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One of the most powerful and versatile system identification frameworks of the last three
decades is the NARMAX/NARX1 approach, which is based on a nonlinear discrete-time rep-
resentation. Recent advances in machine learning have motivated new functional forms for
the NARX model, including one based on Gaussian processes (GPs), which is the focus of this
paper. Because of their nonparametric form, NARX models can only provide physical insight
through their frequency-domain connection to Higher-order Frequency Response Functions
(HFRFS). Because of the desirable properties of the GP-NARX form (no structure detection
needed, natural confidence intervals), the analytical derivation of the HFRFs for the model
is presented here for the first time. Furthermore, an algorithm for propagating uncertainty
from the GP into the HFRF estimates is presented. A valuable by-product of the latter algo-
rithm is a new test for nonlinearity, capable of detecting the presence of odd and even system
nonlinearities. The new results are illustrated via two case studies; the first is based on sim-
ulation of an asymmetric Duffing oscillator. The second case study presents a validation of
the new theory in the area of wave force prediction on offshore structures. This problem is
one that has been considered by some of the authors before; the current paper takes the
opportunity to highlight and correct a number of weaknesses of the original study in the light
of modern best practice in machine learning.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the last 30 years, one of the most versatile and enduring time series models used for nonlinear system identification
has been the NARMAX (Nonlinear Auto-Regressive Moving Average with eXogenous inputs) model. The NARMAXmodel was
introduced in 1985 [1,2] and has been the subject of constant interest and development since. (A comprehensive monograph
on the theory and applications of the model recently appeared in [3]). The most general model form accommodates nonlin-
ear discrete-time process and noise models. However, if the noise process can be assumed to be white Gaussian, the simpler
NARX model can be adopted, and this will be the focus of this paper. The NARX model assumes a form whereby the current
value of the system output is predicted using a nonlinear function F of previous inputs and outputs, i.e.
yi ¼ Fðyi�1; . . . ; yi�ny ; xi; . . . ; xi�nxþ1Þ þ �i ð1Þ
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where the residual sequence �i is white Gaussian. The number of output (resp. input) lags is denoted ny (resp. nx). This for-
mulation of a NARX model differs a little from the original [1,2], in that it allows the use of the present input xi.

The earliest and still most common form of the NARX model adopts a multivariate polynomial (multinomial) expansion
basis for the function F and learns the expansion coefficients/parameters by using linear (but advanced) least-squares meth-
ods. However, in general, any expansion basis which satisfies a universal approximation property can be used. This obser-
vation has led to various nonparametric NARX model forms based on machine learning, including Multi-Layer Perceptron
(MLP) and Radial Basis Function (RBF) neural networks [4,5]. Most recently, variations on the NARX structure based on Poly-
nomial Chaos Expansions (PCE-NARX) have emerged [6]. By utilising parameters that are random variables themselves, the
PCE-NARX models are able to account for uncertainty in a natural way. The nonpolynomial variants of the NARX model have
at least one very attractive feature, in that they bypass (or rather, usually ignore) the structure detection problem. One can
think of the problem of establishing a ‘traditional’ NARX (or NARMAX) model in terms of two steps. The first step is structure
detection i.e. determining which multinomial terms should be included in the model; the second is establishing the expan-
sion parameters for the included terms i.e. parameter estimation. The nonparametric NARX models simply include all expan-
sion terms consistent with certain hyperparameters of the model form e.g. number of nodes per layer in an MLP neural
network. One then need only concern oneself with issues of including too many terms – leading to overfitting of models
– and these issues can usually be addressed in a principled manner in a machine learning context [7].

Another fairly recent addition to the family of nonparametric NARX variants is one based on Gaussian Processes [8]. The
GP-NARX2 model form allows a number of potential advantages over the previously mentioned NARX variants, including a
Bayesian framework encompassing the generation of natural confidence intervals for model predictions. (This accommodates
uncertainty in a different way to the PCE-NARX models referred to earlier.) There is no intention here, to present a
survey of the literature regarding GP-NARX/GP-AR models, the curious reader is instead directed towards the comparatively
recent [10].

The main weakness of the nonparametric models is arguably in their inability to provide physical insight into the systems
and processes under investigation – the expansion coefficients have no direct physical meaning. Of course, this problem was
also present when polynomial NARX forms were used, but was overcome to a great extent by passing from the time-domain
models to a frequency-domain representation. One of the most interesting and useful features of the NARX model is that,
through a natural connection with the Volterra series [11], it allows the construction of Higher-order Frequency Response
Functions (HFRFs) that allow one to visualise how different frequencies in the input to a nonlinear system interact in forming
the output [12]. These objects are the natural nonlinear extension of the linear concept of a Frequency Response Function,
which allows direct visualisation of resonant behaviour of dynamic systems. In the case of the polynomial form of the NARX
model, the method for determining the HFRFs – the harmonic probing algorithm – proved to be a simple extension of the
long-held algorithm for differential equations [13,14]. In the case of the neural network forms (MLP and RBF) of the NARX
model, the harmonic probing algorithm could also provide closed form expressions for the HFRFS at the expense of a little
more complicated algebra [15]. Other neural network structures – like the Time-Delayed Neural Network [16] – allow the
calculation of Volterra kernels directly, rather than the HFRFs.

The main objective of the current paper is to provide a calculation for the HFRFs associated with the GP-NARXmodel. This
is taken further, and an algorithm is also provided which can estimate confidence bounds on the HFRFs, based on the pre-
dictive uncertainty inherent in the GP algorithm. A useful by-product of the analysis is a new test for nonlinearity which can
detect the presence of odd and even characteristics. The theory is validated via two case studies; the first is based on numer-
ically simulated data from an asymmetric Duffing oscillator. The second case study develops a new application of the
GP-NARX model in the area of wave loading on offshore structures. In the context of wave loading, it has long been known
that the standard equation – Morison’s equation – for the prediction of fluid loading forces on slender members [17], is inad-
equate outside a fairly narrow regime of wave conditions. There have been many attempts to improve on Morison’s equation
over the years, including one by the current first author, together with collaborators, based on polynomial NARMAX/NARX
models [18]. The current paper updates that methodology, using the GP-NARX model. The advantages of the new
formulation – including natural confidence bounds for predictions – are demonstrated, and the paper takes the opportunity
to highlight and correct a number of weaknesses of the original study in the light of modern best practice in machine
learning.

The layout of the paper is as follows: Section Two will provide a short summary of the relevant Gaussian process theory
and how one can use it to define a NARX model. Section Three introduces a case study and shows how the GP-NARXmodel is
applied in the context of a nonlinear Single-Degree-of-Freedom (SDOF) system. Section Four very briefly discusses the basic
principles of the Volterra series and how it leads to the definition of HFRFs. Section Five presents the derivation of the HFRFs
for the GP-NARX model, which are then computed for the case study system in Section Six. The new approach to computing
uncertainty bounds for HFRFs is presented in Section Seven. The application of all the aforementioned theory to the wave
loading problem for the Christchurch Bay Tower is presented and discussed in Section Eight. Finally, conclusions are
presented.
2 Within the machine learning community, the term GP-AR is sometimes used. This name makes complete sense in terms of the fact that the models are
auto-regressive Gaussian processes; however it misses the fact that the terms AR or ARX in the time series literature usually refer to linear models. The term
GP-NARX is preferred here as it indicates that the GP models are typically nonlinear. By appropriate choice of the GP covariance function, one could fit linear
GP-AR models and the algorithm would then essentially be Bayesian linear regression [9].
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2. Gaussian process NARX models

2.1. Gaussian processes

The Gaussian Process (GP) algorithm has its roots in the geostatistics community where it was developed as a tool for
interpolating the profile of landscapes considered as random fields. This early work rests on the Masters thesis of Krige,
which dates back to 1951 [19]; and the technique has long been known as Kriging in the geostatistics field. In more recent
times, GPs were brought to the attention of the machine learning community by Neal [20] and Mackay [21], and consolidated
in the recent book by Rasmussen and Williams [9]. The basic premise of the method is to perform inference over functions
directly, as opposed to inference over parameters of functions.

For simplicity, the discussion here will assume that the system of interest has a single output variable.3 Following the
notation of [9] in the case of GPs in general, let X ¼ ½x1; x2 . . . xN�T denote a matrix of multivariate training inputs, and y denote
the corresponding vector of training outputs. The input vector for a testing point will be denoted by the column vector x� and
the corresponding (unknown) output by y�.

The regression relationship at the heart of the GP is,
3 Not
are also
models
y ¼ f ðxÞ þ � ð2Þ

where the ‘noise’ term � is assumed to be a zero-mean random variable,
� � Nð0;r2
nÞ ð3Þ
and r2
n – the noise variance – is a hyperparameter of the model (which requires estimation). It follows that,
y � Nðf ;r2
nÞ ð4Þ
and f is essentially an unobserved latent variable of the approach.
A Gaussian process prior is formed by assuming a (Gaussian) distribution over functions for the latent f,
f ðxÞ � GP mðxÞ; kðx; xÞð Þ ð5Þ

where mðxÞ is the mean function and kðx; x0Þ is a positive-definite covariance function.

