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Abstract 23 

The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable 24 

research into novel machine-learning based classification models. In many cases, H/LC classes follow 25 

ƉƌĞͲĚĞĨŝŶĞĚ hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are 26 

thematically nested within more general categories. However, none of the existing machine-learning 27 

algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random 28 

Forest (RF) based application of hierarchical classification, which fits a separate local classification 29 

model in every branching point of the thematic tree, and then integrates all the different local 30 

models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in 31 

Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that 32 

differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the 33 

hierarchical model and a flat model alternative provided accurate predictions, with kappa values 34 

mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach 35 

slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the 36 

hierarchical model worked better under more complex thematic hierarchies. Most misclassifications 37 

came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification 38 

schemes, the additional constraints of the hierarchical model resulted with fewer such serious 39 

misclassifications relative to the flat model. The hierarchical model also provided valuable 40 

information on variable importance which can shed light into ͞black-box͟ ďĂƐĞĚ machine learning 41 

algorithms like RF. We suggest various ways by which hierarchical classification models can increase 42 

the accuracy and interpretability of H/LC classification maps. 43 

 44 
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Classification, machine-learning, hierarchical models, random forest, NATURA 2000, Habitat/Land-46 
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Abbreviations (footnote on first page) 54 

H/LC  Habitat/Land-Cover 55 

RF  Random Forest 56 

FRF  Flat Random Forest 57 

HRF  Hierarchical Random Forest 58 

OoB  Out of Bag 59 

H.Step   Hierarchical Stepwise Majority Rule 60 

H.Mult   Hierarchical Multiplicative Majority Rule 61 

FAO-LCCS FŽŽĚ ĂŶĚ AŐƌŝĐƵůƚƵƌĞ OƌŐĂŶŝƐĂƚŝŽŶ͛Ɛ LĂŶĚ CŽǀĞƌ CůĂƐƐŝĨŝĐĂƚŝŽŶ “ǇƐƚĞŵ 62 

EUNIS   EUropean Nature Information System habitat classification system 63 

Hie.F  Hierarchical F measure 64 

 65 

1. Introduction 66 

Human-mediated changes in the distribution of habitats and land-cover types are one of the main 67 

drivers of the global biodiversity crisis. Consequently, providing reliable Habitat/Land-Cover (H/LC) 68 

maps for various conservation related issues is of high priority. For example, H/LC maps are used as 69 

input layers for species distribution models (Carlson et al., 2014; Coops et al., 2016; Thuiller et al., 70 

2004) or as obligatory background layers for conservation of umbrella species with well-defined 71 

habitat requirements (Li and Pimm, 2016; Murphy and Noon, 1992). Furthermore, H/LC maps are 72 

fundamental for mapping ecosystem services (e.g., Koschke et al., 2012) and for natural capital 73 

assessments (Brown et al., 2016). Finally, in many cases, the habitats themselves are targeted for 74 

conservation and management. For example, as part of the EU Habitat Directive (EU, 2007), all 75 

member states of the European Union are required to periodically produce H/LC maps and use the 76 

maps for change detection and conservation status assessment. Hence further developing our ability 77 

to produce H/LC maps at fine thematic and spatial resolution over wide extents is essential for 78 

effective conservation, planning, monitoring, reporting and management of natural resources. As a 79 

consequence, there has been a recent surge of methodological and conceptual developments in the 80 

field of H/LC classification (Blaschke, 2010; Corbane et al., 2015; Lu and Weng, 2007; Lucas et al., 81 

2015; Lucas et al., 2011; Myint et al., 2011; Tso and Mather, 2009; Xie et al., 2008).  82 

In recent years the usage of machine-learning algorithms has become increasingly popular (Belgiu 83 

