the subject’s active effort and the actual assistance he received were 
changed over time. It demonstrated that the subject had actively participated into the 
experiment and the robotic assistance was adjustable rather than inflexible. One can note 
that the increase of active effort applied by the subject would lead to the instant decrease 
of robotic assistance and vice versa. It demonstrated that musculoskeletal model based 
ANN controller was capable of adjusting the robotic assistance in real time according to 
the subject’s voluntary effort. In this situation, the control method encourages the 
subject’s voluntary participation in rehabilitation training which may induce brain 
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plasticity and motor recovery. Moreover, during the rehabilitation training subject’s 
active effort may gradually decrease, which can be caused by the muscle fatigue.  Hence, 
in order to enhance the rehabilitation outcome, it is important for robot to learn the 
subject’s physical ability in real time and to provide assistance accordingly.  
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Fig.9. Adjustment process of robotic assistance in the second group of experiments. The dashed line represents 
the assistance provided by the robot and the solid line indicates the active effort applied by the subject. 

5.   Discussion 

5.1.  Benefits 

The proposed subject-specific EMG-driven musculoskeletal model and model based 
control approach have several benefits over existing models and methods. The 
relationship between EMG signals and joint torque was modeled from the perspective of 
biomechanics. As a result, the obtained model is capable of accurately identifying the 
subject’s joint torque and monitoring his/her muscle status, as shown in Fig.4 and Fig.5. 
Unlike the sample training based torque estimation method,32 musculoskeletal model 
based method is more meaningful and accurate, since most of the muscles in relation to 
movement are taken into account and are physiologically modeled.  

A practical method to study the subject-specific musculoskeletal geometry is included 
in the whole model. As stated before, generic musculoskeletal geometry may not suitable 
for specific individuals. In this paper, subject-specific musculoskeletal geometry was 
estimated based on the measured skeletal morphologic parameters. Since muscles are 
attached to skeletons, it is reasonable to estimate the muscle paths according to 
morphologic parameters.33, 34 This method has been proved to be feasible in identification 
process, where the results clearly show that the estimated torque could successfully track 
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the reference torque with an acceptable accuracy. Furthermore, in order to test whether 
the proposed model with the subject-specific musculoskeletal geometry can improve the 
prediction accuracy, the model was re-calibrated with a generic musculoskeletal 
geometry. The prediction performance became worse as shown in Table 2, where the 2R  
values reduced from 0.934 to 0.900 and the normalized RMSE values increased from 
11.58% to 15.57%. This finding shows the importance of acquiring more accurate 
musculoskeletal geometry.  

The ability of the proposed musculoskeletal model to predict joint moment is better 
compared to existing models as summarized in Table 4. Shao et al. had developed a 
musculoskeletal model to estimate ankle joint moment with the normalized RMSE and 
average 2R  of 12.2% and 0.92, respectively.35 Lloyd and Besier’s model was able to 
predict knee joint moment for various dynamic tasks, such as running and cutting, and the 
average 2R  was 0.91.20 However, both of the two models employed a generic geometry 
model to analyze moment arm. In this paper, better results were obtained by using a 
subject-specific musculoskeletal geometry model, where the average 2R  was 
0.934 0.013  and the normalized RMSE was 11.58% 1.44% . Ma et al. used only two 
channels of EMG signals (one flexor and one extensor) to predict the knee joint 
moment.36 Although their model was greatly simplified, the accuracy was limited 
( 2R <0.85). Moreover, Tsai et al. used the directly measured data obtained by MRI to 
create specific geometry model and their results suggested that the moment arm estimated 
by imaging techniques can improve the joint moment prediction performance.23 However, 
image processing may be time-consuming, which is not suitable for on-line applications 
such as rehabilitation robot control.  

 

Table 4 Comparison of existing EMG-driven musculoskeletal models and the 
proposed model (*, Unknown)  

Literatures Joint modeled Number of subjects Average 2R  Normalized RMSE 

21 Ankle 4 0.92 12.2% 

20 Knee 6 0.91 * 

33 Knee 1 <0.85 17% 

Current study Knee 6 0.934 11.58% 

 
This model-based interface makes the intuitive, continuous and accurate robot control 