A defining property of the GP is that the density of a finite number of outputs from the process is multivariate normal.
Using this fact with the known marginalisation properties of the Gaussian density allows one to consider the value of this
function only at the points of interest: training points and predictions. Allowing f to denote the function values at the train-

ing points X, and f � to denote the predicted function value at a new point x�, one has,
f

f �

 !
� N 0;

KðX;XÞ KðX; x�Þ
Kðx�;XÞ Kðx�; x�Þ

� �� �
ð6Þ
where a zero-mean prior has been used for simplicity (see [9] for a discussion), and KðX;XÞ is a matrix whose i; jth element is

equal to kðxi; xjÞ. Similarly, KðX; x�Þ is a column vector whose ith element is equal to kðxi; x�Þ, and Kðx�;XÞ is the transpose of the
same.

Since one is not interested in the unobserved variable f , it can be marginalised (integrated out) from Eq. (4) [9], as the
relevant integral,
pðyÞ ¼
Z

pðyjf Þpðf Þdf ð7Þ
is over a multivariate Gaussian and has a closed-form solution. The result is the joint distribution for the training and testing
target values for the observed y,
y

y�

� �
� N 0;

KðX;XÞ þ r2
nI KðX; x�Þ

Kðx�;XÞ Kðx�; x�Þ þ r2
n

" # !
ð8Þ
Once the joint distribution pðy; y�Þ is converted into a conditional distribution pðy�jyÞ, using standard results for the con-
ditional properties of a Gaussian, one obtains the final expression [9],
y� � N ðm�ðx�Þ; k�ðx�; x�ÞÞ ð9Þ

where
m�ðx�Þ ¼ kðx�;XÞ½KðX;XÞ þ r2
nI�

�1
y ð10Þ
ation is adopted in this paper where the inputs and outputs to systems are denoted by the symbols x and y respectively. The inputs and outputs to GPs
denoted by x and y respectively. This decision has been made on the basis of maintaining consistency with the authors’ previous works on both NARX
and GPs; it has been made in the belief that the context of any equations concerned removes any potential source of confusion.
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is the posterior predictive mean, and,
4 Wit
predicti
continu
k�ðx�; x�Þ ¼ kðx�; x�Þ � Kðx�;XÞ½KðX;XÞ þ r2
nI�

�1
KðX; x�Þ þ r2

n ð11Þ

is the posterior predictive variance, again expressed for the observed y.

Thus the GP model provides a posterior distribution for the unknown quantity y�. The mean from Eq. (9) can then be used
as a ‘best estimate’ for a regression problem, and the variance can be used to define confidence intervals.

There remains the question of the choice of covariance function kðx; x0Þ. In practice, it is often useful to take a squared-
exponential function of the form
kðx; x0Þ ¼ r2
f exp � 1

2l2
jjx� x0jj2

� �
ð12Þ
although various other forms are possible (see [9]). Eq. (12) is the form adopted here. The covariance function involves the
specification of two further hyperparameters r2

f and l; together with r2
n , these can be optimised using an evidence framework

[9]. Denoting the set of hyperparameters by h, they can be found by maximising a function,
f ðhÞ ¼ �1
2
yT ½KðX;XÞ þ r2

nI�y�
1
2
log jKðX;XÞ þ r2

nIj ð13Þ
which is equal to the log of the evidence, up to some constant. Since the number of hyperparameters in this case is small, the
optimisation can be carried out simply by gradient descent, although it may be advantageous to use more powerful
algorithms (an example using a population-based approach is presented in [22]).

2.2. GP-NARX models

The GP models discussed so far are essentially static maps, learning the relationship between point inputs and point out-
puts. However, it almost trivial to learn dynamical system behaviour, simply by adopting a NARX framework. The functional
form in Eq. (1) is used with the function F represented by a GP. A slight variant of the NARX form which also uses the current
input for prediction will be used here.

Once the GP-NARX model has been learned, there are various tests one can apply to assess the validity of the model. The
most basic option is to compute one step ahead (OSA) predictions. In this case, using the training data, one computes the pre-
dictions for a given time using observed inputs and outputs up to that time, i.e.
y�i ¼ Fðyi�1; . . . ; yi�ny ; xi; . . . ; xi�nxþ1Þ ð14Þ

and compares the predicted and observed outputs.

It is always useful to have an objective measure of comparison, and the one used here will be the Normalised Mean-Square
Error (NMSE) defined by,
NMSEðŷÞ ¼ 100
Nr2

y

XN
i¼1

ðyi � ŷiÞ2 ð15Þ
Previous experience has shown that an NMSE of less than 5.0 indicates good agreement while one of less than 1.0 reflects
an excellent fit.

Clearly, the OSA predictions are not a particularly stringent test of the model. A more demanding test is to compute the
Model Predicted Output (MPO) defined by,
y�i ¼ Fðy�i�1; . . . ; y
�
i�ny ; xi; . . . ; xi�nxþ1Þ ð16Þ
and this test can be conducted on testing data as well as training data, which is an important consideration in the more gen-
eral context of machine learning.4

Various correlation functions also provide a stringent means of validating models. The correlation function /uv ðkÞ for two
sequences of data ui and v i will be defined here by,
/̂uvðkÞ ¼
1

N�k

PN�k
i¼1 uiv iþk

Eðu2
i ÞEðv2

i Þ
� �1

2
k P 0 ð17Þ
with a similar expression for k < 0. The normalised form allows a simple expression for the 95% confidence interval for a zero
result, namely �1:96=

ffiffiffiffi
N

p
.

For a linear system, it is argued in [14], that necessary conditions for model validity are,
/��ðkÞ ¼ d0k; /x�ðkÞ ¼ 0 8k ð18Þ
hin other sectors of the system identification community, a different terminology is commonly adopted; it is often the case that computing the OSA
ons is simply referred to as prediction, while computing the MPO predictions is referred to as simulation. This is a little unfortunate, but the authors will
e with the OSA/MPO terminology to ensure consistency with their previous work.
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The first condition is true only if the residual sequence �i is indeed a white noise sequence i.e. purged of structure; this is a
test of any noise model whose job it is to reduce the residuals to white noise; a condition which is required for unbiased
parameter estimates in the traditional system identification theory [23,24]. The second condition states that the residual sig-
nal is uncorrelated with the input sequence xi i.e. the model has completely captured the component of the measured output
which is correlated with the input. In the case of a nonlinear system it can be possible to satisfy the conditions above even if
the model is invalid. It is shown in [14] that a more comprehensive test of the fitness of a nonlinear model requires the eval-
uation of three additional correlation functions. The extra conditions adopted here are,
/�ð�xÞðkÞ ¼ 0 8k P 0; /x20�ðkÞ ¼ 0 8k; /x20�2 ðkÞ ¼ 0 8k ð19Þ
where the dash which accompanies x2 above indicates that the mean has been removed.
The GP form for the NARX model has its advantages and disadvantages; two of the main issues will be discussed briefly

here, with directions to the literature as to their possible means of solution.
The first problem is that the GP algorithm depends on the inversion of the covariance matrix K; this is an operation which

costs OðN3Þ multiplications, where N is the number of training points. Slightly less costly is the prediction of new outputs
with OðNÞmultiplications needed for the predictive mean and OðN2Þ for the predictive variance. In fact, system identification
with NARX models has traditionally been carried out with small training sets with a low number of thousands of data points,
and this size of problem is typically feasible using a standard GP algorithm. However, if one wishes to move to larger training
sets, the costs of computation can become prohibitive. This problem has led to the idea of sparse Gaussian processeswhich, as
the name suggests, can establish models on reduced training sets [25]. One of the earlier methods is the so-called Fully Inde-
pendent Training Conditional (FITC) model [26]. The FITC approach approximates the full GP by establishingM pseudo-inputs
which are not restricted to be actual data points, but can be considered as hyperparamaters which can be learned. In the FITC
approach, the computational complexity of establishing the GP is reduced to OðM2NÞ; the cost of computing the predictive
mean is reduced to OðMÞ and that of the predictive variance is reduced to OðM2Þ. Very recent work on Variational Fourier Fea-

tures has offered the possibility that the cost of computation can be reduced from OðM2NÞ (for the sparse GP) to OðMNÞ under
some circumstances [27].

The second problem with the GP-NARX formulation relates to noise on the training data. The standard formulation of the
GP algorithm assumes that the training inputs are noise-free and that the noise on the outputs is Gaussian with constant
variance as in Eq. (2). This can be an issue if one is attempting multi-step ahead predictions with a GP-NARX model; because
of the feeding back of the output predictions, the outputs become inputs and carry their predictive uncertainty with them.
The most principled approach to this problem is adopt the Bayesian approach of marginalising or integrating over the input
noise distributions; however, even if these were known with complete accuracy, the computation would be intractable. One
of the first comprehensive studies of this problem appears to have been the work leading to the thesis [28]. Closed-form
approximate solutions for the predictive mean and variance in the presence of input noise can be found in [29]. An interest-
ing recent paper [30], uses an approximation to convert input noise into output noise.

