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Abstract Fixed priority scheduling is used in many real-time systems; however,

both preemptive and non-preemptive variants (FP-P and FP-NP) are known to be

sub-optimal when compared to an optimal uniprocessor scheduling algorithm such

as preemptive earliest deadline first (EDF-P). In this paper, we investigate the sub-

optimality of fixed priority non-preemptive scheduling. Specifically, we derive the

exact processor speed-up factor required to guarantee the feasibility under FP-NP (i.e.
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schedulability assuming an optimal priority assignment) of any task set that is feasi-

ble under EDF-P. As a consequence of this work, we also derive a lower bound on

the sub-optimality of non-preemptive EDF (EDF-NP). As this lower bound matches a

recently published upper bound for the same quantity, it closes the exact sub-optimality

for EDF-NP. It is known that neither preemptive, nor non-preemptive fixed priority

scheduling dominates the other, in other words, there are task sets that are feasible

on a processor of unit speed under FP-P that are not feasible under FP-NP and vice-

versa. Hence comparing these two algorithms, there are non-trivial speedup factors in

both directions. We derive the exact speed-up factor required to guarantee the FP-NP

feasibility of any FP-P feasible task set. Further, we derive the exact speed-up factor

required to guarantee FP-P feasibility of any constrained-deadline FP-NP feasible task

set.

Keywords Real-time · Uniprocessor · Resource augmentation · Speedup factor ·
Sub-optimality · Non-preemptive scheduling · Preemptive scheduling · EDF · Fixed

priority

1 Introduction

Real-time systems are prevalent in a wide variety of application areas including

telecommunications, consumer electronics, aerospace systems, automotive electron-

ics, robotics, and medical systems. The functionality of these systems is typically

mapped to a set of periodic or sporadic real-time tasks, with each task giving rise to a

potentially unbounded sequence of jobs. Timely execution of the tasks and their jobs

is supported by the use of real-time scheduling algorithms.

Real-time scheduling algorithms for single processor systems may be classified into

two main types: fixed priority and dynamic priority. Fixed priority scheduling is the

de facto standard approach used in many applications. Here, a unique static priority

is assigned to each task and inherited by all of its jobs. At runtime, the scheduler

uses these priorities to determine which job to execute. Earliest Deadline First (EDF)

is the most common example of a dynamic priority scheduling algorithm. EDF uses

priorities based on the absolute deadline of each job to make scheduling decisions.

Real-time scheduling algorithms may also be classified in terms of when and if

preemption is permitted. Thus we have preemptive and non-preemptive variants of

both fixed priority (FP-P and FP-NP) and EDF (EDF-P and EDF-NP) scheduling.

There are a number of different ways in which the performance of real-time schedul-

ing algorithms can be compared (Davis 2017). Empirical techniques typically rely on

generating a large number of task sets with parameters chosen from some appropri-

ate distributions. The performance of the scheduling algorithms are then compared

by determining task set schedulability according to exact or sufficient schedulability

tests and plotting a graph of the success ratio, i.e. the proportion of task sets that are

deemed schedulable, at different utilization levels. More advanced approaches use a

weighted schedulability metric (Bastoni et al. 2010) to illustrate how schedulability

varies with a further parameter, for example task set cardinality, or the range of task

periods. Similar comparisons may be obtained by using a simulation of each algorithm
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as a necessary schedulability test, hence showing the proportion of task sets found to

be definitely unschedulable due to a deadline miss in the simulation. These empirical

approaches tend to focus on the average-case behaviour over large numbers of task sets

rather than highlighting those task sets that are particularly difficult to schedule using

one algorithm, but may be easy to schedule using another. Metrics such as breakdown

utilisation (Lehoczky et al. 1989) and optimality degree (Bini and Buttazzo 2005) can

also be used to examine average-case performance.

In this paper, we focus on a theoretical method of comparing the worst-case perfor-

mance of real-time scheduling algorithms based on a resource augmentation metric

referred to as the processor speedup factor (Kalyanasundaram and Pruhs 2000). Specif-

ically, we derive bounds on the factor by which the speed of the processor needs to be

increased to ensure that any task set that is feasible under some scheduling algorithm

A is guaranteed to be feasible under another algorithm B. When A is an optimal algo-

rithm, then this speedup factor provides a measure of the sub-optimality of algorithm

B. Note, when we refer to a task set as being feasible under a particular scheduling

algorithm, if that algorithm uses fixed priorities, then feasibility refers to the task set

being schedulable assuming an optimal priority assignment.

In this paper, we use speedup factors to compare fixed priority non-preemptive

scheduling (FP-NP) with both fixed priority preemptive (FP-P) and Earliest Deadline

First (EDF-P) scheduling.

Our interest in FP-NP scheduling stems from the fact that in modern uniprocessor

systems preemption can significantly increase overheads due to a number of factors.

These include context switch costs and cache related pre-emption delays (CRPD)

which have to be accounted for in both FP-P (Altmeyer et al. 2011, 2012) and EDF-

P (Lunniss et al. 2013) scheduling. CRPD can have a substantial impact, increasing

task execution times by as much as 33% (Bui et al. 2008). One way of reducing or

eliminating CRPD is to partition the cache; however, allocating each task a cache

partition, which is some fraction of the overall size of the cache, has an impact on the

task’s worst-case execution time (WCET) which may be significantly inflated. Such

partitioning rarely improves upon schedulability compared to accounting for CRPD

and allowing tasks to use the entire cache (Altmeyer et al. 2014, 2016). An alternative

method which eliminates CRPD without increasing WCETs is to employ a fully non-

preemptive scheduler. Non-preemptive scheduling has the additional advantage of

reducing memory requirements, as well as improving the dependability of real-time

systems (Short 2010). It is however well known that non-preemptive scheduling can

be infeasible at low processor utilization levels due to the long task problem (Short

2010), where some task has a WCET greater than the deadline of another task.

When considering the theoretical optimality of uniprocessor scheduling algorithms

(i.e., without accounting for overheads), then EDF-P is optimal in the sense that any

task set that is feasible on a uniprocessor under some other scheduling algorithm is

also feasible using EDF-P (Dertouzos 1974). As a result, EDF-P dominates other

uniprocessor scheduling algorithms such as FP-P, FP-NP, and EDF-NP.

When using fixed priority scheduling, priority assignment has a significant impact

on schedulability (Davis et al. 2016). For FP-P scheduling, Deadline Monotonic Pri-

ority Ordering (DMPO) is optimal for constrained-deadline task sets (Leung and

Whitehead 1982). In other words, any constrained-deadline task set that is schedula-
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Fig. 1 Dominance relationships between fixed priority and EDF scheduling algorithms

ble under FP-P with some other priority ordering is also guaranteed to be schedulable

with DMPO. DMPO is not however optimal if task deadlines are arbitrary (Lehoczky

1990) (i.e. may be larger than their periods). In that case, Audsley’s algorithm (Audsley

2001) can be used to provide an optimal priority assignment.

Within the class of non-preemptive scheduling algorithms, no work-conserving

algorithm is optimal. This is because in general it is necessary to insert idle time to

achieve a feasible schedule (George et al. 1996). EDF-NP is however weakly optimal

in the sense that if a work conserving non-preemptive schedule exists for a task set, then

EDF-NP can schedule it (Jeffay et al. 1991), hence EDF-NP dominates FP-NP. With

FP-NP scheduling, DMPO is not optimal for constrained-deadline task sets; however,

Audsley’s algorithm (Audsley 2001) can again be applied (George et al. 1996).

Comparing the preemptive and non-preemptive paradigms, EDF-P dominates EDF-

NP; however, the same is not true with fixed priorities, FP-P does not dominate

FP-NP. Instead, they are incomparable. In other words, task sets exist that are fea-

sible under FP-NP that are not feasible under FP-P and vice-versa1. This lack of any

dominance relationship means that when fixed priorities are used, some systems are

easier to schedule preemptively, while others are easier to schedule non-preemptively.

(Optimality for fixed priority scheduling requires limited preemption with final non-

preemptive regions (Davis and Bertogna 2012); consideration of that more complex

model is however beyond the scope of this paper). Figure 1 shows the dominance rela-

tionships between preemptive and non-preemptive fixed priority and EDF scheduling

algorithms.

1.1 Speedup factors

Davis et al. (2009a) derived the exact sub-optimality S = 1/Ω ≈ 1.76 of FP-P

scheduling for constrained-deadline task sets. This exact bound complements the one

for implicit-deadline task sets S = 1/ ln(2) ≈ 1.44 that may be derived from the

famous results of Liu and Layland (1973). Davis et al. (2009b) also derived upper and

1 Task sets that are schedulable under FP-P but not under FP-NP are easily constructed, an example of a

task set that is schedulable under FP-NP but not under FP-P is given in Sect. 5.1.
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lower bounds of S = 1/Ω and S = 2 on the sub-optimality of FP-P scheduling for

arbitrary-deadline task sets. Davis et al. (2015a) completed the exact characterization

of the sub-optimality of FP-P scheduling by proving that the exact speedup factor

required for arbitrary-deadline task sets is in fact S = 2. In the same paper, the

authors also extended these results to the case where tasks share resources under

mutual exclusion according to the stack resource policy (SRP) (Baker 1991) or the

deadline floor protocol (DFP) (Burns et al. 2015), thus providing exact speedup factors

comparing FP-P + SRP to EDF + SRP or EDF + DFP.

Davis et al. (2010) derived upper and lower bounds on the speedup factor required

to guarantee that all task sets that are feasible under EDF-NP can be scheduled using

FP-NP. These bounds are S = 1/Ω and S = 2 respectively for all three classes of

task set (implicit, constrained and arbitrary deadline). von der Bruggen et al. (2015)

proved upper bounds of S = 1/Ω for the implicit and constrained deadline cases, thus

along with the prior results, showing that these values are exact. Davis et al. (2015a)

also completed the exact characterization of the speedup factors required to guarantee

schedulability under FP-NP of all EDF-NP feasible task sets by showing that the exact

speedup factor for the arbitrary deadline case is S = 2 (the same as in the preemptive

case for FP-P v. EDF-P).

Thekkilakattil et al. (2013, 2015) quantified the sub-optimality of EDF-NP (with

respect to EDF-P), bridging between the preemptive and non-preemptive paradigms.