possible. Recently, many EMG-based control methods have been proposed, such as EMG 
proportional control and EMG pattern recognition based control.37 Nonetheless, EMG 
proportional control can not accurately detect the operator’s motion intention and pattern 
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recognition based control breaks the continuous movement into discrete and limited 
patterns. The kinematic performance of robot in Fig.8 (a) demonstrates that the proposed 
model based control is capable of providing continuous, intuitive and accurate (RMES = 
4.11° ) motor commands rather than discrete motion patterns or rough motion 
information. Since the natural movements of human are continuous, the patient may 
benefit much more if the rehabilitation robot can be controlled in this way. Furthermore, 
the model-based interface is adjustable to operator’s physical capability to realize 
different control mode. Generally, patients with different recovery conditions need to be 
treated with different training modes. As the operator’s joint torque can be estimated by 
the musculoskeletal model, different control modes were achieved by adjusting the level 
of assistance as shown in Fig.8. It may be argued that the different control modes were 
simply achieved by adjusting the proportional parameter, which is similar to EMG 
proportional control method. However, as shown in Fig.4, muscle activation pattern 
varies form people to people and EMG values of a certain muscle can not accurately 
reflect the subject’s actual joint torque. Hence, adjusting the control modes according to 
EMG value is inappropriate and it is more reasonable to adjust the robotic assistance at 
the level of muscular torque. 

Model-based interface has the potential to automatically adjust the robotic assistance 
in real time according to the patient’s voluntary effort. In the field of robot-assisted 
rehabilitation, it is assumed that once the patient has regained some strength, the robotic 
assistance should decrease since relying too much on the robotic devices may have 
negative consequences for brain plasticity and motor recovery. AAN control method is a 
promising solution to this problem, which aims to minimize the robotic assistance 
required to help the operator complete the task. The main challenge to implement the 
AAN control strategy on robotics is how to determine the true assistance needs of the 
operator in real time. A well-developed method is to adaptively adjust the robotic 
assistance according to the operator’s performance.38-42 In these literatures, the increase 
of performance error will lead to the increase of robotic assistance and vice versa. 
However, for this performance-based AAN method, the robotic assistance was adjusted 
empirically. Moreover, how to appropriately select the criterion to evaluate the 
performance has not been settled yet. Since the subject’s active effort can be estimated by 
the musculoskeletal model, for the given tasks the true assistance needs can be obtained 
easily, namely, the difference between the required and active force. As shown in Fig.9, 
the model based AAN controller is capable of adjusting the robotic assistance in real time 
according to the subject’s active effort rather than providing inflexible assistance. 

5.2.  Limitations 

Although only knee joint was taken into account, the related musculoskeletal model is 
very complex and many parameters need to be identified to make them specific to 
subjects. However, the authors did not have a strong knowledge of the biomechanical 
theory before, but we will absolutely learn the related knowledge in our future works. 
Moreover, the identification process, comprised of online data acquisition and offline 
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optimization, is time-consuming. Therefore, some assumptions were made in this paper 
to simplify the model. It is assumed that the same normalized active force-length, force-
velocity, passive force-length and tendon-force are suitable for all muscles. However, 
physiologically different muscles may have different activation dynamics and contraction 
dynamics. As for the musculoskeletal geometry, skeletal morphologic parameters 
measured from the subject were used to estimate the origin and insertion coordinates of 
muscles, which was proved to be feasible but may not anatomically accurate. 

Since the model is driven by EMG signals, the proposed human-robot interface has 
some drawbacks like many EMG-based control methods.43 The EMG signals are 
sensitive to many uncertain factors such as skin noise and electrode placement. Hence, 
the differences between the EMG signals obtained during the same motions are inevitable. 
Moreover, there are biarticular muscles involved in the musculoskeletal model. The 
biarticular muscles refer to muscles connected with motions of two joints (e.g., The RF 
contribute to motions both of knee and hip joint). As a result, the EMG signals obtained 
from the RF were affected not only by motions of knee but also by motions of hip.  

6.   Conclusion and Future Work 

In this paper, a subject-specific musculoskeletal model in relation to knee joint is 
presented to estimated the subject’s joint torque in real-time and to make contribution in 
robot-assisted rehabilitation. Considering that the operator’s physical capability has large 
person-to-person variation, the model parameters were identified through an off-line 
optimization procedure. Results of validation experiments demonstrated the model was 
able to predict knee joint torque with high 2R  value and small normalized RMSE. 
Experimental results also showed the importance of acquiring more accurate 
musculoskeletal geometry. Moreover, the experiments with a lower-limb rehabilitation 
robot showed that the model can be used to realize different control modes. Future work 
should be invested in conducting experiments on patients to test whether the proposed 
strategy can actually enhance the rehabilitation outcomes. Since only knee joint was 
involved in the musculoskeletal model, future investigation should take into account the 
hip and ankle to develop control interface that can provide assistance in gait training.  
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