In the case studies presented here (for reasons discussed in the relevant sections), the issues referred to above have been
ignored without (it is believed), damage to the results; however, in other engineering problems they will likely need to be
addressed.
3. Case study – an asymmetric Duffing oscillator

In order to illustrate the use of the GP-NARX formulation, data simulated from a Duffing oscillator data system will be
used. In the asymmetric case when a quadratic stiffness is present, the relevant equation of motion is,
m€yþ c _yþ kyþ k2y2 þ k3y3 ¼ xðtÞ ð20Þ

Data were simulated here by integrating the equation of motion using a fourth-order fixed-step Runge–Kutta algorithm

[31]. The parameters adopted were m ¼ 1, c ¼ 20; k ¼ 104; k2 ¼ 107 and k3 ¼ 5� 109. The excitation used was a zero-mean
white Gaussian random sequence with a standard deviation of 2.0. The time step used was Dt ¼ 0:001 seconds correspond-
ing to a sampling frequency of 1 kHz. Noise was added to the data to introduce an element of reality to matters; initially in
this case, Gaussian noise of 1% RMS of the signal was added to the response time data. As a more severe test of the prediction
capability of the model, the results presented here are for an independent test set of data, also comprising 1000 samples of
data from the system at the same level of excitation as the training data and with the same amplitude of added noise.

As discussed in Section 2.1, there are three hyperparameters for the simple GP formulation used here; these were deter-
mined here by using a conjugate gradients algorithm in order to maximise the log marginal evidence in Eq. (13). Before doing
this, it was necessary to establish the number of input and output lags needed in the model; these numbers are hyperparam-
eters of the GP-NARX model. A quick search using the errors on a validation set gave the values nx ¼ ny ¼ 3. Once the lag
numbers were established, the GP-NARX model was fitted and the optimal GP hyperparameters were found to be:
r2

f ¼ 757:4; l ¼ 9:581 and r2
n ¼ 3:057� 10�4. To improve the conditioning of the estimation process, all data were standard-

ised before the computation, the scales for the data were reintroduced after predictions were made.
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The first set of results presented are for the OSA predictions on the test data set from the trained GP as shown in Fig. 1. The
NMSE value for the predictions was 0.028, indicating an excellent result. The discrepancies in the predictions are barely vis-
ible, and the confidence intervals (�3 standard deviations) are very close to the data.

As discussed above, the MPO predictions provide a more stringent test and these are shown in Fig. 2. The corresponding
NMSE in this case was 3.44, which still indicates a good fit.

As discussed in [32], the confidence intervals are still very small and do not accommodate the observed prediction errors.
This is because not all of the uncertainty has been accounted for. In the predictions so far, the predicted outputs have been
fed back into the model in order to form the MPO. This means that the only uncertainty accounted for in the predictions is
the parameter uncertainty. In order to take a proper Bayesian viewpoint, one should allow for the fact that each prediction is
actually a sample from a distribution; this distribution being determined by the parameter distribution. To account for this,
during a prediction run, at each instant i the prediction y�i was sampled from the distribution specified by the predictive
mean and covariance as specified by Eqs. (10) and (11). One such run generates a single realisation of the prediction process,
in order to accumulate information about the distribution of predictions with state estimation taken into account, a Monte
Carlo approach was adopted here with 25 different runs conducted. Fig. 3 shows the 25 realisations of the predictions.
Fig. 1. OSA predictions for GP-NARX model of Duffing oscillator data.

Fig. 2. MPO predictions for GP-NARX model of Duffing oscillator data.



Fig. 3. MC realisations of predictions for GP-NARX model of Duffing oscillator data.

Fig. 4. MC predictions for GP-NARX model of Duffing oscillator data.
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There is clearly a great deal more uncertainty associated with the predictions now. From the MC realisations, one can
estimate a mean prediction and determine �3r confidence bounds, and the result of the analysis for the case here is
shown in Fig. 4. The confidence intervals are now a more appropriate assessment of the predictive capability of the
model. This exercise shows clearly that the dominant contribution to uncertainty in the predictions is not the direct com-
ponent from the parameter uncertainty, but the indirect component due to state estimation from the uncertain
parameters.

Having established a benchmark data set and illustrated the GP-NARX performance, the paper continues by developing
the theory for the HFRFs and illustrating that theory on the benchmark data.
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4. The Volterra series and higher-order FRFs

In the time-domain analysis of linear dynamical systems, the impulse response function hðsÞ is known to characterise the
system completely. For such a system, excited by an input signal xðtÞ, the response yðtÞ is given by the convolution integral
(sometimes called Duhamel’s integral),
yðtÞ ¼
Z 1

�1
ds hðsÞxðt � sÞ ð21Þ
This relationship was extended to nonlinear systems by Volterra [33] in the early part of the last century; the output of a
nonlinear system was shown to require additional higher-order contributions such that the total response, yðtÞ, is given by,
yðtÞ ¼ y0 þ y1ðtÞ þ y2ðtÞ þ y3ðtÞ þ . . .þ ynðtÞ ð22Þ

where y0 is a constant, and the general term is given by,
ynðtÞ ¼
Z 1

�1
. . .

Z 1

�1
ds1ds2 . . .dsn hnðs1; s2 . . . snÞxðt � s1Þxðt � s2Þ . . . xðt � snÞ ð23Þ
This is essentially a generalisation of the standard Taylor series to the case of functionals i.e. mappings between functions.
The generalised coefficients of the series hn, are the nth-order Volterra kernels, and these can be thought of as multi-
dimensional, or higher-order, impulse response functions [11]. The series provides a representation of a given functional
or system yðtÞ ¼ S½xðtÞ�, which is insensitive to the input xðtÞ, provided that the system is time-invariant and contains only
analytic nonlinearities [34].

The Volterra series is thus a time-domain representation for nonlinear systems. As in the case of linear systems, a dual
frequency-domain representation exists which can give a clearer perspective of system behaviour in some respects. For a
linear system, the frequency-domain representation is obtained simply by taking the Fourier transform of Eq. (21); the result
is well known,
YðxÞ ¼ HðxÞXðxÞ ð24Þ

where
HðxÞ ¼
Z 1

�1
dx e�ixthðtÞ ð25Þ
is the system Frequency Response Function (FRF), and YðxÞ and XðxÞ have similar definitions. By direct extension of the linear
case, the higher-order FRFs (HFRFs) Hnðx1; . . . ;xnÞ, can be defined as the multi-dimensional Fourier transforms of the
kernels,
Hnðx1; . . . ;xnÞ ¼
Z þ1

�1
. . .

Z þ1

�1
ds1 . . .dsnhnðs1; . . . ; snÞe�iðx1s1þ...þxnsnÞ ð26Þ
with inverses,
hnðs1; . . . ; snÞ ¼ 1
ð2pÞn

Z þ1

�1
. . .

Z þ1

�1
dx1 . . . dxnHnðx1; . . . ;xnÞeþiðx1s1þ...þxnsnÞ ð27Þ
The frequency-domain dual of expression (22) then follows directly as,
YðxÞ ¼ Y1ðxÞ þ Y2ðxÞ þ Y3ðxÞ þ . . . ð28Þ

where
Y1ðxÞ ¼ H1ðxÞXðxÞ ð29Þ

Y2ðxÞ ¼ 1
2p

Z þ1

�1
dx1H2ðx1;x�x1ÞXðx1ÞXðx�x1Þ ð30Þ

Y3ðxÞ ¼ 1

ð2pÞ2
�
Z þ1

�1

Z þ1

�1
dx1dx2H3ðx1;x2;x�x1 �x2ÞXðx1ÞXðx2ÞXðx�x1 �x2Þ ð31Þ
and so on.
The interpretation of these quantities is well established, a description can be found in [12]. If the equations of motion are

known for a system, the method of harmonic probing can be used in order to compute the HFRFs [13]. Harmonic probing for
the Gaussian process NARX models is discussed in the next section and the technique is illustrated using the Duffing oscil-
lator system in Eq. (20); the exact results in this case are well known as [12],
H1ðxÞ ¼ 1
�mx2 þ icxþ k

ð32Þ
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H2ðx1;x2Þ ¼ �k2H1ðx1ÞH1ðx2ÞH1ðx1 þx2Þ ð33Þ

and,
H3ðx1;x2;x3Þ ¼ �1
6
H1ðx1 þx2 þx3Þ

� 4k2 H1ðx1ÞH2ðx2;x3Þ þ H1ðx2ÞH2ðx3;x1Þ þ H1ðx3ÞH2ðx1;x2Þð Þ þ 6k3H1ðx1ÞH1ðx2ÞH1ðx3Þf g
ð34Þ
for the first three HFRFs.
In order to see the important structure in the HFRFs, it is often sufficient to plot only the leading diagonal i.e. H2ðx;xÞ.

This format also allows simple comparisons between the functions.

5. Harmonic probing of the GP-NARX model

If the governing equations of motion are known, the HFRFs of a system can be obtained analytically by the use of the har-
monic probing algorithm, introduced by Bedrosian and Rice [13]. Although this was originally designed for continuous-time
systems, the algorithm was extended to the type of discrete-time systems considered here by Billings and Tsang [4].