(This result was later extended to the case of global deadline based scheduling (Thekki-

lakattil et al. 2014)). Abugchem et al. (2015) subsequently provided a tighter upper

bound on the sub-optimality of EDF-NP.

In this paper, we focus on quantifying the sub-optimality of uniprocessor FP-NP

scheduling with respect to an optimal algorithm such as EDF-P. As a consequence of

this work, we also quantify the exact sub-optimality of uniprocessor EDF-NP schedul-

ing. Further, we use the speedup factor metric to compare the performance of FP-P

and FP-NP scheduling in both directions, given the lack of any dominance relation

between them.

The main contributions of this paper are in determining for uniprocessor systems:

S1 The exact speedup factor required to guarantee FP-NP feasibility of any EDF-P

feasible task set (i.e. the exact sub-optimality of FP-NP).

S2 The exact speedup factor required to guarantee FP-NP feasibility for any task set

that is FP-P feasible.

S3 The exact speedup factor required to guarantee EDF-NP feasibility of any EDF-P

feasible task set (i.e. the exact sub-optimality of EDF-NP).

S4 The exact speedup factor required to guarantee FP-P feasibility for any constrained-

deadline task set that is FP-NP feasible.

Note, where we refer to the exact sub-optimality, or exact speedup factor for a non-

preemptive scheduling algorithm compared to a preemptive one, then it is important

to clarify precisely what we mean. Since non-preemptive scheduling suffers from the

long task problem (Short 2010), whereby a task set may be trivially unschedulable

because the longest execution time Cmax of one task exceeds the shortest deadline Dmin

of another, then assuming freely determined task parameters no finite speedup factor

exists. This is the case because Cmax/Dmin can be made arbitrarily large. Instead, in
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this paper we provide exact speedup factors that are parametric in the ratio Cmax/Dmin ,

and thus hold with this minimal constraint on task parameters such that a finite speedup

factor exists. We note that with further information about task set characteristics it may

be possible to determine more precise speedup factors with narrower scope, i.e. more

constraints on their validity. In the extreme, each individual task set effectively has a

precise speedup factor which may be computed by referring to all of the parameters

of its component tasks.

In this paper, as in previous work on speedup factors (Davis et al. 2009a, b, 2010,

2015a; Thekkilakattil et al. 2013) we assume that changes in processor speed have

a linear effect on the time required to execute each task. Considering a uniprocessor

system in more detail, our assumption is that the clock frequency may be changed

and that this has a linear effect on the speed of all hardware components (processor,

memory etc.) thus producing a linear scaling of execution times. Such behaviour is a

reasonable approximation for simple systems.

While the results presented in this paper are mainly theoretical, they may also have

practical utility in enabling system designers to quantify the maximum penalty for

using FP-NP scheduling in terms of the additional processing capacity required as com-

pared to FP-P or EDF-P. This performance penalty can then be weighed against other

factors such as the additional overheads (context switch costs and CRPD) incurred by

preemptive scheduling, when considering which algorithm to use. We also consider

the speedup factor for FP-P scheduling versus FP-NP. This speedup factor is indicative

of the increase in processor speed that may be necessary in the worst-case to maintain

schedulability when making a choice to switch from using FP-NP scheduling to FP-P.

It is important to note that speedup factors are indicative only of the worst-case per-

formance of one algorithm relative to another, and as such should only be considered

for their negative implications. We note that speedup factors can lack the power to

discriminate between the performance of different scheduling algorithms and schedu-

lability tests even though their performance may be very different when viewed from

the perspective of empirical evaluation (von der Bruggen et al. 2016). The interested

reader is referred to recent work by Chen et al. (2017) for a full discussion of the pros

and cons of using speedup factors and other resource augmentation metrics.

1.2 Organization

The rest of the paper is organized as follows: the system model is presented in Sect. 2.

Section 3 recaps on the schedulability analyses for preemptive and non-preemptive

EDF and fixed priority scheduling. Our main results on sub-optimality and speedup

factors are presented in Sects. 4 and 5. Section 6 concludes with a summary and a

discussion of open problems.

2 System model

In this section we describe the system model, terminology, and notation used in the

rest of the paper.
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2.1 Task model

We consider the schedulability of a set of sporadic tasks on a uniprocessor system. A

task set Γ comprises a static set of n tasks {τ1, τ2, . . . τn}. Each task τi is characterized

by its minimum inter-arrival time Ti , bounded worst-case execution time Ci , and

relative deadline Di . Deadlines may be implicit (Di = Ti ), constrained (Di ≤ Ti ),

or arbitrary (independent of the task’s period). The longest execution time of any of

the tasks is denoted by Cmax = max
∀τi ∈Γ

Ci . Similarly, the shortest deadline is denoted

by Dmin = min
∀τi ∈Γ

Di . In the case of fixed priority scheduling, we use hp(i) and

hep(i) to denote respectively the set of tasks with priorities higher than, and higher

than or equal to that of task τi (thus hep(i) includes task τi , while hp(i) does not).

Similarly, we use lp(i) to denote the set of tasks with priorities lower than that of

task τi . (Note, we assume that priorities are unique). Further, we use Bi to denote the

longest time for which task τi may be blocked by a lower priority task that is executing

non-preemptively.

The utilization Ui of a task τi is given by Ui = Ci

Ti
and the utilization of the task

set is the sum of the utilizations of the individual tasks U =
∑n

i=1 Ui .

2.2 Execution time model

To ease readability, and without loss of generality, we assume that the task set of

interest is initially executing on a processor of unit speed. Accordingly, we assume

that Ci represents the WCET of task τi on a processor of speed S = 1. We assume a

linear relationship between execution time and processor speed. The WCET of task τi

on a processor of speed S is therefore given by C S
i = Ci/S. Conversely, the speed S

required to obtain an execution time of C S
i is given by S = Ci/C S

i . This model allows

us to use processor speedup factors and processor speeds interchangeably. In other

words, changing the processor speed from S = 1 to S = x , is equivalent to speeding

up the processor by a factor of x .

2.3 Scheduling model

In this paper, we consider four scheduling algorithms EDF-P, EDF-NP, FP-P, and FP-

NP. With EDF-P, at any given time the ready task with the job that has the earliest

absolute deadline is executed by the processor. Similarly, with FP-P scheduling, at any

given time the processor executes the job of the ready task with the highest priority. By

contrast, with EDF-NP, whenever a job is released that has an earlier absolute deadline

than the currently executing job, instead of preempting the executing job the scheduler

blocks the new job until the currently executing job completes. Only at that point is the

ready job with the earliest absolute deadline dispatched for execution. Similarly, with

FP-NP scheduling, whenever a higher priority task is released during the execution

of a lower priority task τi , instead of preempting τi the scheduler blocks the higher

priority task until τi completes its execution. Only at that point is the highest priority
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ready task dispatched for execution. We note that all four scheduling algorithms are

work-conserving and so never idle the processor when there is a task ready to execute.

2.4 Schedulability tests and priority assignment

A task set is said to be schedulable with respect to some scheduling algorithm and

some system, if all valid sequences of jobs that may be generated by the task set can be

scheduled on the system by the scheduling algorithm without any missed deadlines.

A schedulability test is referred to as sufficient, with respect to a scheduling algo-

rithm and system, if all of the task sets that are deemed schedulable according to the

test are in fact schedulable on the system under the scheduling algorithm. Similarly, a

schedulability test is termed necessary, if all of the task sets that are deemed unschedu-

lable according to the test are in fact unschedulable on the system under the scheduling

algorithm. A test that is both sufficient and necessary is referred to as exact.

In fixed priority scheduling, a priority assignment policy P is said to be optimal

with respect to some class of task sets (e.g. constrained-deadline), and some class of

fixed priority scheduling algorithm (e.g. non-preemptive) if all task sets in the class

that are schedulable under the scheduling algorithm using some other priority ordering

policy are also schedulable using the priority assignment determined by policy P .

Audsleys Optimal Priority Assignment (OPA) algorithm (Audsley 1991, 2001)

(reproduced in Algorithm 1) is an optimal priority assignment algorithm for arbitrary-

deadline sporadic task sets in both the preemptive and non-preemptive case.

Algorithm 1 Optimal Priority Assignment (OPA) Algorithm

1: for Each priority level k, lowest first do

2: for Each unassigned task τ do

3: if task τ is schedulable at priority k with all other unassigned tasks assumed to have higher priorities

then

4: Assign task τ priority k

5: end if

6: break (continue outer For loop)

7: end for

8: return unschedulable

9: end for

10: return schedulable

2.5 Speedup factors

We now provide formal definitions for the terms speedup factor, speedup optimal task

set and sub-optimality (Davis et al. 2009a, 2015a). Recall that when we use the term

feasible, then in the case of fixed priority scheduling, we mean schedulable with an

optimal priority assignment.

Definition 1 The exact speed-up factor of a scheduling algorithm A with respect to

a scheduling algorithm B is defined as the minimum factor S, S ≥ 1, such that any
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task set that is feasible under algorithm B on a processor of unit speed, is guaranteed

to become feasible under algorithm A on a processor that is S times faster.

Definition 2 A task set is classified as being a speed-up optimal task set for the

comparison between scheduling algorithms A and B if it is feasible on a processor

of unit speed under algorithm B and requires the processor speed to be increased

by the exact speedup factor S for the comparison between the two algorithms (see

Definition 1) in order to be feasible under algorithm A.

We note that for a given comparison, there are typically multiple speedup-optimal

task sets. This classification is useful, since in deriving the exact speedup factors for

a given comparison, we can restrict our attention to the set of speedup optimal task

sets, and their properties.

Definition 3 The sub-optimality of a scheduling algorithm A is defined by its exact

speedup factor with respect to an optimal scheduling algorithm.

Definition 4 A scheduling algorithm is said to be optimal if it can schedule every task

set that is feasible under some other scheduling algorithm, on a processor of equivalent

speed.

The lower the value of sub-optimality for a particular scheduling algorithm (i.e. its

speedup factor compared to an optimal algorithm), then the closer the algorithm is to

being optimal, with a value of S = 1 implying optimality. We note that FP-P, FP-NP,

and EDF-NP are all sub-optimal with respect to an optimal uniprocessor scheduling

algorithm such as EDF-P, as illustrated in Fig. 1.

In order to derive speedup factors it is often useful to consider scaling the execution

times of all tasks until the task set being considered is only just schedulable. Below,

we give alternative but equivalent definitions for speedup factor and speedup optimal

task set using the concept of a critical scaling factor (Lehoczky et al. 1989).