ĂŶĚ DƌĉŐƵԑ͕ ϮϬϭϲ) as these machine-learning algorithms are efficient at identifying complex 84 

classification rule sets, thus potentially providing accurate classification outputs with relatively little 85 
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investment of time and effort. In many cases, the H/LC classified by machine-learning algorithms rely 86 

on a ƉƌĞͲĚĞĨŝŶĞĚ ŶĂƚŝŽŶĂů or international classification schemes (e.g., CORINE), to allow a common 87 

language of communication between scientists, management agents and policy makers. Most 88 

classification schemes adopt Ă ŚŝĞƌĂƌĐŚŝĐĂů͕ ƚƌĞĞͲůŝŬĞ ƐƚƌƵĐƚƵƌĞ due to several advantages of such 89 

structures. Firstly, classes within a hierarchical classification scheme can be grouped into more 90 

abstract classes based on semantic similarity criteria, i.e., a hierarchical H/LC class set comprises 91 

several semantic granularities. Secondly, a hierarchical H/LC class set can be applied to a variety of 92 

spatial scales (each spatial scale requiring the selection of a scale-specific semantic granularity). The 93 

former characteristic is particularly useful to meet the minimum required accuracy standard when a 94 

specific subclass accuracy is below this standard (Congalton, 1991) and/or when it is difficult to 95 

differentiate between subclasses at a given spatial scale. For example, the European Nature 96 

Information System habitat classification scheme (EUNIS) has a tree-like structure with up to eight 97 

hierarchical levels, containing a total of 5282 habitat classes (at all levels). CORINE LC has three 98 

hierarchical levels, with a total of 44 LC classes. Similarly, classification schemes invented ad-hoc for 99 

more local studies may also have a hierarchical structure (e.g., Haest et al., 2017). However, most 100 

machine learning algorithms follow a flat classification approach (sensu Silla and Freitas, 2011) in 101 

which all H/LCs ĂƌĞ ĐůĂƐƐŝĨŝĞĚ ƐŝŵƵůƚĂŶĞŽƵƐůǇ ŝŶ Ă ͚ŽŶĞ-against-Ăůů͛ ĂƉƉƌŽĂĐŚ͘ IŶ ŽƚŚĞƌ ǁŽƌĚƐ͕ machine 102 

learning algorithms ignore information on the thematic hierarchy that forms the conceptual basis of 103 

most classification schemes. Interestingly, many knowledge-based classifiers follow a top-down 104 

approach, in which experts first provide rules (e.g., spectral) that separate general H/LC classes from 105 

one another, and then move down the thematic tree while providing more specific rules for more 106 

specific H/LC categories (e.g., Lucas et al., 2011; Lucas et al., 2007). 107 

There are several reasons why incorporating such hierarchical information into the analytical 108 

pathway may be beneficial. First, the rule-sets produced by most machine learning algorithms are a 109 

͚ďůĂĐŬ-ďŽǆ͛ ƚŽ ƚŚĞ users because of their size and complexity. It is therefore, very difficult to 110 

understand or visualise what variables are important in distinguishing between specific sets of 111 

habitats. A ŚŝĞƌĂƌĐŚŝĐĂů ĂƉƉƌŽĂĐŚ ŵĂǇ ƐŚĞĚ ƐŽŵĞ ůŝŐŚƚ ŝŶƚŽ ƚŚĞ ͚ďůĂĐŬ-ďŽǆ͛ ďǇ ƉƌŽviding information 112 

on variable importance in various locations along the class hierarchy. Second, habitats that are 113 

thematically close to one another are not necessarily ecologically/spectrally similar. For example, a 114 

forest and grassland may both be listeĚ ƵŶĚĞƌ ƚŚĞ ƚŚĞŵĂƚŝĐ ŐƌŽƵƉ ŽĨ ͚ŶŽŶ-ĐƌŽƉ͛ ŚĂďŝƚĂƚƐ ǁŚŝůĞ a 115 

wheat field ǁŝůů ŽĐĐƵƌ ƵŶĚĞƌ ƚŚĞ ƚŚĞŵĂƚŝĐ ŐƌŽƵƉ ŽĨ ͚ĐƌŽƉƐ͛ ŚĂďŝƚĂƚƐ͘ HŽǁĞǀĞƌ͕ ĞĐŽůŽŐŝĐĂůůǇ ĂŶĚ 116 

spectrally, the grassland may resemble the wheat field more than the forest. A flat classification 117 

approach ignores the thematic proximity altogether, while a hierarchical approach will first invest 118 