Before proceeding, it is necessary to determine the explicit form of the GP-NARX model. First of all, one observes, follow-
ing [9], that the GP is essentially an expansion in terms of basis functions fixed by the covariance kernel and the training
data, the predicted output y� corresponding to a new input x� is given by,
y� ¼
XN
i¼1

aikðx�; xiÞ ð35Þ
where according to Eq. (10),
a ¼ ½kðX;XÞ þ r2
nI�

�1
y ð36Þ
and this is fixed by the training data. If one adopts the squared exponential covariance function of (12), one arrives at the GP-
NARX form,
yi ¼ r2
f

XN
j¼1

aj exp � 1

2l2
Xny
k¼1

ðyi�k � v jkÞ2 þ
Xnx
m¼0

ðxi�m � ujmÞ2
" #( )

ð37Þ
where the matrix V ¼ fv ijg is formed from the first ny columns of the matrix X and U ¼ fuijg is formed from the remaining
nx þ 1 columns of X.

Note that this expression is essentially that of the radial-basis function neural network considered in [15]; this means that
the HFRFs derived in that paper are applicable here. However, the analysis here presents a more direct approach in terms of
homogeneous ARX and NARX model coefficients at each polynomial order; the expressions here also correct some typo-
graphical errors in [15]. The first issue which arises is that the function in (37) must be expanded as a polynomial in order
to apply harmonic probing. As observed in [15], direct expansion means that the term of order n will contain powers of all
orders up to n and this makes it impossible to group linear terms etc. The solution is simple, a trivial rearrangement yields
the more amenable form,
yi ¼ r2
f

XN�p

j¼1

ajcj exp � 1

2l2
Xny
k¼1

ðy2i�k � 2v jkyi�kÞ þ
Xnx
m¼0

ðx2i�m � 2ujmxi�mÞ
" #( )

ð38Þ
where
cj ¼ exp � 1

2l2
Xny
k¼1

v2
jk þ

Xnx
m¼0

u2
jm

" #( )
ð39Þ
Now, the basis of the harmonic probing method is to examine the response of the system to certain very simple inputs. In
order to identify H1ðxÞ, for example, the system is ‘probed’ with the single harmonic,
xpi ¼ eiXt ð40Þ

Substituting this expression into the Volterra series (22), the corresponding response is [12],
ypi ¼ H1ðXÞeiXt þ H2ðX;XÞe2iXt þ H3ðX;X;XÞe3iXt þ . . . ð41Þ

Now, consider the consequences of substituting the expressions (40) and (41) into the GP function (38) and expanding it

as a polynomial. None of the higher-order terms in (41) can combine in any way to generate a component at the fundamental
frequency of excitation X. As a result, if the coefficient of eiXt is extracted from the resulting expression, the only HFRF which
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can appear is H1ðXÞ; thus the expression can be rearranged to give an analytical expression for H1. In fact, one need only
consider the linear terms in the expansion in order to extract H1, so one essentially considers the ARX model,
yi ¼ r2
f

XN�p

j¼1

ajcj
l2

Xny
k¼1

v jkyi�k þ
Xnx
m¼0

ujmxi�m

( )
ð42Þ
Changing the order of summation here results in the standard ARX form,
yi ¼
Xny
j¼1

ajyi�j þ
Xnx
j¼0

bjxi�j ð43Þ
where
aj ¼
r2

f

l2
XN�p

i¼1

aiciv ij ð44Þ

bj ¼
r2

f

l2
XN�p

i¼1

aiciuij ð45Þ
Harmonic probing of this expression is straightforward; one substitutes the probing expressions (40) and (41) into (43)
and collects together all the coefficients of eiXt . In doing this, account must be taken of the effect of time-delays on the har-
monic signals, this is straightforward to compute as,
xi�k ¼ Dkxi ¼ DkeiXt ¼ e�kiXDteiXt ð46Þ

yi�k ¼ Dkyi ¼ DkH1ðXÞeiXt ¼ e�kiXDtH1ðXÞeiXt ð47Þ

where D is the backward shift operator. The result of the calculation is,
H1ðXÞ ¼
Pnx

j¼0bje�ijDtX

1�Pny
j¼1aje�ijDtX

ð48Þ
with the aj and bj as defined in Eqs. (44) and (45).
The extraction of H2 is a little more complicated, this requires probing with two independent harmonics, so,
xpi ¼ eiX1t þ eiX2t ð49Þ

The standard computation using based on (22) shows that the corresponding response is [12],
ypi ¼ H1ðX1ÞeiX1t þ H1ðX2ÞeiX2t þ 2H2ðX1;X2ÞeiðX1þX2Þt þ . . . ð50Þ

The argument proceeds as for H1; if these expressions are substituted into the GP function (38), the only HFRFs to appear

in the coefficient of the sum harmonic eiðX1þX2Þt , are H1 and H2, where H1 is already known from Eq. (48). As before, the coef-
ficient can be rearranged to give an expression for H2 in terms of the GP parameters and H1. The only terms in the expansion
of (38) which are relevant for the calculation are those at first and second-order. The calculation is straightforward but
tedious and yields,
H2ðX1;X2Þ ¼ Aþ Bþ C
D

ð51Þ
where
A ¼
Xny
k¼1

Xny
l¼1

aklH1ðX1ÞH1ðX2Þ e�iX1kDt � e�iX2 lDt þ e�iX2kDt � e�iX1 lDt
	 
 ð52Þ

B ¼
Xny
k¼1

Xnx
l¼0

bkl H1ðX1Þe�iX1kDt � e�iX2 lDt þ H1ðX2Þe�iX2kDt � e�iX1 lDt
	 
 ð53Þ

C ¼
Xnx
k¼0

Xnx
l¼0

ckl e
�iX1kDt � e�iX2 lDt þ e�iX2kDt � e�iX1 lDt

	 
 ð54Þ
and,
D ¼ 1�
Xny
k¼1

ake�iðX1þX2ÞkDt ð55Þ
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The coefficients in the above expressions are given by,
ajm ¼ r2
f

4l4
XN�p

i¼1

aiciv ijv im � djm
r2

f

2l2
XN�p

i¼1

aici ð56Þ

bjm ¼ r2
f

2l4
XN�p

i¼1

aiciv ijuim ð57Þ

cjm ¼ r2
f

4l4
XN�p

i¼1

aiciuijuim � djm
r2

f

2l2
XN�p

i¼1

aici ð58Þ
where djm is the standard Kronecker delta.
Derivation of H3 is considerably more lengthy and requires probing with three harmonics, the expression is not given here

for reasons of space. The following results section of this paper will present examples of these calculations for H1 and H2.

6. HFRF results for the Duffing oscillator case study system

In this section, the HFRFs for the asymmetric Duffing oscillator system of Eq. (20) are estimated from a GP-NARX model
fitted to the simulated data. In fact, a subtlety suggests a reanalysis of the data. Usually, if input and output data are known to
be corrupted by noise, best practice demands that a NARMAXmodel with nonlinear noise model is fitted to the data in order
to avoid the possibility of bias in the parameter estimates [12]. However, when the HFRFs are to be computed, the noise
model is discarded, leaving a NARX model for harmonic probing. In the case of the GP model, the noise variance r2

n is essen-
tially built into the parameter estimates as it effectively acts as a regularisation parameter in inverting the KðX;XÞ matrix to
form the parameters a. Furthermore, the objective here is to compare the HFRF estimates with exact forms derived from
Duffings equation. As the effect of noise on the HFRFs will be considered a little later, a data set was analysed here where
only 0.001% noise was added to the Duffing response data.

As before, the GP hyperparameters were estimated by maximising the log marginal evidence, in this case the results
were: r2

f ¼ 129:2; l ¼ 8:027 and r2
n ¼ 5:54� 10�11. The model gave an OSA error of 9:4� 10�7 and an MPO error of 0.001.

The comparisons between predicted and measured response are not given as the curves are not distinguishable given the
accuracy of the predictions. However, it is meaningful to give comparisons between the exact HFRFs, given by Eqs. (32)
and (33), and those estimated from the GP. Fig. 5 shows a comparison between the exact and estimated H1ðxÞ; it is clear
that the estimate is very accurate indeed.
Fig. 5. Gaussian Process estimate of H1ðxÞ compared to exact result.



Fig. 6. Gaussian Process estimate of H2ðx1;x2Þ magnitude compared to exact result.

Fig. 7. Gaussian Process estimate of H2ðx1;x2Þ phase compared to exact result.
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Figs. 6 and 7 show comparisons between the exact and estimated H2 functions in terms of magnitude and phase respec-
tively. Because a direct visual comparison is subjective when the surfaces are displayed, the exact and estimated diagonals
H2ðx;xÞ are shown in Fig. 8, the accuracy of the estimates is clearly excellent.

The results presented here are much better than those presented in [15]; however, this is not perhaps a fair comparison as
the neural network hyperparamaters in the earlier reference were not optimised using a fully principled approach according
to current practice in machine learning.



Fig. 8. Gaussian Process estimate of H2ðx;xÞ magnitude and phase compared to exact result.
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7. Uncertainty bounds on HFRFs

7.1. Proposed algorithm

In the GP-NARX framework presented so far, the potential of the Gaussian process has not been fully exploited, because
the GP provides a stochastic fit to a set of training data, but so far this stochasticity has only been propagated as far as the
time domain. Ideally one would like to propagate the uncertainty all the way to the end product of the exercise – the HFRFs.