Definition 5 Let Ψ be some arbitrary task set, now assume that αA(Ψ ) is the critical

scaling factor, that is the maximum factor by which the execution times of all of the

tasks in Ψ can be scaled, such that the task set is schedulable under algorithm A on a

processor of unit speed. Similarly, αB(Ψ ) for algorithm B. The exact speedup factor

S for algorithm A compared to algorithm B is given by:

S = sup
∀Ψ

(

αB(Ψ )/αA(Ψ )

)

where Ψ ranges over all task sets.

Definition 6 Let αA(Ψ ) be the critical scaling factor for task set Ψ under schedul-

ing algorithm A, and similarly αB(Ψ ) under algorithm B. Task set Ψ is said to be a

speedup-optimal task set with respect to the comparison between scheduling algo-

rithm A and algorithm B if αB(Ψ )/αA(Ψ ) = S, where S is the exact speedup factor

for the comparison between the two algorithms.
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Determining the exact value of the speedup factor for the comparison between two

algorithms A and B requires both necessary and sufficient conditions to be considered.

To satisfy the sufficient condition, an upper bound on the speedup factor can be derived

which represents a sufficient increase in processor speed to ensure feasibility under

algorithm A for any task set that was feasible under algorithm B. To satisfy the

necessary condition, a lower bound on the speedup factor can be determined which

represents the increase in processor speed that is necessary to ensure feasibility under

algorithm A for a specific task set that was feasible under algorithm B. If the upper and

lower bounds on the speedup factor match, then the speedup factor has been precisely

determined and is said to be exact.

Finally, we note that the term speedup-optimal can be used to describe a schedula-

bility test.

Definition 7 A schedulability test T for algorithm A is said to be a speedup-optimal

schedulability test for the comparison between algorithm A and algorithm B if the

exact speedup factor obtained when feasibility is determined for algorithm A according

to test T is the same as the exact speedup factor obtained when an exact schedulability

test for algorithm A is used.

We note that sufficient schedulability tests can be speedup-optimal, even though

they are not optimal (i.e. exact) in terms of schedulability. We return to this point in

the conclusions.

3 Schedulability analysis

In this section, we recapitulate schedulability analysis for fixed priority and EDF

scheduling under both preemptive and non-preemptive paradigms.

3.1 Fixed priority preemptive scheduling

The schedulability of a set of arbitrary-deadline sporadic tasks under FP-P can be deter-

mined using response time analysis (Tindell et al. 1994; Lehoczky 1990). Response

time analysis involves calculating the worst-case response time R P
i of each task τi

and comparing it to its deadline Di . To determine schedulability, the analysis must

check each job of task τi in the longest priority level-i busy period. This busy period

starts with a critical instant corresponding to the synchronous arrival of a job of task

τi and jobs of all higher priority tasks. Jobs of these tasks are then re-released as soon

as possible. The length of the priority level-i busy period is given by the solution to

the following recurrence relation:

AP
i =

∑

∀τ j ∈hep(i)

⌈

AP
i

T j

⌉

C j (1)

The number of jobs of task τi in the busy period is given by Q P
i = ⌈ AP

i

Ti
⌉. The

completion time W P
i (q) of job q of task τi relative to the start of the busy period is

given by the following recurrence relation:
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W P
i (q) = (q + 1)Ci +

∑

∀τ j ∈hp(i)

⌈

W P
i (q)

T j

⌉

C j (2)

Iteration starts with W P
i (q) = (q + 1)Ci and ends either on convergence or when

W P
i (q) − qTi > Di in which case the job and therefore the task is unschedulable.

Assuming that all Q P
i jobs in the busy period are schedulable, then the worst-case

response time of the task is given by:

R P
i = max

q=0,1,2,...Q P
i −1

(Wi (q) − qTi ) (3)

For task sets with constrained deadlines, only the response time of the first job in

the busy period need be checked, leading to a simpler exact test (Audsley et al. 1993;

Joseph and Pandya 1986), based on the following recurrence relation:

R P
i = Ci +

∑

∀τ j ∈hp(i)

⌈

R P
i

T j

⌉

C j (4)

Iteration starts with R P
i = Ci and ends either on convergence or when R P

i > Di in

which case the task is unschedulable.

3.2 Fixed priority non-preemptive scheduling

Determining exact schedulability of a task τi under FP-NP also requires checking all

of the jobs of task τi within a priority level-i busy period (Bril et al. 2009). In this

case, the busy period starts with an interval of blocking and so its length is given by

the solution to the following recurrence relation:

AN P
i = Bi +

∑

∀τ j ∈hep(i)

⌈

AN P
i

T j

⌉

C j (5)

where Bi is the blocking factor:

Bi =

{

max
∀τk∈lp(i)

(Ck − Δ) i < n

0 i = n
(6)

and Δ is the time granularity2.

The number of jobs of task τi in the busy period is given by QN P
i = ⌈ AN P

i

Ti
⌉. The

start time W N P
i (q) of job q of task τi relative to the start of the busy period is given

by the following recurrence relation:

2 Without loss of generality, we assume that Δ is the granularity of the processor clock and that Δ ≪ Ck

for every task τk even when we increase the processor speed.
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W N P
i (q) = Bi + qCi +

∑

∀τ j ∈hp(i)

⌈

W N P
i (q) + Δ

T j

⌉

C j (7)

Iteration starts with W N P
i (q) = Bi + qCi and ends either on convergence or when

W N P
i (q)+Ci −qTi > Di in which case the job and therefore the task is unschedulable.

Assuming that all QN P
i jobs in the busy period are schedulable, then the worst-case

response time of the task is given by:

RN P
i = max

q=0,1,2,...QN P
i −1

(

W N P
i (q) + Ci − qTi

)

(8)

Note, in the above formulation we use a ceiling function with +Δ, rather than the

alternative of a floor function +1, since this assists in the proofs given later in the

paper. The two formulations are however equivalent.

We make use of the following sufficient schedulability tests for each task τi under

FP-NP. The first is based on a linear equation (Davis et al. 2010):

Bi +
∑

∀τ j ∈hep(i)

⌈

Di

T j

⌉

C j ≤ Di (9)

The second, which is only applicable to constrained-deadline task sets is based on

a recurrence relation (Davis et al. 2007):

W N P
i = Cmax +

∑

∀τ j ∈hp(i)

⌈

W N P
i + Δ

T j

⌉

C j

RN P
i = W N P

i + Ci (10)

where W N P
i is an upper bound on the longest time from release to the start of any job

of task τi .

Finally, we also make use of a necessary test. This test is valid for task sets with

arbitrary deadlines. It simply checks schedulability of the first job in the busy period,

if this job is found to miss its deadline, then the task is unschedulable; however, if

the job is found to meet its deadline, the task may or may not be schedulable, since

subsequent jobs in the busy period may or may not meet their deadlines. Thus the test

is necessary but not sufficient.

W N P
i = Bi +

∑

∀τ j ∈hp(i)

⌈

W N P
i + Δ

T j

⌉

C j

RN P
i = W N P

i + Ci (11)

RN P
i given by (11) provides a lower bound response time.
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This necessary test is used later, in Sect. 5, since an upper bound on the speedup

factor for FP-P v. FP-NP which is valid when a necessary test is used to determine

FP-NP schedulability is also valid when an exact test is used.

3.3 Preemptive earliest deadline first scheduling

A task set is schedulable under preemptive EDF if and only if in every time interval,

the total processor demand requested by the task set is no greater than the length of

the interval (Baruah et al. 1990). A task set is EDF-P feasible if and only if :

∑

∀τi ∈Γ

DB Fi (t) ≤ t

∀t = kT j + D j , ∀k ∈ N, j ∈ [1, n]
t ≤ AP

n (12)

where

DB Fi (t) = max

(

0, 1 +
⌊

t − Di

Ti

⌋)

Ci (13)

and AP
n is the length of the longest busy period, given by (1) (Ripoll et al. 1996; Spuri

1996).

4 Exact sub-optimality and speedup factors

In this section, we compare the effectiveness of fixed priority non-preemptive schedul-

ing (FP-NP) with that of preemptive scheduling; both FP-P and EDF-P. We determine

the exact sub-optimality of FP-NP. Specifically, we derive the exact speedup factor S1

required to guarantee feasibility under FP-NP of all EDF-P feasible task sets. Further,

we derive the exact speedup factor S2 required to guarantee feasibility under FP-NP

of all FP-P feasible task sets. Surprisingly these two speedup factors are the same (S1

= S2). We also derive an exact speedup factor for the case of FP-NP v. FP-P, when

tasks have constrained deadlines. This speedup factor is smaller than the one for the

arbitrary-deadline case.

We obtain the exact speedup factors by deriving upper bounds via analysis and

lower bounds from example task sets and then showing that they are the same. The

example task set we use to provide a lower bound for FP-NP v. EDF-P also applies

to EDF-NP v. EDF-P, hence we also obtain S3, the exact sub-optimality of EDF-NP,

since our lower bound is the same as the upper bound recently published by Abugchem

et al. (2015).

Lemma 1 An upper bound on the speedup factor required such that FP-NP, using

optimal priority assignment, can schedule any arbitrary-deadline sporadic task set

that is feasible under EDF-P is given by:

S = 2 +
Cmax

Dmin
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Proof We show that the speedup factor in the lemma is enough to ensure schedulability

under FP-NP according to the sufficient test given by (9) using DMPO, since that

suffices to also prove schedulability with an exact test and optimal priority assignment.

Comparing (9) and (13) and assuming DMPO we observe the following.

