

This is a repository copy of *Electro-osmotic piles*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/125827/

Version: Accepted Version

Article:

Mohd Nizar, KN and Clarke, BG orcid.org/0000-0001-9493-9200 (2014) Electro-osmotic piles. Proceedings of the Institution of Civil Engineers - Ground Improvement, 167 (2). pp. 135-144. ISSN 1755-0750

https://doi.org/10.1680/grim.12.00023

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Table 2 Performance indicators for electro osmotic piles

Indicator	Value	Reference
Improvement factor, no	s _o /s _t	Priebe ()
Efficiency factor, k	$(s_t A_o)/(It)$	
Energy factor	(V I t)/ (A _o h)	Lefebvre and Burnotte (2002)

Where s_o is the settlement of the untreated soil; s_t is the settlement of the treated soil; A_o is the total area of treatment; V is the voltage; I is the average current over the time of treatment, t; and h is the depth of treated soil.