To achieve this end, a Monte Carlo (MC) framework is adopted here. It is assumed that the best estimate of uncertainty in
the time domain is represented by the Monte Carlo predictions in Fig. 3. Importantly, each of the lines in this figure repre-
sents a draw from a single underlying Gaussian process, which has a single set of aj and bj coefficients. In order to propagate
the uncertainty to the frequency domain, the approach taken here is to treat each Monte Carlo draw as a new set of training
data, and fit a new GP-NARX model to each draw. Each new GP-NARX model comes with its own aj and bj, each of which can
be used to generate a draw of the HFRFs. The resulting distributions over HFRFs can be used to build mean HFRFs and con-
fidence intervals.

Let y�r;i; i ¼ 1; . . . ;N; r ¼ 1; . . . ;R represent the GP prediction at xi, corresponding to the rth Monte Carlo draw. For each of
the R Monte Carlo draws, a new GP-NARX model is fitted, such that,
y��i;r ¼ Fðy�r;i�1; . . . ; y
�
r;i�ny ; xi; xi�1; . . . ; xi�nx Þ ð59Þ
where y��i;r represents the GP-NARX prediction corresponding to the rth MC draw at xi. Notice that the GP is fitted using the
OSA approach, because the interest is only in obtaining the corresponding aj and bj parameters. To simplify matters, it is also
assumed that the hyperparameters of each GP are all equal to the hyperparameters estimated in the original GP.

From here, the procedure is straightforward. For the rth GP fit, the corresponding aj;r and bj;r values can be obtained using
the expressions in (44) and (45), via the parameters of the GP. These can then be translated into a draw from the HFRF,
resulting in a total of R samples from the distribution of the HFRF. This easily yields statistics of the distribution, such as
pointwise means, modes and confidence intervals. In this paper, moderate values of R ¼ 50 and in some cases R ¼ 100
are chosen, since the objective is mainly to illustrate the methodology. However the computational cost of generating draws
of the HFRFs is relatively low, so the sample size can easily be increased to higher numbers. To ensure accuracy, one could
even sequentially increase the sample size and monitor the convergence of the statistics of interest.
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7.2. Illustration on the Duffing oscillator case study

In order to illustrate the use of the GP-NARX formulation, the data simulated from the asymmetric Duffing oscillator sys-
tem with added noise of 1% on the response will be used. The only difference in the GP-NARX analysis will be that 50 MC
realisations/draws were generated.

Fig. 9 shows the 50 realisations of the Monte Carlo draws from the GP-NARX model. Since these are OSA predictions for
each realisation with a high density of training data, the GP fits almost perfectly to each data series. Collectively, there is a
moderate degree of uncertainty in fitting the GP-NARX model to the underlying training data, as evidenced by the spread of
fits. As noted earlier, the dominant contribution to uncertainty in the predictions is not the direct component from the
parameter uncertainty, but the indirect component due to state estimation from the uncertain parameters.

In order to propagate the uncertainty in Fig. 3 into the frequency domain, a new GP-NARXmodel is fitted to each of the 50
Monte Carlo draws, yielding draws of the HFRF by harmonic probing. At each frequency, the mean and standard deviation
can be estimated over the 50 draws. The result is in Fig. 10 which plots the mean and 99% confidence intervals. It is evident
Fig. 9. MC realisations of predictions for GP-NARX model of Duffing oscillator data.

Fig. 10. H1 plotted with mean values over R ¼ 50 draws from the GP, and 99% confidence intervals.
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that the uncertainty is actually quite narrow in the magnitude plot: although the time domain fits show some scatter, the
underlying frequencies contained within each signal are quite similar. In the phase plot, the uncertainty is also quite small.

Fig. 11a shows the mean H2 HFRF over the 50 draws, with the uncertainty (variance) at each point represented by the
colour map. The response is flat at normalised frequencies above about 0.2, and the uncertainty is correspondingly very
low. At the lowest frequencies the magnitude increases sharply and the uncertainty is also considerably higher. This is essen-
tially a reflection of what is already visible in Fig. 10, with the additional information that the interaction between the two
frequencies is somewhat negligible. The corresponding phase plot in Fig. 11b shows a similar picture: low uncertainty over
the large range of frequencies explored, but higher uncertainty in the high-phase regions at the lowest frequencies.

In order to see the important structure in the HFRFs, it is often sufficient to plot only the leading diagonal i.e. H2ðx;xÞ:
see Fig. 12. This format also allows simple comparisons between the functions. This gives extra information over the H1 plots
alone, because the interaction between x1 and x2 is clearly visible in the first peak of the plot. The confidence intervals,
Fig. 11. H2 magnitude and phase plotted with mean values over R ¼ 50 draws from the GP; colour map indicating standard deviation.



Fig. 12. H2 magnitude at x1 ¼ x2: mean values over R ¼ 50 draws from the GP and 99% confidence intervals.

Fig. 13. Schematic of Christchurch Bay Tower.
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while wide, reveal that this first peak is not merely due to a spurious fit of the NARXmodel, because it is present in some way
over all Monte Carlo iterations.

Having validated the new theory for the HFRFs and associated uncertainty bounds on simulated data, the ideas will now
be applied in a more challenging context i.e. on data associated with wave forces on offshore structures, acquired in a ran-
dom sea.
8. Wave loading on offshore structures

Since its introduction in 1950 [17], the Morison equation has provided the main means of predicting wave forces on slen-
der cylinders incorporated in offshore structures. In the usual notation,
Fig. 14. X and Y-direction velocities for sample of CBT data chosen for training.

Fig. 15. CBT velocity and force data: training set.



Table 1
Parameter table for Morison model of CBT data from [18].

Model term Parameter St.Dev.

ui 0.88080e+03 0.20344e+02
ui�1 �0.84593e+03 0.20008e+02
u3
i

0.33983e+02 0.21913e+01

Fig. 16. Results reproduced from [18]: (a) MPO predictions for discrete Morison fit to CBT training data; (b) corresponding correlation test results.
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FðtÞ ¼ 1
2
qDCdujuj þ 1

4
pqD2Cm _u ð60Þ
where FðtÞ is the force per unit axial length, uðtÞ is the instantaneous flow velocity, q is water density and D is the diameter of
the cylindrical member of interest. The equation is motivated by basic fluid physics and encodes simple processes associated



Table 2
Parameter table for NARMAX model of Christchurch Bay data.

Model term Parameter

Fi�1 0.198e+01
Fi�2 �0.126e+01
Fi�3 0.790e�01
Fi�4 0.395e+00
Fi�5 �0.328e+00
Fi�6 0.111e+00
ui 0.119e+03
ui�1 �0.300e+03
ui�2 0.323e+03
ui�3 �0.155e+03
ui�4 �0.946e+01
ui�5 0.273e+02

F2i�3
�0.193e�03

Fi�2Fi�5 0.137e�03

F3i�1
�0.232e�05

F2i�1Fi�4 �0.193e�05

Fi�1u2
i�4

�0.221e+00

Fi�4u2
i

0.188e+00

Fi�3uiui�4 �0.457e+00
Fi�2u2

i�3
0.466e+00

Fi�1Fi�2ui �0.731e�03

F2i�1ui�4 0.482e�03

ui�3u2
i�4

0.437e+02

uiu2
i�4

0.158e+03

ui�1u2
i�4

�0.196e+03

F3i�2
0.101e�04

Fi�1F
2
i�2

�0.222e�04

F2i�1Fi�3 0.483e�05

F2i�1Fi�2 0.120e�04
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with fluid inertia and drag. The dimensionless drag and inertia coefficients Cd and Cm depend on the characteristics of the
flow. In general the main dependence is taken to be on Re, the Reynolds number, and KC, the Keulegan-Carpenter number,
although these parameters do not have generally-accepted definitions in random or directional waves. The coefficients Cd

and Cm are usually obtained by applying least-squares procedures to measured force, velocity and acceleration data.
It has long been considered obvious that Morison’s equation only really represents the main trends in measured data;

various characteristics of flows are not well represented at all. In particular, Morison’s equation breaks down quite badly
if substantial vortex-shedding is present [35]. A rather serious consequence of the weaknesses of Morison’s equation is that
peak forces can be under-predicted. Furthermore, because the equation does not capture higher harmonic behaviour in peri-
odic or near-periodic flows very well, it is not very helpful in the determination of fatigue lives of structural elements. There
have been attempts to capture the higher-harmonic behaviour in extensions of the Morison equation e.g. in [36]; however, it
is probably safe to say that there is no universally-accepted simple extension.

While the offshore industry has pursued other means of predicting wave forces e.g. from complex CFD models, and this
has helped, it would still be a boon if a ‘simple’ predictive model could be found which improved on Morison. Some time ago,
one of the current authors investigated the idea that system identification techniques could produce data-based models able
to improve on Morison. One of the results of this programme was the paper [18], in which NARMAX and NARX models were
considered as a potentially promising structure. While the paper made a number of interesting discoveries, it could be
argued that the level of rigour of the regression technique falls short of modern machine learning theory and practice [7].