ĐŽŶƐŝĚĞƌĂďůĞ ĞĨĨŽƌƚ ŝŶ ĚŝƐƚŝŶŐƵŝƐŚŝŶŐ ͚ĐƌŽƉ͛ ĨƌŽŵ ͛ŶŽŶ-ĐƌŽƉ͕͛ ƚŚƵƐ ƉŽƚĞŶƚŝĂůůǇ ƉƌĞǀĞŶƚŝŶŐ ĐŽŶĨƵƐŝŽŶ 119 
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between spectrally similar yet thematically distant habitats. Third, if the number of habitats is large, 120 

the flat approach may not be able to deal with the complexity of the thematic data, while a 121 

hierarchical approach could break the problem into manageable portions by partitioning the 122 

feature-space of each group into lower dimensions.  123 

Finally, it has been shown that incorporating the hierarchical structure into the modelling 124 

framework can increase model accuracy (Thoonen et al., 2013). More specifically, Silla and Freitas 125 

(2011) found that various hierarchical approaches tended to increase model accuracy in a wide 126 

range of classification problems, especially when misclassifications are weighted by their distance 127 

along the classification hierarchy (Kiritchenko et al., 2005). Such hierarchical measures of accuracy 128 

acknowledge that not all misclassifications are as critical as the others, e.g., misclassifying one 129 

broadleaved-woodland habitat as an alternative closely-related woodland type is arguably a less 130 

critical mistake than misclassifying it as a grassland or saltmarsh. In addition, flat classification 131 

models only provide performance measures for the entire model or at the H/LC level (i.e., user and 132 

producer accuracies). Hierarchical classification models provide the same information with 133 

additional accuracy for each local model. That is, the hierarchical approach also provides accuracy 134 

for sets of H/LCs that share a common ancestor along the class hierarchy. This information may be 135 

crucial for decision makers that may be less interested in the overall accuracy of a map and more by 136 

its ability to provide reliable information on sets of H/LCs they care most about (e.g., how well does 137 

this model classify non-crop habitats?). 138 

We are aware of only a few published manuscripts that focused on hierarchical, machine-learning 139 

based classification methods in the remote-sensing literature. Melgani and Bruzzone (2004) found 140 

that several support-vector-machine based hierarchical models outperformed flat models when 141 

classifying 9 land-use classes in northwest Indiana. Thoonen et al. (2013) found that a tree-structure 142 

Markov random field (TS-MRF) method, which captures the hierarchical thematic structure as well as 143 

contextual information, outperformed flat classification methods for heathland areas in Belgium. 144 

O'Connell et al. (2015) accounted for spatial hierarchy (nested objects) and thematic hierarchy (2 145 

levels). They reported slightly better classification outcomes (compared to a flat approach) when the 146 

probabilities from a Random Forest (RF; Breiman, 2001) model trained at the top level of the 147 

thematic hierarchy where included as predictors of RF models trained at the lower level of the 148 

thematic hierarchy. Pena et al. (2014) compared flat and hierarchical approaches (based on 4 149 

different algorithms) for mapping cropland areas and found that the flat approach was slightly 150 

outperformed by a support-vector-machine based hierarchical model, which fitted a local classifier 151 

per parent node. They also found the hierarchical approach increased the minimum sensitivity at the 152 

crop level. Finally, Haest et al. (2017) applied an hierarchical classification along four thematic levels 153 
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when classifying heathland vegetation types for conservation status assessment. They followed a 154 

top-down approach such that the class selected for a given pixel in level 2 of the hierarchy could only 155 

be one of the children classes of the class selected in level 1 (with similar rules for levels 3 and 4). 156 