∑

∀τ j ∈Γ

DB F j (2Di ) ≥
∑

∀τ j :D j ≤Di

⌈

Di

T j

⌉

C j ≥
∑

∀τ j ∈hep(i)

⌈

Di

T j

⌉

C j (14)

Note in (14) 2Di is a value we have chosen for convenience since the inequality is then

useful later in the proof. From (9), (14), and the fact that Bi ≤ Cmax then schedulability

under FP-NP is assured on a processor of speed S provided that for every task τi :

Cmax +
∑

∀τk∈Γ DB Fk(2Di )

S
≤ Di (15)

Since the task set is schedulable under EDF-P on a processor of unit speed, then it

follows from (12) that
∑

∀τk∈Γ DB Fk(2Di ) ≤ 2Di . Substituting into (15) and re-

arranging, we have:

S ≥ 2 +
Cmax

Di

Substituting Dmin for Di gives an upper bound on the speed-up factor required. ⊓⊔

Lemma 2 An upper bound on the speedup factor required such that FP-NP, using

optimal priority assignment, can schedule any arbitrary-deadline sporadic task set

that is feasible under FP-P scheduling is given by:

S = 2 +
Cmax

Dmin

Proof Follows directly from Lemma 1 and the fact that EDF-P can schedule all task

sets that are feasible under FP-P scheduling (Dertouzos 1974). ⊓⊔

Lemma 3 A lower bound on the speedup factor required such that FP-NP, using

optimal priority assignment, can schedule any implicit, constrained, or arbitrary-

deadline sporadic task set that is feasible under EDF-P (or FP-P) is given by:

S = 1 +
Cmax

Dmin

Proof Consider the following task set, where k is an integer and k > 1:

τ1: C1 = k − 1, D1 = k, T1 = k

τ2: C2 = k2 + 1, D2 = ∞, T2 = ∞
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We note that the task set is trivially schedulable on a processor of unit speed using

either EDF-P or FP-P. For the task set to be schedulable with FP-NP effectively requires

that the execution time of both tasks3 (i.e. k2 + k) can be accommodated within the

smallest deadline D1 = k.

Hence we have S ≥ (k2 + k)/k = k + 1. Since Cmax

Dmin
= k + 1

k
we obtain:

S ≥ 1 +
Cmax

Dmin

−
1

k

and so as k → ∞ we have a lower bound of:

S ≥ 1 +
Cmax

Dmin

.

⊓⊔

Theorem 1 The exact sub-optimality (S3) of EDF-NP, i.e, the exact speedup factor

required such that EDF-NP can schedule any implicit, constrained, or arbitrary-

deadline sporadic task set that is feasible under EDF-P, is given by:

S = 1 +
Cmax

Dmin

Proof Follows from a consideration of the task set in Lemma 3. For the task set to be

schedulable under EDF-NP also requires that the total execution time of both tasks

can be accommodated within the smallest deadline resulting in the same requirement

on the speedup factor. Since the lower bound from Lemma 3 matches the upper bound

given by Abugchem et al. (2015) the speedup factor is exact. ⊓⊔

Lemma 4 An upper bound on the speedup factor required such that FP-NP schedul-

ing, using optimal priority assignment, can schedule any constrained-deadline

sporadic task set that is feasible under FP-P scheduling is given by:

S = 1 +
Cmax

Dmin

Note this Lemma does not apply to arbitrary-deadline tasks sets.

Proof Let Γ be a task set that is schedulable under FP-P scheduling on a processor of

unit speed using DMPO, which is optimal in the constrained deadline case. We will

prove that Γ is schedulable on a processor of speed S under FP-NP scheduling using

the same priority ordering. We note that this ordering is not necessarily optimal for

FP-NP scheduling, but nevertheless suffices to prove feasibility.

Let W P
i be the completion time of the first job of task τi in the priority level-i busy

period under FP-P scheduling. Since all tasks are schedulable and have constrained

deadlines, then W P
i = R P

i ≤ Di . We consider two cases.

3 For ease of presentation, and since it does not affect the result, we omit the small reduction in blocking

due to the time granularity Δ ≪ 1.
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Case 1: W P
i ≥ Dmin

Let E P
i (t) equate to Ci plus the maximum amount of interference from tasks of

higher priority than τi released in an interval of length t :

E P
i (t) = Ci +

∑

∀τ j ∈hp(i)

⌈

t

T j

⌉

C j (16)

From (4), it follows that E P
i (W P

i ) = W P
i = R P

i where R P
i is the exact response time

of task τi under FP-P scheduling.

Let E N P
i (t) be the maximum amount of interference from tasks of higher priority

than τi released in an interval of length t including any releases at the end of the

interval:

E N P
i (t) =

∑

∀τ j ∈hp(i)

⌈

t + Δ

T j

⌉

C j (17)

From the sufficient test for constrained-deadline task sets under FP-NP scheduling

(10) we have E N P
i (W N P

i )+ Cmax + Ci = W N P
i + Ci where W N P

i is an upper bound

on the time from the release of a job of task τi until it starts to execute under FP-NP

scheduling, and W N P
i + Ci is an upper bound on the task’s response time.

From (16) and (17), observe that ∀x ≥ Δ and ∀t ≥ x , the following inequality

holds:

E N P
i (t − x) + Ci ≤ E P

i (t) (18)

To ensure schedulability under FP-NP scheduling, we speed up the processor by

some factor S ≥ 1 such that the latest completion time of task τi under FP-NP

scheduling is no greater than W P
i the completion time under FP-P scheduling on a

processor of unit speed. It follows that the start time of τi must be at the latest W P
i − Ci

S
.

An upper bound on the interference from higher priority tasks in an interval of this

length is given by E N P
i (W P

i − Ci

S
). To complete task τi by W P

i the processor must be

able to complete execution of the interference E N P
i (W P

i − Ci

S
), task τi itself i.e. Ci ,

and the maximum amount of blocking Cmax . Schedulability under FP-NP is therefore

ensured provided that:

Cmax + E N P
i

(

W P
i − Ci

S

)

+ Ci

S
≤ W P

i (19)

On the faster processor of speed S the execution time of τi cannot be less than the time

granularity ( Ci

S
≥ Δ). It follows from (18) that E N P

i (W P
i − Ci

S
) + Ci ≤ E P

i (W P
i ).

Since E P
i (W P

i ) = W P
i , we can substitute W P

i into (19) in place of E N P
i (W P

i −Ci

S
)+Ci

again giving an inequality which is sufficient to ensure schedulability under FP-NP.

Rearranging we have:

S ≥ 1 +
Cmax

W
p

i

(20)
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From the assumption of this case (Case 1) W P
i ≥ Dmin and hence the task set is

guaranteed to be schedulable on a processor of speed S, where:

S ≥ 1 +
Cmax

Dmin

(21)

Case 2: W P
i < Dmin

Since deadlines are constrained, there are no tasks with periods that are less than

Dmin , and so under FP-P scheduling on a processor of unit speed, we have:

W P
i = Ci +

∑

∀ j∈hp(i)

C j (22)

In this case, to ensure schedulability under FP-NP on a processor of speed S, we simply

require that task τi completes before Dmin , hence we require that:

Cmax + E N P
i

(

Dmin − Ci

S

)

+ Ci

S
≤ Dmin (23)

where S is the processor speed.

Following the same logic as in Case 1, we observe that E N P
i (Dmin − Ci

S
) + Ci ≤

E P
i (W P

i ) = W P
i . Since in this case (Case 2) W P

i < Dmin substituting into (23) and

re-arranging we obtain the speed S at which the task set is guaranteed to be schedulable:

S ≥ 1 +
Cmax

Dmin

. (24)

⊓⊔

Theorem 2 The exact speedup factor required such that FP-NP, using optimal priority

assignment, can schedule any implicit, or constrained-deadline sporadic task set that

is feasible under FP-P scheduling is given by:

S = 1 +
Cmax

Dmin

Proof Proof follows from the lower bound given by Lemma 3 and the upper bound

given by Lemma 4 which have the same value. ⊓⊔

Lemma 5 A lower bound on the speedup factor required such that FP-NP scheduling,

using optimal priority assignment, can schedule any arbitrary-deadline sporadic task

set that is feasible under FP-P scheduling is given by:

S = 2 +
Cmax

Dmin

Proof Consider the following task set:
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τi with i = 1, . . . , k − 1: Ci = 1, Di = k + 1, Ti = k

τk : Ck = 1, Dk = k + 1, Tk = k + 1

τk+1: Ck+1 = k2, Dk+1 = ∞, Tk+1 = ∞
This task set is trivially schedulable on a processor of unit speed under FP-P. In the

priority order given, then for j = 1 to k, task τ j has a response time of j . Further, task

τk+1 executes in the one spare unit of execution time in each Least Common Multiple

k(k + 1) of the periods of tasks τ1 to τk and therefore has a worst-case response time

of k3(k + 1).

Under FP-NP on a processor of speed S ≥ 1 consider the operation of Audsleys

OPA algorithm, which is optimal in this case (George et al. 1996). First, task τk+1 is

assigned the lowest priority as it is trivially schedulable at that priority on a processor

of unit speed or higher. There are then two cases to consider4.

Case 1 τk is assigned the next higher priority level above τk+1. In this case, task

τk is subject to blocking due to task τk+1 and interference (before it starts to execute)

from tasks τ1 to τk−1. Considering the critical instant for task τk , there are two possible

scenarios which could result in the task being schedulable. In the first scenario, the first

jobs of all tasks except τk must complete their execution strictly before the second jobs

of tasks τ1 to τk−1 are released at time k. This allows task τk to start executing before

time k, thus avoiding interference from the second job of each higher priority task. For

this to happen implies the following constraint: S > (k2 + k − 1)/k = k + (k − 1)/k.

Further, task τk must also complete by time k + 1, which gives the weaker constraint

S ≥ (k2 + k)/(k + 1) = k. The alternative scenario is that task τk does not get to start

before the second jobs of tasks τ1 to τk−1 are released at time k. In this scenario, for

task τk to be schedulable, the first job of task τk+1, the first and second jobs of tasks

τ1 to τk−1, and the first job of task τk must complete their execution by time k + 1,

which leads to the constraint that S ≥ (k2 + 2k − 1)/(k + 1) = k + (k − 1)/(k + 1).

Case 2 τk−1 is assigned the next higher priority level above τk+1 (since τ1 to τk−1

are identical this is effectively the only other option aside from Case 1 for this priority

level). Considering the critical instant for task τk−1, there are two possible scenarios

which could result in the task being schedulable. In the first scenario, the first jobs of all

tasks except τk−1 must complete their execution strictly before the second jobs of tasks

τ1 to τk−2 are released at time k. This allows task τk−1 to start executing before time k,

thus avoiding interference from the second job of each higher priority task. As in Case

1, this implies the following constraint: S > (k2+k−1)/k = k+(k−1)/k. In addition

task τk−1 must also complete by time k+1, which again gives S ≥ (k2+k)/(k+1) = k.