The objective of this part of the current paper is to revisit the wave loading problem, bringing to it the muchmore modern
machine learning technology associated with the GP-NARX model, and a more rigorous approach to learning from data. The
GP-NARX model will show some clear advantages over the polynomial forms used in [18]. Before moving on to the analysis
of the data, the next two sections will summarise the context of the original problem and briefly revisit the original results so
they can be used as a meaningful basis for comparison with the new results from GP-NARX.
8.1. The Christchurch Bay Tower

The data considered in this paper were acquired during a comprehensive campaign of experimental study on a substan-
tial structure in a real directional sea environment off the south coast of the UK. A schematic of the structure – the Christch-
urch Bay Tower (CBT) – is shown in Fig. 13. Only a brief description of the structure will be given here; it is described in
considerably more detail in [37].



Fig. 17. Results reproduced from [18]: (a) MPO predictions for polynomial NARMAX fit to CBT training data; (b) corresponding correlation test results.
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The tower was instrumented with pressure transducers and velocity meters. The data considered here were measured on
the small diameter wave staff (Morison’s equation is only really appropriate for slender members) illustrated to the left of
Fig. 13. Substantial wave heights were observed in the tests (up to 7 m) and the sea was directional with a prominent cur-
rent. The velocities were measured with calibrated perforated ball meters attached at a distance of 1.228 m from the cylinder
axis. This will not give the exact velocity at the centre of the force sleeve unless waves are unidirectional with crests parallel
to the line joining the velocity meter to the cylinder. This is called here the Y-direction and the normal to this, the X-
direction. The waves are however always varying in direction so data was chosen here from an interval when the oscillatory
velocity in the X-direction was maximal relative to that in the Y direction. A sample of 2000 points of velocity fitting this
criterion is shown in Fig. 14. It can be seen that the current is mainly in the Y-direction. In this case the velocity ball is
upstream of the cylinder and interference by the wake on the ball will be as small as possible with this arrangement.



Fig. 18. Morison equation predictions compared to measured CBT data: training set.
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The velocity (input) and force (output) samples for the training data (subsampled by taking alternative points) are shown
in Fig. 15. One of the issues with the paper [18] in terms of accepted machine learning practice now, was that conclusions
were drawn on the basis of fits to only training data. In modern terms, this is a mistake; it is now regarded as essential that
the generalisation capacity of the model be checked by considering predictions on an independent testing set. In fact, for any
model containing hyperparameters [7], one requires three independent data sets: a training set (for parameter estimation), a
validation set (for optimising any hyperparameters) and a testing set (as a final judgement on generalisation). In order to
select the necessary data for the GP-NARX training data without introducing too much directionality, a 1000 points of data
immediately before the training data were chosen as a testing set, while 1000 points immediately after were selected as a
validation set, if required. Both sets were again obtained by subsampling 2000-point sets.

8.2. Previous results for the CBT data

An objective of this part of the paper is to compare the efficacy of the GP-NARX model to the that of the polynomial NAR-
MAX models fitted in [18]. In that reference, the discrete form of Morison’s equation was fitted to the data to serve as a basis
for comparison. The estimated coefficients are presented in Table 1 together with their estimated standard deviations, The
NMSE for the model was 21.43 which indicated fairly poor agreement with reality. The MPO predictions for the model are
shown in Fig. 16, together with the correlation tests. (Up to now, the correlation tests have not been used because the models
of the Duffing oscillator system analysed previously were so accurate, that their validity was adequately expressed by the
low OSA and MPO prediction errors; on the CBT, the correlation tests will prove crucial.) The natural conclusion was that
the model was inadequate. In particular, the correlation tests showmany excursions outside the confidence interval; the lin-
ear correlation tests show that the residual auto-correlation is far from a delta function. This clearly shows that there are
relevant physical processes uncaptured by the Morison model, which are escaping into the residual sequence.

The data were then analysed using a polynomial NARMAX model based on an orthogonal least-squares algorithm incor-
porating a structure detection method to determine which terms should be included in the model [38]. A linear noise model
was included. The resulting model is given in Table 2.5

A very complex model was obtained which includes many terms with no clear physical interpretation. The only point of
real physical interest is that the coefficients of the terms ui�1 and ui�2 are roughly equal in magnitude and opposite in sign,
and this could be interpreted as the model attempting to form a term linear in the acceleration. It was recognised at the time
that this model was probably over-complex and could have been improved by careful optimisation. However, it was consid-
ered sufficient at the time to illustrate the main points of the argument for the superiority of the NARMAXmodel. The expla-
nation supporting the conclusion that the NARMAX model was superior to Morison was the that inadequacy of Morison’s
equation was due to gross vortex shedding effects which could even be observed in simplified experimental conditions
[35]. It was assumed that the nonparametric NARMAXmodel was capturing some of the missing physics. It is still reasonable
to offer this explanation. The NARMAXmodel predicted output and correlation tests are shown in Fig. 17. Although the valid-
ity tests showed a great deal of improvement, the model predicted output was actually a little worse. This is still understand-
5 The coefficients of the noise model terms are not included in the table. The noise terms are only included in the model as a means of reducing parameter
estimation bias, they are not used in making predictions or in computing the HFRFs.



Fig. 19. Correlation tests for Morison model on CBT training data.

K. Worden et al. /Mechanical Systems and Signal Processing 104 (2018) 188–223 209
able; one of the effects of correlated noise (indicated by the function /�� in Fig. 16) is to bias model coefficients so that the
model fits the data rather than the underlying system. In this case the Morison model predicted output is probably account-
ing for some of the system noise; this is clearly incorrect. When the linear noise model was added in the NARMAX model to
reduce the noise to a white sequence, the unbiased model no longer predicted the noise component and the model predicted
output subsequently appeared to represent the data less well. The fact that the final correlation function in Fig. 17(b) still
indicated problems with the model can possibly be attributed to the time-dependent phase relationship between input
and output resulting from the directional variations of the sea state; the data is actually nonstationary. Having summarised
the previous work, the paper now moves on to the analysis based on GP-NARX.
8.3. Results from GP-NARX

In this section, results are presented for wave-loading predictions based on the nonparametric GP-NARX form. Note that
there will be no attempt to fit a structured noise model in this analysis, so the algorithm truly is NARX, rather than NARMAX.
First, it is worth looking back on the Morison analysis from [18]. The analysis there, featured a discrete form of the equation
with an additional parameter, rather than the traditional continuous-time form of Morison as presented in Eq. (60). As the
acceleration data are actually available from the CBT programme, it is of interest to see how the traditional Morison’s equa-
tion performs. Morison’s equation was fitted to the CBT training data using a basic least-squares parameter estimation,
implemented via a pseudo-inverse solution of the normal equations. When this was carried out, the predictions on the train-



Fig. 20. Morison equation predictions compared to measured CBT data: testing set.

Fig. 21. GP-NARX OSA predictions compared to measured CBT data: training set.
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ing data (there is of course no distinction between OSA and MPO predictions for the continuous-time model) a normalised
MSE of 20.46 was obtained; this actually improves a little on the discrete-time version discussed in the last section. This is
probably due to the aforementioned error on the velocity data, which when differenced, would lead to an erroneous accel-
eration estimate. The predictions are shown in Fig. 18.

When one considers the correlation tests for the model (Fig. 19), one sees that they are no better than those obtained for
the discrete-time equation. In particular, the autocorrelation of residuals is again, far from a delta-function. Following cur-
rent best practice in machine learning, the model was then used to predict on the independent testing set. Somewhat sur-
prisingly, a very similar NMSE is obtained i.e. 19.52; the results are as shown in Fig. 20.

The analysis now moves to the GP-NARX model. One of the failures of [18] in terms of rigour, was the failure to recognise
that the lag numbers nx and ny are actually hyperparameters. If [18] had actually used an independent testing set, it is possible
that this would have been recognised; however, the opportunity was missed. One correct approach to determining nx and ny

would be by cross-validation on the independent validation set; however, for the sake of brevity of the current paper, only an
nx ¼ 5;ny ¼ 6 model will be given, in order that a direct comparison can be made with the polynomial NARMAX model sum-
marised in Table 2. When a model of this type was fitted to the training data, an NMSE of 0.77 was obtained for the OSA



Fig. 22. Correlation tests for GP-NARX model on CBT training data.
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predictions and one of 18.01 for the MPO predictions. The OSA and MPO predictions are compared to the measured data in
Figs. 21 and 23 respectively. Furthermore, the correlation tests for the model show a very marked improvement over Mor-
ison (Fig. 22). The correlation tests for the GP-NARX are at least as good as those for polynomial NARMAX in [18], despite the
fact that the GP-NARX form does not incorporate a noise model. One is perhaps forced to speculate that the noise model
obtained in [18] did not, in fact, accomplish very much.

Another point to note is that the GP-NARX predictions are naturally accompanied by confidence intervals, and that over
most of the data, even when the detailed predictions are in error, the confidence intervals include the measured data. This is
a major advantage of the GP-NARX form. While it would be possible to obtain confidence intervals for the polynomial NARX
models, it would require Monte Carlo analysis and would potentially be computationally labourious (see e.g. [39]).