Haest et al. (2017) observed higher accuracies for the hierarchical approach compared to a flat 157 

approach. 158 

In this paper we introduce a novel application of hierarchical classification based on the RF 159 

algorithm, which accounts for the pre-defined hierarchical structure of classification schemes. The 160 

ĂƉƉůŝĐĂƚŝŽŶ ŝƐ ĂǀĂŝůĂďůĞ ĨŽƌ ƵƐĞ ŝŶ Ă ŶĞǁ ‘ ƉĂĐŬĂŐĞ͕ ĞŶƚŝƚůĞĚ ͚HŝĞ‘ĂŶFŽƌ͛. We tested the hierarchical 161 

approach in a NATURA 2000 study site from Italy, using three different classification schemes. Our 162 

main aim is to compare the performance of the hierarchical and flat approaches and to explore if the 163 

variables identified as important at various locations along the class hierarchy provide meaningful 164 

ecological knowledge of the system.  165 

2. Flat and Hierarchical Random Forest  166 

RF is a widely used and well-known classifier in remote sensing (BĞůŐŝƵ ĂŶĚ DƌĉŐƵԑ͕ ϮϬϭϲ; Bradter et 167 

al., 2011). When applied in the flat ͚ŽŶĞ ĂŐĂŝŶƐƚ Ăůů͛ ĂƉƉƌŽĂch (Flat Random Forest, hereafter, FRF) 168 

the model uses a set of training cells and relevant explanatory variables ƚŽ ͚ůĞĂƌŶ͛ ƚŚĞ ƌƵůĞƐ that 169 

distinguish one H/LC class from another (Figure 1A,B). The learning procedure is based on fitting a 170 

͚ĨŽƌĞƐƚ͛ ŽĨ classification trees (Figure 1B). Each tree differs from others in the division of the training 171 

data to an ͚ŝŶ ďĂŐ͛ ƐĞƚ ;ƵƐĞĚ ĨŽƌ ƚƌĞĞ ŐƌŽǁŝŶŐͿ ĂŶĚ an ͚OƵƚ ŽĨ BĂŐ͛ ƐĞƚ ;OŽB͕ ŶŽƚ ƵƐĞĚ ĨŽƌ ƚƌĞĞ 172 

growing) and in the usage of variables during the tree growing procedure (Figure 1A). Each tree 173 

assigns each OoB case to a single H/LC class. The results are then usually translated into a soft 174 

classification output, by estimating for each case, the proportion of OoB votes that assigned the case 175 

to any of the H/LC classes (Figure 1B). The reliance on OoB votes and the uniqueness of the 176 

constituting trees result in the method being robust to over-fitting. In addition, as prediction are 177 

only provided from OoB votes, performance can be assessed without setting aside a considerable 178 

portion of the dataset as an external validation set. 179 

The Hierarchical Random Forest (HRF) takes similar inputs as FRT along with additional 180 

information on the thematic class hierarchy (Figure 1C). Then, RF is used as the local classifier at 181 

every internal node of the class hierarchy that has at least two child nodes. The training set for each 182 

RF consists of the training cases of all descendants of the parent node. For example, in Figure 1C, 183 

training cases representing both H4 and H5 are used in classifier C1 to represent H1. The same cases 184 

are also used in local classifier C2 to represent H4 or H5, respectively. However, H4 and H5 training 185 

cases are not used in classifier C3 which aims to separate H6, H7 and H8 from one another.  186 
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After training all the local RFs, it is possible to predict the proportion of votes each case got for 187 

each class in each local classifier. Similar to FRF, it is important to ensure the usage of OoB trees 188 

when predicting the proportion of votes, otherwise we may overestimate the performance of the 189 

model and may be prone to overfitting. For example, a case from the H4 class of figure 1 is included 190 

in the training data of classifiers C1 and C2. For these two classifiers, we would only use the votes of 191 

trees in which the case was not randomly assigned to the in-bag set (tree training set, Fig. 1A). In 192 

classifier C3, which only included cases from H6, H7 and H8 in the training data, all trees can be used 193 

for predicting the H4 case probabilities. If a case is never predicted by a classification tree in which it 194 

is within the ͚in-bag͛ subset, HRF should retain the robustness of FRF to over-fitting. Similarly, as 195 

accuracy is always based on OoB votes, there is no need for an external validation set. Nonetheless, 196 

similar to FRF, it is possible to run additional cases through the HRF model for prediction and 197 

producing maps or for additional assessment of performance using an external validation set. If the 198 

hierarchical model is used to predict for new data, all trees from all local classifiers can be used. 199 