The alternative scenario is that the first job of task τk−1 does not get to start before the

second jobs of tasks τ1 to τk−1 are released at time k. In this scenario, for task τk−1

to be schedulable, then the first job of task τk+1, the first and second jobs of tasks τ1

to τk−2, and the first job of task τk−1 must complete their execution by time k + 1,

which leads to the constraint S ≥ (k2 + 2k − 2)/(k + 1) = k + (k − 2)/(k + 1).

Considering both Case 1 and Case 2, then the minimum speed necessary for FP-

NP schedulability is S ≥ (k2 + 2k − 2)/(k + 1) = k + (k − 2)/(k + 1). Since

Cmax/Dmin = k2/(k + 1) we obtain:

4 Again, for ease of presentation, and since it does not affect the result, we omit the small reduction in

blocking due to the time granularity Δ ≪ 1.
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S ≥
Cmax

Dmin

+
k2 + 2k − 2

k + 1
−

k2

k + 1

=
Cmax

Dmin

+
2k − 2

k + 1

As k → ∞ this gives a lower bound of S = 2 + Cmax

Dmin
for the speedup factor. ⊓⊔

Theorem 3 The exact speedup factor (S2) required such that FP-NP scheduling,

using optimal priority assignment, can schedule any arbitrary-deadline sporadic task

set that is feasible under FP-P scheduling is given by:

S = 2 +
Cmax

Dmin

Proof Proof follows from the lower bound given by Lemma 5 and the upper bound

given by Lemma 2 which have the same value. ⊓⊔

From Theorems 2 and 3, it is interesting to note that when comparing FP-NP

against FP-P scheduling, then the relaxation from constrained-deadline task sets to

the general case of arbitrary-deadline tasks results in an increase in the exact speedup

factor required from

S = 1 +
Cmax

Dmin

to 2 +
Cmax

Dmin

Theorem 4 The exact sub-optimality (S1) of FP-NP i.e. the exact speedup factor

required such that FP-NP scheduling, using optimal priority assignment, can schedule

any arbitrary-deadline sporadic task set that is feasible under EDF-P is given by:

S = 2 +
Cmax

Dmin

Proof Lemma 1 shows that the speedup factor in the theorem is a valid upper bound.

Lemma 5 and the fact that EDF-P dominates FP-P shows that it is also a valid lower

bound and hence exact for arbitrary-deadline task sets. ⊓⊔

5 Preemptive versus non-preemptive fixed priority scheduling

Preemptive and non-preemptive fixed priority scheduling are incomparable, i.e., there

are task sets that FP-P can schedule that FP-NP cannot and vice versa, hence there

are non-trivial speed-up factors in both directions between these two scheduling algo-

rithms. These speedup factors allow system designers to determine the increase in

processor speed that may be necessary in the worst-case to maintain schedulability

when making a choice to switch from using one of these scheduling algorithms to the

other.

In this section, we derive upper and lower bounds on the processor speed-up factor

that guarantees feasibility under FP-P for all constrained deadline task sets that are
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feasible under FP-NP on a unit speed procesor, thus deriving exact speedup factor

S4. In Sect. 5.1 we derive a lower bound on the speed-up factor that guarantees FP-P

feasibility for constrained and arbitrary deadline task sets that are FP-NP feasible. In

Sect. 5.2 we derive an upper bound that is valid for arbitrary-deadline task sets. Finally

in Sect. 5.3 we derive a tight upper bound that is valid for constrained-deadline task

sets. This upper bound matches the lower bound from Sect. 5.1 and is thus exact in

the case of constrained-deadline task sets, as noted in Sect. 5.4.

5.1 Lower bound on the speedup factor for FP-P v. FP-NP

Theorem 5 A lower bound on the speedup factor required such that FP-P scheduling,

using optimal priority assignment, can schedule any constrained- deadline sporadic

task set that is feasible under FP-NP scheduling is given by:

S =
√

2

Proof Consider the following task set scheduled on a processor of unit speed under

FP-NP scheduling.

τ1: C1 = 2 −
√

2, D1 = 1, T1 = 1

τ2: C2 =
√

2 − 1, D2 =
√

2, T2 = ∞
τ3: C3 =

√
2 − 1, D3 =

√
2, T3 = ∞

This task set is schedulable with DMPO under FP-NP as evidenced by the exact

schedulability test embodied in (8). The response times of the three tasks are as follows:

R1 = 1 − Δ, R2 =
√

2 − Δ, R3 =
√

2. Note, that in each case we need only examine

the response time of the first job. For task τ1, the priority level-1 busy period is of

length 1 and so includes only one job of the task, while tasks τ2 and τ3 have infinite

periods and so only give rise to a single job. The schedule starting with task τ1 is

illustrated in Fig. 2.

Next, consider the same task set scheduled on a processor of speed S =
√

2 under

FP-P scheduling, again using DMPO which is optimal in this case. The scaled task

execution times are now C S
1 =

√
2 − 1, C S

2 = (2 −
√

2)/2, and C S
3 = (2 −

√
2)/2.

The schedule is as illustrated in Fig. 3, again starting with task τ1. In this case, the

worst-case response time of task τ3 is 1. Further, any increase in the execution times

of the tasks (i.e. by using a smaller speedup factor) would result in task τ3 missing

its deadline, due to preemption by the second job of task τ1 which is released at time

t = 1. Hence the speedup factor required by this task set is S =
√

2. ⊓⊔

Fig. 2 Fixed priority non-preemptive schedule for the example task set in Theorem 5
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Fig. 3 Fixed priority

preemptive schedule for the

example task set in Theorem 5

5.2 Upper bound on the speedup factor for FP-P v. FP-NP for

arbitrary-deadline task sets

Theorem 6 An upper bound on the speedup factor required such that FP-P schedul-

ing, using optimal priority assignment, can schedule any arbitrary- deadline sporadic

task set that is feasible under FP-NP scheduling is given by:

S = 2

Proof Since EDF-P dominates FP-NP and Theorem 2 from (Davis et al. 2009a) states

that an upper bound on the speed-up factor required to guarantee FP-P feasibility of

any EDF-P feasible task set is S = 2 then such an increase in processor speed must

also be sufficient to guarantee FP-P feasibility of all FP-NP feasible task sets. ⊓⊔

5.3 Upper bound on the speedup factor for FP-P v. FP-NP for

constrained-deadline task sets

We next derive an upper bound on the speedup factor required to guarantee feasibil-

ity under FP-P for all constrained-deadline task sets that are feasible under FP-NP.

Note, the restriction to constrained-deadline task sets allows us to derive a tighter

upper bound than that given in Theorem 6. (We note that any upper bound valid for

constrained-deadline task sets also applies to implicit-deadline task sets since the for-

mer class includes the latter). The upper bound that we are interested in compares

exact schedulability for FP-NP assuming optimal priority assignment (OPA) with

exact schedulability for FP-P again assuming optimal priority assignment (DMPO in

this case). Note, since DMPO is not optimal for FP-NP the two priority assignments

may be different.

We use a weaker condition to derive a sound upper bound on the speedup factor.

We compare schedulability according to the necessary test for FP-NP scheduling

given by (11) assuming optimal priority assignment using Audsley‘s OPA algorithm

against an exact test for FP-P scheduling assuming the same priority ordering that

OPA generates for FP-NP scheduling. These relaxations can only increase the speedup

factor required, and hence the bound we obtain is also a valid upper bound for the

case we are ultimately interested in with exact tests and optimal priority assignment

for both scheduling algorithms.

Without loss of generality, we base our proofs on the set Z of all constrained-

deadline task sets where each task set V ∈ Z has parameters such that it is deemed

schedulable using the necessary test for FP-NP scheduling and the OPA algorithm for

priority assignment, and scaling of the execution times of all tasks in V by any factor
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> 1 (equivalent to a decrease in processor speed) would cause the task set to become

unschedulable. Hence the critical scaling factor αF P−N P (V ) = 1 with respect to

the necessary test. For ease of reference later, we refer to Z as containing the FP-NP

critical task sets. Further, also without loss of generality, we assume that the OPA

algorithm checks tasks in the reverse of deadline monotonic order and therefore at

each priority level from the lowest priority upwards, it assigns the schedulable task

with the longest deadline.

Proof of the upper bound on the speedup factor required to guarantee feasibility

under FP-P for all constrained-deadline task sets that are feasible under FP-NP requires

a number of steps. Below we outline these steps and the theorems and lemmas involved.

1. We first derive a number of properties that hold for any task set that is speedup

optimal for this problem. These properties are given in Theorem 7 and proved via

Lemmas 6, 7, and 8. This eases the burden of proof of the upper bound, since

we need only consider speedup optimal task sets with these properties in our

subsequent derivation.

2. We then make a case distinction, splitting the proof of the upper bound speedup

factor into two parts depending on the relative values of three factors A, B, and

X . A represents the execution time of the constraining task. Note a constraining

task is one that cannot have its execution time increased without a deadline being

missed. B and X represent the total execution times of two different categories

of interference from higher priority tasks. These categories are explained later.

The values are normalised such that X + B = 1. The two cases considered are

A + X ≤ 1 and A + X > 1.

3. In the first case (A + X ≤ 1) Theorem 8 proves an upper bound on the speedup

factor, using the results of Lemmas 9 and 10.

4. In the second case (A+ X > 1), the proof is split into two parts. Theorem 9 derives

an upper bound on the speedup factor subject to the restriction that there is no task

that is part of X that is re-released during the interval [1, A + X). Theorem 10

covers the case where there is such a task, making use of Lemmas 11 and 12 which

prove certain properties of the task set in this case.

5. Finally, Theorem 11 combines the results of Theorems 8, 9, and 10 giving an upper

bound on the speedup factor that holds in all cases. Theorem 12 completes this

section, showing that the speedup factor is exact for constrained-deadline task sets.

Theorem 7 For the comparison between FP-P v. FP-NP (assuming that the necessary

test and OPA algorithm are used for FP-NP, and an exact test and the same priority

ordering are used for FP-P) there exists a speedup optimal task set Γ that exhibits the

highest speedup factor of any constrained-deadline sporadic task set which has the

following properties under FP-P scheduling.

1. When the execution times of all of the tasks in the task set are scaled such that it is

just schedulable according to an exact test for FP-P scheduling, the lowest priority

task τA is the only constraining task. (A constraining task is one that cannot have

its execution time increased without missing its deadline).