As discussed earlier, the confidence intervals do not quite accommodate the observed prediction errors. This because not
all of the uncertainty has been accounted for. In the predictions so far, the predicted outputs have been fed back into the
model in order to form the MPO. This means that the only uncertainty accounted for in the predictions is the parameter
uncertainty. In order to show the full predictive uncertainty, one should carry out a Monte Carlo analysis as before, sampling
from the predictive distributions at each time step. Fig. 24 shows 10 MC realisations of the predictions superimposed on the
measured data.

More uncertainty is associated with the predictions now. From the MC realisations, one computes the mean predictions
and determines the �3r confidence bounds, and the result of the analysis for the case here is shown in Fig. 25. The confi-
dence intervals are now a more appropriate assessment of the predictive capability of the model. One can see here a major



Fig. 23. GP-NARX MPO predictions compared to measured CBT data: training set.

Fig. 24. 10 MC realisations (green) of the GP-NARX MPO predictions (incorporating full predictive uncertainty) compared to measured CBT data (black):
training set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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advantage of the GP-NARX formulation; even though the model does not accurately capture all of the behaviour, it is clearly
realistic about the amount of uncertainty associated with its predictions.

So far, things seem to be going rather well. The GP-NARXmodel appears to match or improve on the polynomial NARMAX
model in raw terms, but also has the marked advantages of: (a) not requiring any structure detection – the form is nonpara-
matric, and (b) providing confidence intervals that appear to represent the true predictive uncertainty of the model. Unfor-
tunately, it now becomes necessary to confront one of the limitations of the analysis in [18], and things will temporarily
unravel a little.

In keeping with modern machine learning practice (and, if truth be told, the more careful practices in system identifica-
tion at the time of [18]), the model obtained above must be evaluated on an independent testing set. As mentioned in Sec-
tion 8.1, such a testing set has been set aside. When the GP-NARX model is used to make predictions on the testing set, the
OSA and MPO NMSEs rise to 1.03 and 27.04 respectively. This represents a marked degradation on the MPO error compared
to the training set. The predictions are shown in Figs. 26 and 28. This is a disappointment and highlights a breakdown in best
practice in [18]. Furthermore, the correlation tests also degrade somewhat on the testing set (Fig. 27). However, a closer look
provides consolation. First of all, although the correlation tests on the testing set do degrade, they are still a considerable



Fig. 25. GP-NARX MPO predictions with confidence bounds incorporating full predictive uncertainty, compared to measured CBT data: training set.

Fig. 26. GP-NARX OSA predictions compared to measured CBT data: testing set.
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improvement on those from the Morison equation; in fact the autocorrelation of the residuals is much better. Secondly, if
one considers the confidence intervals; when the predictions degrade on the testing set, the confidence intervals appear
to expand somewhat to express reduced confidence. The latter feature is a real advantage of the GP-NARX formulation;
the effect can be seen in Figs. 29 and 30.
8.4. HFRFs for the CBT data

The analysis can nowmove on to the estimation of the HFRFs and their confidence bounds for the CBT data, using the new
theory. First of all, results for H1 and H2 without uncertainty analysis will be presented. Fig. 31 shows the estimated H1ðxÞ
function. The frequencies in the figure (and in subsequent figures) are normalised such that the Nyquist frequency is p rad/s.
The results are very similar to those obtained in [18].

Figs. 32 and 33 show, in contour map form, the magnitude and phase respectively, of the H2ðx1;x2Þ HFRF. The frequency
ranges have been restricted to one half of the Nyquist frequency because the of the nonlinear wrap-around effect present in
HFRFs of order two and higher [12].

Finally, Fig. 34 shows the diagonal H2ðx;xÞ estimated from the data.



Fig. 27. Correlation tests for GP-NARX model on CBT testing data.
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So far, there are no particular surprises; the results are broadly similar to what was observed in [18]. However, the new
approach to uncertainty propagation can now be applied in order to investigate confidence intervals on the CBT HFRFs. The
algorithm was applied exactly as it was in the case of the Duffing oscillator case study earlier; the only real difference being
that 100 draws were taken for the MC samples, the reason for this will be explained a little later. Fig. 35 shows the 100 draws
for the H1ðxÞ function, and Fig. 36 shows the corresponding mean H1 function with its associated �3r confidence intervals.

It is important to mention something which occurred in generating the 100 MC realisations for the CBT GP-NARX models.
In a number of the realisations, the response suddenly jumped to a very high amplitude and oscillated with a very high fre-
quency. Fig. 37 shows one such realisation. At first this was a concern, but it was rationalised as follows. The GP-NARXmodel
is a highly-nonlinear dynamical system, and as such, it is likely to have multiple equilibria. Because of this, it is likely that
someMC realisations may generate sequences of responses that allow an escape into the domain of attraction of one of these
equilibria. This would only be a concern if one of the escapes manifested in predictions on measured data, rather than in the
MC realisations. in fact, this did not occur, but to make a more careful check, the fitted model was used to make predictions
on the entire CBT run 53 data, which amounted to 12416 data points. As anticipated, no escapes occurred on the MPO pre-
dictions; the overall NMSEs were 0.74 for the OSA predictions, and 23.2 for the MPO. These are a little higher than on the
training data, but no worse than those obtained on the 1000-point testing set discussed earlier.

Fig. 38 shows a period of the predictions where one of the realisations generates an escape; in general, these appear to
occur when there is some kind of peak in the training data, combined with a few high random numbers in succession. This
seems to be enough that the jjx� x0jj term in the covariance function is very large, i.e. the distances between the test point
and the training points are large, which makes the covariance go close to zero. It seems that once the prediction has passed



Fig. 28. GP-NARX MPO predictions compared to measured CBT data: testing set.

Fig. 29. 10 MC realisations (green) of the GP-NARX MPO predictions (incorporating full predictive uncertainty) compared to measured CBT data (black):
testing set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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some threshold, it basically forgets about the lagged y information in the time series. In order to investigate a little further,
models were fitted with higher numbers of y lags, based on the hypothesis that this would make the measured output beha-
viour harder to forget. This hypothesis was supported by the small number of possibilities considered: if the number of y lags
was increased to eight, four draws from 50 generated an escape; when the number of lags was increased to ten, only 3
escapes in 50 occurred. This is by no means conclusive, but in many ways it does not matter too much in practice. Having
established that escapes can occur in the MC process which are associated with a non-physical state of the GP-NARX, and
further having established that the escapes to not occur on measured data, a simple solution to the problem appears to
be discarding any draws containing an escape as the remaining draws will then be representative of the (physical) equilib-
rium of interest. This was the approach taken in generating the confidence bounds for the CBT data here.

The second point here, is that it is important to take a little care in how the confidence intervals are generated for the
HFRF plots. Consider the magnitude plot in particular. It is incorrect to generate confidence intervals based on Gaussian
statistics on the magnitude draws, for the simple reason that the FRF magnitude is positive semi-definite and thus cannot
have a Gaussian density for a frequency line. One must estimate the confidence intervals on the real and imaginary parts
of the HRFs separately, and then convert to magnitude and phase. Considering this fact leads one to realise that one can quite



Fig. 30. GP-NARX MPO predictions with confidence bounds incorporating full predictive uncertainty, compared to measured CBT data: testing set.

Fig. 31. H1 for the CBT training data, estimated from the GP-NARX model.
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happily use other statistics in order to estimate confidence bounds e.g. more robust statistics such as percentiles. The advan-
tage of percentiles is that they do not make the assumption of any particular probability distribution. Fig. 39 shows confi-
dence bounds from taking the first and 99th percentiles on each frequency line. Incidentally, this was the reason for
increasing the number of MC samples to 100 for this example, and clearly higher percentiles and increased accuracy could
be obtained by increasing the sample size still further. In fact the number of draws can easily be increased e.g. to 1000 and
above because the computational cost of doing so is quite low.

Moving on to H2, Fig. 40 shows the 100 MC draws from the diagonal H2ðx;xÞ, and Fig. 41 shows the mean of the distri-
bution and the �3r confidence intervals. One immediately observes that there is greater uncertainty associated with this
quantity than with the H1 FRF in Fig. 36; this is expected, and is because the H2 function is composed of multiples of the
H1 function at different frequencies. In the case of the Duffing oscillator, this is clearly shown in Eq. (33); however, this is
a quite general property of HFRFs as discussed in [12]. The increased uncertainty in estimated HFRFs as their order increases
is also found in [39], which takes a different approach to MC analysis used to estimate confidence bounds on HFRFs.

Fig. 41 also illustrates a very useful by-product of this analysis. Note that between the normalised frequencies of around
0.1 and 0.25, the lower bounds of the confidence intervals are above zero. This can be interpreted as saying that there is
99.7% certainty that there is a non-zero H2ðx;xÞ; this in turn, means that there is 99.7% certainty of an even nonlinear effect.



Fig. 32. H2 magnitude for the CBT training data, estimated from the GP-NARX model.