Both FRF and HRF produce for each case the proportion of OoB votes for each H/LC. To assess 200 

the performance (e.g., kappa) of the model and to produce maps, a single habitat needs to be 201 

selected according to the proportion of OoB ǀŽƚĞƐ ;ŝ͘Ğ͕͘ ƚƌĂŶƐůĂƚŝŶŐ ƚŚĞ ͚ƐŽĨƚ͛ ƉƌŽďĂďŝůŝƚŝĞƐ ƚŽ Ă ͚ĐƌŝƐƉ͛ 202 

classification). For FRF, the flat majority rule is usually applied by selecting for a focal case the H/LC 203 

that received the highest proportion of OoB votes. For HRF, there are two different majority rule 204 

options ʹ stepwise majority (H.Step) and multiplicative majority (H.Mult, Figure 1C). In stepwise 205 

majority rule, the flat majority rule is applied to each local classifier, and starting from the tree root, 206 

the selected H/LC is followed until a terminal H/LC (with no descendants lower down the hierarchy) 207 

is reached. In the case presented in Figure 1C (blue), H3 received the highest proportion of OoB 208 

votes at classifier C1 (0.5 versus 0.1 and 0.4), while H6 received the highest proportion of OoB votes 209 

in classifier C3 (0.6 versus 0.3 and 0.1). In the multiplicative majority rule, the proportion of OoB 210 

votes are multiplied along every path from the tree root until it reaches the terminal H/LC, and the 211 

flat majority rule is applied on the multiplicative proportions. In figure 1C, the multiplicative votes 212 

identify H4 (red) as the most probable H/LC. Interestingly, the multiplicative proportion of OoB votes 213 

are comparable to the proportion of OoB votes generated by FRF in a sense that both sum to 1 over 214 

all terminal nodes.  215 

3. Methods 216 

3.1 Study Site 217 

We have focused our analysis on Le-Cesine, Italy (IT1 ʹ SCI IT9150032; SPA IT9150014) ʹ a Natura 218 

2000 site and one of the oldest protected areas in Puglia. Le-Cesine covers an area of about 2148 ha. 219 
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The site is characterized by a high diversity in land-cover, habitat and vegetation types. The coastal 220 

wetland is characterized by a system of lagoons, ponds and marshes where several types of 221 

helophytic vegetation (reeds, sedges and rushes communities) are widespread. Further inland, the 222 

woody vegetation is composed by a mosaic of Pinus halepensis stands and different types of 223 

Mediterranean maquis and garrigues, while the agricultural areas are mainly composed of olive 224 

groves. The site is affected by marine erosion of the sandbank, resulting in reduction and 225 

fragmentation of the typical dune habitat types, as well as salinization of the lagoons and the related 226 

environments.  227 

3.2 Ground-Truth Data and Classification Schemes 228 

The entire extent of Le-Cesine was ground-truthed in earlier projects to two LC classifications 229 

schemes and one H classification scheme. The two LC classification schemes included CORINE 230 

(Bossard et al., 2000) and the UN FŽŽĚ ĂŶĚ AŐƌŝĐƵůƚƵƌĞ OƌŐĂŶŝƐĂƚŝŽŶ͛Ɛ LĂŶĚ CŽǀĞƌ CůĂƐƐŝĨŝĐĂƚŝŽŶ 231 

System (FAO-LCCS, Di Gregorio and Jansen, 2005), while for the H classification scheme we relied on 232 