2. Under FP-NP scheduling, with the task set scaled such that it is just schedulable

according to the necessary test, then the constraining task from FP-P scheduling

has its lower bound response time equal to its deadline.
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3. The task τL at priority level n − 1 has an execution time CL > CA, where CA, is

the execution time of the lowest priority task.

Proof Follows from Lemmas 6, 7, and 8, given below ⊓⊔

Lemma 6 For the comparison FP-P v. FP-NP (assuming that the necessary test and

OPA algorithm are used for FP-NP, and an exact test and the same priority ordering

are used for FP-P), let Z be the set of FP-NP critical task sets V ∈ Z. By definition,

this set contains at least one task set that is speedup-optimal with respect to the class

of task sets with constrained deadlines. Let Y be a subset of Z (i.e. Y ⊆ Z ) such that

every task set in Y has a single constraining task under FP-P scheduling when scaled

such that it is just schedulable according to an exact test, and that task has the lowest

priority. The set Y contains at least one speedup-optimal task set.

Proof We assume (for contradiction) that there is a task set S ∈ Z \ Y (note Z \ Y

contains all of the task sets that are in Z but not in Y ) that has an FP-P scaling factor

αF P−P (S) strictly smaller than that of any task set in Y . Let τi be the highest priority

constraining task in S. Since S /∈ Y then τi �= τn . We create a new task set V from S by

removing all tasks of lower priority than τi . Since under FP-P scheduling, the response

time of task τi and all higher priority tasks is unaffected by the removal of the lower

priority tasks, the FP-P scaling factor remains the same αF P−P (V ) = αF P−P (S).

Further, since removing tasks cannot decrease, but may increase the FP-NP scaling

factor, it follows that the speedup factor required by task set V is at least as great as

that required by task set S. This contradicts the assumption and so there must be at

least one speedup optimal task set in Y . ⊓⊔

Lemma 7 For the comparison FP-P v. FP-NP (assuming that the necessary test and

OPA algorithm are used for FP-NP, and an exact test and the same priority ordering

are used for FP-P), let Z be redefined as the set Y from Lemma 6, thus every task set

in Z now has a single constraining task under FP-P scheduling when scaled such that

it is just schedulable according to an exact test, and that task has the lowest priority.

Further, let Y be redefined as follows: Y ⊆ Z such that every task set in Y is such that

the constraining task under FP-P scheduling has its lower bound response time equal

to its deadline when scheduled according to FP-NP scheduling. The set Y contains at

least one speedup-optimal task set.

Proof We assume (for contradiction) that there is a task set S ∈ Z \ Y (note Z \ Y

contains all of the task sets that are in Z but not in Y ) that has an FP-P scaling factor

αF P−P (S) strictly smaller than that of any task set in Y . We create a new task set V from

S by reducing the deadline of the constraining task for FP-P scheduling to its lower

bound response time determined under FP-NP scheduling (with αF P−N P (S) = 1).

Since this has no effect on the scaling factor under FP-NP,αF P−N P (V ) = αF P−N P (S)

and decreases the scaling factor for FP-P i.e. αF P−P (V ) < αF P−P (S), it follows that

the speedup factor required by task set V is larger than that required by S. This

contradicts the assumption and so there must be at least one speedup optimal task set

in Y . ⊓⊔
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Lemma 8 For the comparison FP-P v. FP-NP (assuming that the necessary test and

OPA algorithm are used for FP-NP, and an exact test and the same priority ordering are

used for FP-P), let Z be redefined as the set Y defined by Lemma 7, thus every task set

in Z now has a single constraining task under FP-P scheduling when scaled such that

it is just schedulable according to an exact test, and that task has the lowest priority.

Further, the constraining task has a deadline equal to its lower bound response time

under FP-NP scheduling. Let Y be redefined as follows: Y ⊆ Z such that every task

set in Y has a task τL at priority level n − 1 that has an execution time CL ≥ CA,

where CA is the execution time of the lowest priority task. The set Y contains at least

one speedup-optimal task set.

Proof We assume (for contradiction) that there is a task set S ∈ Z \ Y (note Z \ Y

contains all of the task sets that are in Z but not in Y ) that has a speedup factor strictly

greater than that of any task set in Y . By the assumption for contradiction, task set

S has a task τL at priority level n − 1 that has an execution time CL < CA. (Note

speedup optimal task sets must trivially have at least two tasks; otherwise the speedup

factor would be 1). The lower bound response time of task τL is given by:

W N P
L = CA +

∑

∀τ j ∈H P(L)

⌈

W N P
L + Δ

T j

⌉

C j (25)

where H P(L) is the set of higher priority tasks excluding both τL and τA, W N P
L in

the solution obtained on convergence, and thus:

RN P
L = W N P

L + CL (26)

As τL is deemed schedulable by the necessary test for FP-NP, and has a constrained

deadline, then RN P
L ≤ DL ≤ TL . Comparing (25) and (26) with (33) and (34) which

give the lower bound response time RN P
A of task τA, we observe that since CL < CA

then it follows that RN P
L ≥ RN P

A . From Lemma 7 we have RN P
A = DA thus it

follows that TL ≥ DL ≥ RN P
L ≥ RN P

A = DA, and hence task τA can only be

subject to interference from one job of task τL before its deadline. We therefore

form a new task set V from S by removing task τL and increasing the execution

time of task τA by CL . This has no effect on the response time of τA under FP-

P scheduling, so αF P−P (V ) = αF P−P (S); however, the scaling factor permitted

according to the necessary test for FP-NP scheduling either stays the same or increases

hence αF P−N P (V ) ≥ αF P−N P (S). This can be seen by considering that the start time

of τA is reduced by at least CL , while its execution time is increased by exactly CL .

It follows that the speedup factor required by task set V is at least as great as that

required by S. Repeated application of this process, which removes a task each time,

must eventually result in a task set V ∈ Y (Note reduction to one task is not possible

since such a task set cannot be speedup optimal). This contradicts the assumption and

so there must be at least one speedup optimal task set in Y . ⊓⊔

In the following, when considering the processor speedup factor needed to ensure

schedulability under FP-P we note that it is sufficient to simply ensure schedulability
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of the constraining task, since by definition, that task is the one that requires the largest

scaling factor in order to be schedulable.

In the following proofs, we consider an abstract representation of the schedule for a

speedup optimal task set under FP-NP and FP-P scaled such that it is just schedulable

in each case, see Fig. 4. This representation reflects the necessary test for FP-NP

scheduling given by (11), it is not a schedule as such, but rather it shows the total

amount of execution from a number of sources. Execution of the constraining task τA

is represented by A. Since we are interested in an upper bound on the speedup factor we

may assume that task τA which constrains the scaling factor for FP-P also constrains

the scaling factor for FP-NP (if any other task constrained the scaling factor in the FP-

NP case, then that could only reduce the speedup factor needed). In a FP-NP schedule

where task τA takes its lower bound response time [according to the necessary test in

(11)] it is the last task to execute and starts at W N P
A . Recall from Theorem 7 that all

other tasks have higher priorities than the constraining task τA, and the priority order

considered is the same for both FP-NP and FP-P. We divide execution of the higher

priority tasks into two components. Execution of those higher priority tasks which

are not released again between the start time W N P
A of task τA in the FP-NP schedule

and its deadline at DA are represented by B. Execution of those higher priority tasks

which are released again in this interval are represented by X . The latter tasks may

cause additional interference under preemptive scheduling.

To ease understanding, we now illustrate this representation using a simple example.

Consider a task set comprising three tasks with the following parameters (C, D, T ):

τ1 (3, 7,∞), τ2 (4, 7 + ǫ, 7 + ǫ), τ3 (3, 10, 10). Task τ3 has the lowest priority and is

the constraining task; its execution is represented by A. Task τ2 may be released again

between the start time (i.e. 7) and the deadline (i.e. 10) of τ3 in a FP-NP schedule which

starts with synchronous release of all tasks, and so its execution is represented by X .

Finally, task τ2 may not be re-released in this interval and its execution is represented

by B. This example corresponds to the diagram in Fig. 4a. Note in the proofs that

follow X and B may comprise execution from multiple tasks, and thus Fig. 4 is not

intended to show a schedule as such, but rather to show in an abstract way the total

amount of execution A, B, and X from the different sources.

For ease of presentation and to simplify the formulae involved, in the following (and

in Fig. 4), we normalise the execution times such that W N P
A = 1, and thus DA = 1+ A.

We can identify two scenarios in which a task set can be scaled under FP-P so that

it is schedulable. Scenario (i) is illustrated in Fig. 4b. Here the task set is scaled such

that all of the execution that completed by DA under FP-NP scheduling completes by

the start time of task τA at W N P
A in that schedule. Scenario (ii) is illustrated by Fig. 4c.

Here the task set is scaled such that all of the execution released by DA completes by

DA. Since it suffices to show that the task set is schedulable in either scenario, we may

compute the speedup factors required for each and then take the minimum of them as

a valid bound.

In the following, we make a case distinction based on the value of A+X . Theorem 8,

supported by Lemmas 9 and 10, covers the case where A+ X ≤ 1. Note that Lemma 9

does not depend on the value of A + X . Theorems 9 and 10, supported by Lemmas 11

and 12, cover the case where A + X > 1.
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Fig. 4 Abstract representation

of FP-NP schedule (a), and FP-P

schedules (b) and (c)

(a)

(b)

(c)

Lemma 9 An upper bound on the speedup factor required such that FP-P scheduling,

with the same priority ordering as used by FP-NP, can schedule any constrained-

deadline sporadic task set deemed schedulable according to the necessary test for

FP-NP is given by:

S1 =
1 + A

1
(27)

Proof We note from Theorem 7 that the constraining task τA for FP-P scheduling is

at the lowest priority, and since the priority order used is the same it is also at the

lowest priority under FP-NP scheduling. We now derive the speedup factor necessary

for schedulability under FP-P in scenario (i) described above, as illustrated in Fig. 4b.