Fig. 33. H2 phase for the CBT training data, estimated from the GP-NARX model.
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The figure serves as a detector, not only of nonlinearity, but of even nonlinearity. Furthermore, the figure establishes which
frequency range the nonlinearity is clearly detected over. (Note that, if the confidence bounds extended down to zero across
the whole range, this would not establish linearity, but could neither be interpreted as detection of nonlinearity at the given
confidence level.) Using the diagonal H3ðx;x;xÞ in the analysis would similarly establish a detection test for odd nonlin-
earity. In terms of the information it delivers, the proposed test for nonlinearity bears some resemblance to that of Schou-
kens and co-workers [40–42], which is based on FRF distortions. However, there would be pros and cons of the two
approaches. A disadvantage of the new test is that it does not have anything like the discriminatory power of the Schoukens
test; advantages could be that the new test does not depend on specifically designed excitations (multisines) and does not
depend on averaging, so can be used on small time data sets.

It is interesting physically, that the analysis here detects a quadratic nonlinearity. Quite apart from the fact that Morison’s
equation has an odd nonlinearity in the velocity, one might expect that quite generally the wave force on a member should
be symmetrical in terms of wave direction. However, this is to forget that a current is present in the CBT case, and even
though it is predominantly in the Y-direction, it is clearly sufficient to introduce an even component in the drag nonlinearity.



Fig. 34. H2 magnitude diagonal for the CBT training data, estimated from the GP-NARX model.

Fig. 35. 100 MC draws from the H1 distribution obtained from the GP-NARX analysis of the CBT data.
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As discussed earlier, different statistics can be used to establish the confidence bounds; Fig. 42 shows the mean diagonal
H2 together with confidence limits corresponding to the first and 99th percentiles. There are two interesting features to this
figure; the first is that the more robust statistics used, also allow a clearer accommodation of skewness in the confidence
intervals for each frequency line. The second observation is that, using these statistics, the even nonlinear effect is detected
at the 98% confidence level, across the entire frequency range.
8.5. Discussion of CBT results

The results presented here show good agreement with the previous analysis in [18], where agreement could be expected.
Apart from that, the new approach here, based on the GP-NARX model has a number of clear advantages; foremost among
these are the avoidance of the structure detection test and the principled Bayesian framework that allows the computation of
confidence intervals on predictions. However, it should be mentioned that Bayesian analysis of polynomial NARX models is



Fig. 36. Mean H1ðxÞ estimated from the GP-NARX analysis of the CBT data, together with �3r confidence intervals.

Fig. 37. MC realisation of the GP-NARX predictions showing an escape to a non-physical high-amplitude high-frequency solution.
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possible; interesting recent references are [43,44]. In the former paper, a Reversible-Jump Markov Chain Monte Carlo (RJ-
MCMC) approach is taken [45]; the approach allows structure detection via the insertion and deletion of polynomial terms
via birth/death moves in the RJ-MCMC algorithm. The approach is quite demanding computationally, but does allow the
fitting of a noise model. In contrast, the approach taken in [44] is conceptually simpler and makes use of an algorithm for
Bayesian parameter estimation in generalised linear models [46]. The simpler approach accomplishes structure detection
via an Automated Relevance Determination (ARD) on the polynomial model terms, but cannot fit a noise model.

Perhaps the most clear restriction imposed in the analysis of this paper, was to a Single-Input–Single-Output (SISO)
model. While the Christchurch Bay Tower was certainly not placed in the most directional sea imaginable, the effects of
direction are clearly visible in the data. The effects were reduced as far as possible here, by optimising the training data
so that a window was chosen which had the largest relative proportion between the X-direction variance in the velocity
and the Y-direction variance. (This choice was not taken solely to produce a SISO problem, it was also because, if the waves
are not propagating in the X-direction, the velocity meter is not at the same point in the wave front as the wave staff.) The
immediate effect of choosing the training data in this manner is to ensure that any validation or testing data will be more



Fig. 38. Zoom of Fig. 37 showing detail of escape point.

Fig. 39. Mean H1ðxÞ estimated from the GP-NARX analysis of the CBT data, together with confidence intervals from first and 99th centiles.
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directional; this is presumably one reason why there is a noticeable degradation in going from the training data to the testing
data in terms of model predicted outputs. Fortunately, it is a straightforward matter to generalise the GP-NARX structure to
provide a Multi-Input–Single-Output (MISO) structure. Furthermore, as both X- and Y-direction data are available from the
CBT experiment, for velocities, accelerations and forces, it is a simple matter to benchmark the MISO structure on the wave
loading problem. One imagines, that the most powerful model paradigm would provide a MIMO structure allowing the pre-
diction of correlated X- and Y-direction forces. While this latter option does not appear to be entirely straightforward for
Gaussian processes, other algorithms, like GP regression networks [47], could rise to the challenge. Perhaps what is indicated
here, is a backward step to the simplified environment of a wave flume (data from the De Voorst facility were analysed in
[18] along with the CBT data); however, even in that situation, vortex shedding can and will produce out-of-line forces which
would present problems to the SISO approach.

One can also think of the directionality as a type of nonstationarity of the data, so it is then natural to think that perhaps
one can exploit heteroskedastic versions of the Gaussian process [48,49] in the formulation of NARX models.

One of the issues not considered here, is that of hyperparameters. For the sake of brevity of the current paper, a single
specification of the lag numbers ny and nx was considered here in order to facilitate comparison with the results of [18].
In reality, the hyperparameters should be determined by cross-validation on an independent data set. A more satisfactory



Fig. 40. 100 MC draws from the H2ðx;xÞ diagonal distribution obtained from the GP-NARX analysis of the CBT data.

Fig. 41. Mean diagonal H2ðx;xÞ estimated from the GP-NARX analysis of the CBT data, together with �3r confidence intervals.
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solution still would be to marginalise over the lag numbers via a weighted average of models. One might also expect that
fixing hyperparameters on the basis of cross-validation on an independent data set might would provide some defence
against the fragility created by choosing the training set in such a particular manner as here.

The desirability of estimating the HFRFs does not constrain the approach to SISO models; in fact, a harmonic probing algo-
rithm for MISO models has been available for some time [50] and is currently being applied to the extraction of HFRFs for
multi-input GP-NARX models.
9. Conclusions

The main aim of this paper has been to present analytical expressions for the HFRFs of Gaussian process NARX models
(specific to the squared-exponential covariance function). The expressions have been validated on simulated data from an
SDOF nonlinear system where the theoretical results are known. The excellent agreement between the exact HFRFs and
those extracted from the GP-NARX model fitted to simulated data confirm that the expressions are correct. Perhaps more
importantly, the results show that it is possible to obtain accurate estimates of system HFRFs by using GP-NARXmodels. This
in itself is not a surprise as previous work had shown that the HFRFs could be extracted from neural network NARX models
learnt from data. However, the GP form of the NARX model has a major advantage over the previous crisp neural network
models in allowing the computation of confidence intervals for predictions, in turn leading to a means of establishing



Fig. 42. Mean diagonal H2ðx;xÞ estimated from the GP-NARX analysis of the CBT data, together with confidence intervals from first and 99th centiles.
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confidence intervals for the HFRFs, which is also introduced and validated in this paper. The nonparametric class of NARX
models in general has an advantage over multinomial NARX, in not requiring a structure detection step.

The second aim of the paper was to show how the new methods could be applied to a challenging real problem – that of
wave force prediction. GP-NARX models were fitted to wave force data from the Christchurch Bay Tower, a structure which
experiences the forces imposed by a random directional sea. The results showed an improvement over a previous analysis
conducted using polynomial NARX models and the opportunity was taken to correct some of the minor errors of judgement
in the previous analysis concerning the rigour of the machine learning practice. An interesting by-product of the analysis
here became apparent in the analysis of the CBT data; the method provides a test for detecting nonlinear systems, capable
of resolving odd and even nonlinearity.

There remain a number of outstanding issues. Among the simpler ones to deal with is the fact that the results here are
specific to the squared-exponential kernel for the GP. While this is the most commonly used kernel, it is not the most ver-
satile, and other kernels are under investigation. A more serious issue concerns input noise for the GP formulation, as the
NARX form means that the GP output noise feeds back into its input, and thus violates one of the defining properties of
the GP algorithm. In order to keep the current paper to a manageable length, this issue was not addressed here. Separate
justifications for this can be given for the two case studies. In the case of the Duffing oscillator example, the objective
was to validate the expressions for the higher-order FRFs, so simulations with low noise were carried out. In the case of
the CBT data, the low noise assumption is not justified; however, the results here show an improvement on previous analysis
where a noise model was fitted to the data. In any case, the noise in the CBT case is almost certainly correlated (partly result-
ing from phase variations in the velocity measurements) and would still present a challenge to existing methods; further
work is needed, and is ongoing.

With regards to the wave force analysis a number of outstanding issues remain. First of all, there remains the problem of
hyperparameter estimation. In the analysis of this paper the numbers of input and output lags in the GP-NARX models were
fixed in order to allow comparison with previous analysis; these should generally be established in a principled manner e.g.
by cross-validation. This analysis is currently being carried out as part of a larger programme of work on the CBT data, which
will also extend the GP-NARX models and their associated HFRFs to the Multi–Input–Multi–Output (MIMO) case.
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