EUNIS (Davies and Moss, 2002). The three classification schemes differ from one another in the 233 

number of internal and terminal nodes, in the number of hierarchical levels, and in the number of 234 

local classifiers required to run the HRF analysis.  235 

A pre-existing validated LC map (scale 1:5000) in CORINE Land Cover was available from a 236 

previous Interreg (Nat Info) project. The selection of an appropriate LC classification system for 237 

habitat mapping applications is a crucial issue. The FAO-LCCS (Di Gregorio and Jansen, 2005) has 238 

been considered as an appropriate and user-friendly framework for long-term monitoring of the 239 

conservation status of habitats. LCCS allows the finest discrimination of natural and semi-natural 240 

types with respect to other widely used LC taxonomies (Tomaselli et al., 2013). Thus, CORINE classes 241 

were first converted to FAO-LCCS classes according to the LCCS2 software (Di Gregorio and Jansen, 242 

2005) and the semantic heterogeneity issues were addressed through the expert knowledge of 243 

people with long experience on the monitoring of the study site. Then, FAO-LCCS classes were 244 

translated to EUNIS habitat classes by integrating the environmental attributes, i.e. lithology, soil 245 

group, soil-surface aspect and water quality which are the auxiliary data that can be used for habitat 246 

discrimination.  247 

This information was provided from a previous INTERREG (Nat Info) project. As well known 248 

(Adamo et al., 2016; Tomaselli et al., 2013) translating LC to habitats classes may include one-to-249 

many relations, so prior-knowledge from botanists was needed for selecting the environmental data 250 

useful to discriminate the different habitat classes that may correspond to a specific LC class. These 251 

environmental attributes help to resolve, in most cases, the challenge of one-to-many relationships 252 
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between LC and habitat classes.Field surveys were then carried out in 2011-2013 to validate both 253 

FAO-LCCS and habitat classes, according to the EUNIS report (Davies and Moss, 2002) obtained from 254 

each CORINE LC class and to select reference samples for training/testing the RF outputs. As a result, 255 

the number of input CORINE classes is lower than the number of FAO-LCCS classes and EUNIS classes 256 

(see Figure 2 in Tomaselli et al., 2013). A random sampling design within a 250 m cell regular grid, in 257 

turn nested within a 1 km cell standard regular grid (INSPIRE), was selected; within this grid, 50 258 

circular 50 m radius vegetation plots, randomly distributed throughout the site and covering all the 259 

habitat types (according to EUNIS), were recorded and mapped. For each of these points, 260 

information was collected on vegetation composition and structure, crop cover and habitat type 261 

(Tomaselli et al., 2016). Such information, geocoded by GPS, was integrated into a GIS geo-database 262 

using ArcGIS 9.2.  263 

The CORINE classification scheme (Figure 2) for our study system contains 31 land cover classes 264 

organized in three hierarchical levels, with 14 of the classes being terminal (i.e., not further 265 

described as any other more detailed classes). A total of 8 local RF classifiers are required to fit the 266 

HRF model according to the CORINE classification scheme. The FAO-LCCS classification scheme 267 

(Figure 3) contains 49 land cover classes (18 terminal) organized along 6 hierarchical levels and 268 

requiring 8 local RF classifiers. The EUNIS classification scheme (Figure 4) contains 60 habitats (23 of 269 

which are terminal) organized along 5 hierarchical levels and requiring 11 local RF classifiers. Thus, 270 

we can explore here the effect of the shape (number of hierarchical levels and distribution of nodes 271 

along the tree structure) of the hierarchical classification scheme on the performance of the 272 

different classification methods, in the same system using the exact same pixels and explanatory 273 

variables.  274 

3.3 Data Preparation and Explanatory Variables 275 

Detailed information on the processing procedure of the images, on the derived indices and on each 276 

of the other explanatory variables is found in supporting information S1. We based our analysis on 277 