Consider the interval of length W N P
A = 1. We observe that the amount of interference

considered in any interval of length t (not including blocking) is no greater in the

preemptive case than in the non-preemptive case. This can be seen by comparing the

summation terms in (4) and (11). Hence provided we can accommodate X + B + A =
1 + A in a time interval of length X + B = 1 (as illustrated in Fig. 4b) then task τA

must be schedulable under FP-P. This leads to a speedup factor of S1 = 1+A
1

. ⊓⊔

Lemma 10 Subject to the constraint that A + X ≤ 1, an upper bound on the speedup

factor required such that FP-P scheduling, with the same priority ordering as used by

FP-NP, can schedule any constrained-deadline sporadic task set deemed schedulable

according to the necessary test for FP-NP is given by:

S2 =
1 + A + X

1 + A
(28)

Proof We note from Lemma 6 that the constraining task τA for FP-P scheduling is at

the lowest priority, and since the priority order used is the same it is also at the lowest

priority under FP-NP scheduling. We now derive the speedup factors necessary for

schedulability under FP-P in scenario (ii) described above, as illustrated in Fig. 4c.

In this case, we are interested in a speedup factor that is sufficient such that all of

the execution released in an interval of length DA = 1 + A can be completed in that
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interval, thus ensuring schedulability for task τA under FP-P. We now make use of

the constraint that A + X ≤ 1. This implies that A ≤ 1 and hence that the interval

from the start of the busy period to W N P
A is no shorter than the remainder of the

interval from W N P
A to DA. Since X is the amount of interference released in the

interval [0, W N P
A ) starting with synchronous release of all the tasks, then the amount

of interference released in the interval [0, DA) cannot exceed 2X . Therefore a speedup

factor of S2 = 1+A+X
1+A

is sufficient to ensure schedulability of task τA under FP-P (as

illustrated by Fig. 4c). ⊓⊔

Theorem 8 Subject to the constraint that A + X ≤ 1, an upper bound on the speedup

factor required such that FP-P scheduling, with the same priority ordering as used by

FP-NP, can schedule any constrained-deadline sporadic task set deemed schedulable

according to the necessary test for FP-NP is given by S =
√

2.

Proof As the task set is schedulable under FP-P if it is schedulable in either scenario

(i) or (ii), then the speedup factor required is given by the minimum of S1 given by

Lemma 9 and S2 given by Lemma 10. Since S1 is monotonically increasing in A and

S2 is monotonically decreasing in A (recall that by definition 0 ≤ X ≤ 1), then the

minimum is obtained when they are equal:

1 + A

1
=

1 + A + X

1 + A
(29)

Expanding and re-arranging, we have: X = A2 + A subject to the constraint that

A + X ≤ 1. The speedup factor is therefore maximised by setting A + X = 1. This

results in the quadratic equation A2 + 2A − 1 = 0. The positive solution of which is

A =
√

2 − 1, substituting in (27) we have S =
√

2. ⊓⊔

We now consider the case where A + X > 1. Theorems 9 and 10 (supported by

Lemmas 11 and 12) deal with sub-cases where (i) there is no task that is part of X

re-released during the interval [1, A + X), and (ii) there is such a task.

Theorem 9 Subject to the constraint that A + X > 1, and the restriction that there is

no task that is part of X re-released during the interval [1, A + X), an upper bound

on the speedup factor such that FP-P scheduling, with the same priority ordering

as used by FP-NP, can schedule any constrained-deadline sporadic task set deemed

schedulable according to the necessary test for FP-NP is S =
√

2.

Proof By the assumption in the Theorem, there is no interference released during the

interval [1, A + X), hence the total execution released in [0, A + X) is A + X + B =
1+ A. Therefore speeding the processor up by the following factor is enough to ensure

the schedulability of task τA under FP-P (as illustrated by Fig. 4b):

S3 =
1 + A

A + X
(30)

Alternatively, by definition the maximum amount of interference released in the inter-

val [0, 1) from tasks that are re-released at some point in [0, A + 1) is X. Since there
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are no re-releases in [1, A + X) and the interval [A + X, A + 1) is no greater than 1 in

length, then it follows that at most interference of 2X is released in [0, A + 1). Thus

if we speed the processor up such that execution of A + X + 1 can be accomplished

in an interval of length A + 1, then task τA is also guaranteed to be schedulable under

FP-P (as illustrated by Fig. 4c). Hence we have:

S4 =
1 + A + X

1 + A
(31)

Note that S4 is the same as S2 given in (28).

Again, as the task set is schedulable under FP-P if the processor is speeded up by a

factor of either S3 or S4, then the speedup factor required is given by the minimum of

them. We observe that for any fixed value of X , then both S3 and S4 are maximised by

selecting the minimum value of A. Since we have the constraint that A+X > 1, then we

may obtain upper bounds for both scaling factors by substituting in A = 1 − X . Since

S3 is a monotonically decreasing function of X and S4 is a monotonically increasing

function of X , then the maximum value for the minimum of S3 and S4 is obtained

when S3 = S4. Thus we have:

2 − X =
2

2 − X
(32)

and hence either X = 2 −
√

2 or X = 2 +
√

2. Since the speedup factors S3 and S4

cannot be negative, we may disregard the larger value for X , thus the solution is given

by X = 2 −
√

2, A =
√

2 − 1, and S =
√

2. ⊓⊔

Next, in Lemmas 11 and 12 we derive properties which are used in the proof of

Theorem 10.

Lemma 11 When schedulability is determined using the necessary test for FP-NP

combined with the OPA algorithm, the two tasks assigned the lowest priorities cannot

have parameters such that both DL > DA and CL > CA where task τA is at the

lowest priority (n) and task τL is at the priority level immediately above it (n − 1)

Proof We assume (for contradiction) that DL > DA and CL > CA. Since τA is

deemed schedulable at the lowest priority, it follows that:

W N P
A =

∑

∀τ j ∈H P(L)

⌈

W N P
A + Δ

T j

⌉

C j +

⌈

W N P
A + Δ

TL

⌉

CL (33)

where H P(L) is the set of higher priority tasks excluding both τL and τA, and W N P
A

is the solution obtained on convergence.

RN P
A = W N P

A + CA ≤ DA (34)
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Now consider what happens if the priorities of the two tasks are swapped and task τL

is now at the lowest priority. Its lower bound response time is determined as follows:

W N P
L =

∑

∀τ j ∈H P(L)

⌈

W N P
L + Δ

T j

⌉

C j +

⌈

W N P
L + Δ

TA

⌉

CA (35)

with the solution W N P
L obtained on convergence, and thus:

RN P
L = W N P

L + CL (36)

As τA is deemed schedulable at the lowest priority, it must be the case that from (33)

W N P
A ≤ DA ≤ TA. Considering the two fixed point iterations (35) and (33), and that

CL > CA (i.e. CL ≥ CA + Δ) and W N P
A ≤ TA, then W N P

L in (35) must converge to a

value that is no greater than W N P
A − CL + CA. This implies that the ceiling function

in the final term of (35) is 1. It follows that W N P
L + CL ≤ W N P

A + CA and hence

RN P
L ≤ RN P

A . Since DL > DA then task τL is schedulable when assigned the lowest

priority. As the OPA algorithm checks tasks in reverse deadline monotonic order (i.e.

task τL before task τA) the priority assignment with τL at a higher priority than τA can

never be obtained; task τL would have been assigned the lowest priority. ⊓⊔

Lemma 12 In a speedup optimal task set scaled such that it is just schedulable

according to the necessary test for FP-NP (with optimal priority assignment) that

has A + X > 1, there cannot be an interfering task τH (that is part of X) that is

re-released during the interval [1, A + X), unless there is a task τL with the lowest

priority with the exception of the constraining task τA, which is also part of X and

has an execution time CL ≥ A.

Proof From Theorem 7, we know that task τL must exist and have an execution time

CL ≥ A. Further, since CL ≥ A then from Lemma 11 we know that DL ≤ DA. Since

task τL is either part of B or part of X , we prove the Lemma by showing that τL is

necessarily unschedulable if it is part of B. The un-schedulability of τL in this case

contradicts the assumption in the Lemma that the task set is a schedulable speedup

optimal task set under FP-NP.

We assume (for contradiction) that τL is part of B and the interfering task τH (that is

part of X ) is re-released during the interval [1, A+ X). Considering a FP-NP schedule

starting with blocking of duration A from task τA, by time A + X ≥ 1, interference

of at least X has been released along with execution of duration B (that by definition

does not repeat in the interval [1, A +1)). The lowest priority of all of these tasks in B

and X is τL , which is part of B, hence τL has not started to execute by time A + X . At

time t < A + X , a further release of task τH occurs. Thus the lower bound response

time of τL according to the necessary test is at least A + X + B + CH this is greater

than the deadline of τA (recall that DA = A + X + B). Since DL ≤ DA task τL is

therefore unschedulable. ⊓⊔

Theorem 10 Subject to the constraint that A+ X > 1, if there is a task τH that is part

of X re-released during the interval [1, A+ X), an upper bound on the speedup factor
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such that FP-P scheduling, with the same priority ordering as used by FP-NP, can

schedule any constrained-deadline sporadic task set deemed schedulable according

to the necessary test for FP-NP, is S =
√

2.

Proof Lemma 12 showed that in any speedup optimal task set with A + X > 1 and

a task τH that is part of X re-released during the interval [1, A + X), there must be a

task τL which has the lowest priority with the exception of τA that has CL ≥ A and

is also part of X . We now show that this constraint is sufficient to restrict the speedup

factor required for schedulability under FP-P to at most S =
√

2.

Let δ be the amount of interference from other tasks (not including τA or τL ) released

in an interval of length A+δ (i.e. to the start of task τL when initially subject to blocking

of duration A). The lower bound response time of τL is therefore A + δ + CL . (Note

since all tasks have constrained deadlines, this is also the minimum possible period

for task τL ). In the preemptive case, we will now speed up the processor so that all of

the execution released in an interval of length A + δ + CL completes in that interval,

thus ensuring the schedulability of task τA. (Since this response time is sufficient for

τL to meet its deadline, it must also be sufficient for τA as from Lemma 11, we know

that DL ≤ DA). Note that neither τA nor τL are re-released in this interval, thus we

are interested only in interference from other tasks.

Since δ is the maximum amount of interference (not including τL or τA) released

in an interval of length A + δ starting with synchronous release of all tasks, then in

any interval of length t , the amount of interference is upper bounded by:

⌈

t

A + δ

⌉

δ (37)

Thus the total amount of execution released in an interval of length A + δ + CL is

upper bounded by:

A + CL + δ +
(⌈

A + CL + δ

A + δ

⌉

− 1

)

δ (38)

Hence the speedup factor required to guarantee schedulability of task τA under FP-P

is upper bounded by:

S5 =
A + CL + δ +

(⌈

A+CL+δ
A+δ

⌉

− 1
)

δ

A + CL + δ
(39)

We will now employ a number of constraints to show that the speedup factor does not

exceed S =
√

2.

We note that S1 given by Lemma 9 is valid for all values of A + X , hence the task

set is schedulable under FP-P with a speedup factor of either S1 or S5, thus we are

interested in finding the maximum value of min(S1, S5). In order for a speedup factor

greater than S =
√

2 to be required, we would need a value of A >
√

2−1, otherwise

the speedup factor required is restricted by S1 to be ≤
√

2.
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Since CL ≥ A and CL is part of X , then it must be the case that δ which is the

higher priority interference released in an interval of length A + δ is no greater than

the higher priority interference released within the interval of length X + B = 1 in

the worst-case schedule for A (see Fig. 4a), hence CL + δ ≤ 1.

Examining (39), we observe that for any fixed values of CL and δ, S5 is maximised

by employing the smallest possible value of A. Given that the speedup factor required

(= min(S1, S5)) is restricted by S1 ≤
√

2 if A ≤
√

2 − 1 then the speedup factor

could only be greater than
√

2 if the value of S5 is greater than
√

2 when A =
√

2 −1.

We therefore substitute that value for A in (39) and seek the largest value of S5 by

selecting appropriate values of CL and δ. Since CL +δ ≤ 1 we observe that the largest

possible value of the ceiling function in (39) is given by ⌈(A + 1)/A⌉. Further, since

A =
√

2 − 1, the maximum value for the ceiling function is 4, and as CL > A > 0,

the minimum value of the ceiling function is 2. We now consider the three possible

values (4, 3, and 2) for the ceiling function and maximise the value of S5 via choosing

appropriate values of CL and δ in each case.

Ceiling = 4: For the ceiling function to return 4, it must be the case that CL >

2A+2δ > 2(
√

2−1)+2δ. Further, since CL +δ ≤ 1 we have: 1−δ > 2(
√

2−1)+2δ

and therefore δ < (3 − 2
√

2)/3. For any fixed value of the ceiling function, then S5

is maximised by choosing the largest possible value of δ. Hence when the ceiling

function returns 4, S5 is upper bounded by selecting δ = (3 − 2
√

2)/3. We therefore

obtain:

S5 ≤ 1 +
3 − 2

√
2

√
2

≈ 1.121 (40)

Ceiling = 3: For the ceiling function to return 3, it must be the case that 2A + 2δ ≥
CL > A + δ >

√
2 − 1 + δ. Further, since CL + δ ≤ 1 we have: 1 − δ >

√
2 − 1 + δ

and therefore δ < (2 −
√

2)/2. Since for any fixed value for the ceiling function, S5

is maximised by choosing the largest possible value of δ, S5 is upper bounded in this

case by selecting δ = (2 −
√

2)/2. We therefore obtain:

S5 ≤ 1 +
2 −

√
2

√
2

=
√

2 (41)

Ceiling = 2: For the ceiling function to return 2, it must be the case that A + δ ≥
CL > A. Further, since CL + δ ≤ 1 we have: 1 − δ >

√
2 − 1 and hence δ < 2 −

√
2.

Again, for any fixed value for the ceiling function, S5 is maximised by choosing

the largest possible value of δ. Hence S5 is upper bounded in this case by selecting

δ = 2 −
√

2. We therefore obtain:

S5 ≤ 1 +
2 −

√
2

√
2

=
√

2 (42)

We have shown, for all three possible values of the ceiling function, that the speedup

factor S5 with A =
√

2 − 1 is upper bounded by at most
√

2. Since this bounds the

maximum value that S5 can take for any value of A >
√

2−1 and the value of S1 ≤
√

2

when A ≤
√

2 − 1, it follows that the maximum value of min(S1, S5) is
√

2. ⊓⊔
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Theorem 11 An upper bound on the speed-up factor that guarantees FP-P feasibility

of all constrained-deadline FP-NP feasible task sets is given by:

S =
√

2

Proof Follows from Theorems 8, 9, and 10, and the fact that the bound so obtained

using a necessary test for FP-NP scheduling assuming optimal priority assignment

(OPA) compared to an exact test for FP-P assuming exactly the same priority ordering

that FP-NP uses, is also an upper bound for the general case described in the theorem.

This is the case since use of a (weaker) exact rather than a necessary test for FP-

NP cannot increase the speedup factor required. Similarly using a (stronger) optimal

priority assignment for FP-P scheduling cannot increase the speedup factor required

w.r.t. using the same priority ordering as chosen for FP-NP scheduling. ⊓⊔

5.4 Exact speedup factor for FP-P v. FP-NP for constrained-deadline task sets

We now put together the results of Sects. 5.1 and 5.3 to give the exact speedup factor

for FP-P v. FP-NP.

Theorem 12 The exact speed-up factor that guarantees FP-P feasibility of all

constrained-deadline FP-NP feasible task sets is given by:

S =
√

2

Proof Follows from the upper bound given in Theorem 11 and the lower bound of the

same value given in Theorem 5. ⊓⊔

6 Summary and conclusions

The main contribution of this paper is the derivation of resource augmentation bounds

for preemptive and non-preemptive scheduling algorithms on a uniprocessor. Our

metric for measuring the relative effectiveness of these scheduling policies is a resource

augmentation factor known as the processor speedup factor. The processor speedup

factor is defined as the minimum amount by which the processor needs to be speeded

up to guarantee schedulability under one algorithm (e.g. FP-NP) for any task set that

is schedulable under another algorithm (e.g. EDF-P).

Specifically, we derived the following exact sub-optimality and speedup factor

results:

S1 Exact sub-optimality of FP-NP for tasks with arbitrary deadlines:

S = 2 +
Cmax

Dmin
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For task sets with implicit or constrained-deadlines:

Lower Bound S = 1 +
Cmax

Dmin

Upper Bound S = 2 +
Cmax

Dmin

S2 Exact speedup factor required for FP-NP feasibility of any arbitrary deadline task

set that is FP-P feasible:

S = 2 +
Cmax

Dmin

For task sets with implicit or constrained deadlines:

S = 1 +
Cmax

Dmin

S3 Exact sub-optimality of EDF-NP for implicit, constrained or arbitrary deadline

task sets:

S = 1 +
Cmax

Dmin

S4 Exact speedup factor required for FP-P feasibility of any constrained deadline task

set that is FP-NP feasible.

S =
√

2

Tables 1, 2, and 3 summarise the speedup factor results for uniprocessor fixed

priority and EDF scheduling algorithms. References next to the speedup factor values

refer to prior results, while those without a reference were derived in this paper. Where

an exact speedup factor has been derived, then only one value is given (i.e. the upper

and lower bounds are equal). Further, where the same value applies to different classes

of task set (e.g. with implicit, constrained, or arbitrary deadlines), then again only a

single result is shown, with the cell in the table enlarged to cover the different classes.

The major remaining open problems involve tightening the upper and lower bounds

where exact values are not yet known. These include determining the exact sub-

optimality of FP-NP for the case of implicit and constrained deadline task sets, and

determining the exact speedup factor required for FP-P feasibility of any task set that

is FP-NP feasible for the implicit, and arbitrary deadline cases.

While the speedup factor results derived in this paper are mainly of interest in

providing a theoretical comparison focusing on the worst-case behaviour of the dif-

ferent scheduling algorithms, these results also help by providing practical guidance

to system designers. For example, the majority of real-time operating systems sup-

port fixed priority scheduling, with those mandated for automotive systems by the

OSEK (OSEK/VDX 2007) and AUTOSAR (AUTOSAR 2007) standards supporting

both FP-P and FP-NP scheduling. Here, it is interesting to consider the comparison

between FP-P and FP-NP; even though the two scheduling policies are incomparable.
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Table 1 Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

Table 2 Speedup factors for FP-NP v. EDF-P and EDF-NP v. EDF-P

Table 3 Speedup factors for FP-NP v. FP-P and FP-P v. FP-NP

The exact speedup factor required for FP-NP feasibility of any constrained deadline

task set that is FP-P feasible is S = 1 + Cmax

Dmin
(see Theorem 2). Thus if we have

a system where the longest execution time of any task is substantially less than the

shortest deadline (Cmax ≪ Dmin), we can quantify the small processing speed penalty

for using non-preemptive scheduling. This can then be weighed against the additional

overheads (e.g. preemption costs, cache related preemption delays, support for mutu-

ally exclusive resource accesses etc.) incurred in using preemptive scheduling. When

the processing speed penalty is small, other factors such as the reduced complexity
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involved in accurately modelling and testing a non-preemptive system, may also favour

FP-NP scheduling. When Cmax ≫ Dmin then it is clear that the penalty for using fully

non-preemptive scheduling is very high (the long task problem (Short 2010)). In such

cases methods that support limited preemption, effectively breaking long tasks into a

set of non-preemptive regions may be preferable. A further avenue for the extension

of this work is to systems that support limited preemption (Buttazzo et al. 2013), in

particular including final non-preemptive regions, since that paradigm dominates both

FP-P and FP-NP scheduling (Davis and Bertogna 2012).

We note that it has recently been shown (von der Bruggen et al. 2016) that the results

comparing FP-P v. EDF-P, and FP-NP v. EDF-NP given in Table 1, which assume opti-

mal priority assignment and exact schedulability tests, continue to hold when Deadline

Monotonic priority assignment and simple, sufficient, linear-time schedulability tests

are employed for fixed priority scheduling. Thus in these cases, in terms of the speedup-

factors required, there is no penalty in using Deadline Monotonic priority assignment5

and simple linear-time schedulability tests. Although sufficient in terms of schedula-

bility, these tests are speedup-optimal (see Definition 7) for the comparisons FP-P v.

EDF-P, and FP-NP v. EDF-NP. The results in this paper show that in the arbitrary dead-

line case, the speedup factors for FP-NP v. EDF-NP, and FP-NP v. FP-P also hold for

Deadline Monotonic priority assignment and simple linear-time schedulability tests.

Finally, we caution that it is important to understand that speedup factors are indica-

tive only of the worst-case performance of one algorithm relative to another. We refer

the interested reader to recent work (Chen et al. 2017) on the pitfalls of using speedup

factors and other resource augmentation bounds for a full discussion of the pros and

cons of using this metric.
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