61,453 cells, at 10x10 m resolution covering the entire extent of the study-site. We used a 10x10 m 278 

resolution, as preliminary analysis revealed it to produce similar results as finer resolutions (2x2 m 279 

and 5x5 m) with considerably lower running time, while still providing detailed enough information 280 

for management in this study system. For each cell we calculated 35 explanatory variables. The first 281 

12 variables were radiometrically calibrated reflectance values of two Very High Resolution (VHR) 282 

remotely sensed images: 1) a multispectral WorldView-2 image with 8 spectral bands at 2m spatial 283 

resolution taken on October 9th 2010; 2) a multispectral Quickbird image with 4 spectral bands at 2.4 284 

m spatial resolution taken on June 4th 2009. We applied radiometric correction in accordance with 285 
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O'Connell et al. (2013) where top-of-atmosphere reflectance followed by dark object subtraction 286 

correction was completed. The images were geometrically synced using 221 ground control using a 287 

direct linear transform model, giving a root-mean-squared-error of 0.6. Resampling was then done 288 

on both images to grids of 10 m using a cubic convolution interpolation, ensuring that both images 289 

were radiometrically and spatially aligned. 290 

Five vegetation indices were also derived from each image; Difference Vegetation Index (DVI), 291 

Normalised Difference Vegetation Index (NDVI), Principal Components Analysis (PCA), Soil Adjusted 292 

Vegetation Index (SAVI) and Atmos Resistant Vegetation Index (ARVI). For the WorldView-2 image 293 

we added two additional derived indices- the WorldView-2 Soil Index (WVSI) and WorldView-2 294 

improved Vegetation Index (WVVI) based on the additional red edge, coastal, yellow and near-Infra 295 

Red2 bands. For each of the four bands of the Quickbird image we further calculate the Tasselled 296 

Cap Index. Therefore a total of 16 spectrally derived variables were created from the two satellite 297 

datasets. Furthermore, we estimated 7 environmental variables including elevation, based on a 10 m 298 

resolution DEM model (Tarquini et al., 2007; Tarquini et al., 2012) and plant height layers obtained 299 

from a LiDAR campaign (canopy height model). The last five variables where categorical 300 

environmental variables covering the lithology (3 classes), soil group (6 levels), Soil-Surface aspect 301 

(Soil Bare, 6 levels), water quality (6 levels) and cadastral information (16 levels). Such information 302 

were collected from ůŽĐĂů ĂƵƚŚŽƌŝƚŝĞƐ͛ ĂƌĐŚŝǀĞƐ ĂŶĚ ƉƵďůŝĐ ƌĞƉŽƐŝƚŽƌŝĞƐ. 303 

 304 

3.4 Creating Datasets for Classifications 305 

Both the FRF and HRF require a training set containing cases (pixels or object) from each of the H/LC 306 

classes. To create a dataset, we first randomly selected from each H/LC 100 cases for the training 307 

set. The remaining cases were used as an external, independent validation set. If the total number of 308 

available cases for a given H/LC was lower than 100, we included all its cases in the training data. We 309 

repeated this procedure 15 times per classification scheme (45 datasets all together), with each 310 

dataset containing both a small training subset and a much larger independent validation subset.  311 

3.5 Fitting the FRF and HRF Models for a Single Dataset 312 

As part of the FP7 European project EU BON (Hoffmann et al., 2014) ǁĞ ĐƌĞĂƚĞĚ ƚŚĞ ͚HieRanFor͛ ‘ 313 

package which provides full functionality of applying the above framework (development version is 314 

available at https://r-forge.r-project.org/projects/hie-ran-forest/, while a working version is 315 

available as SI for this publication). TŚĞ ͚HieRanFor͛ ƵƐĞs the RF algorithm as implemented in the 316 

͚randomForest͛ package (Liaw and Wiener, 2002) in R (R Core Team, 2016). WŝƚŚ ƚŚĞ ͚HieRanFor͛ 317 

https://r-forge.r-project.org/projects/hie-ran-forest/
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package, users can fit an HRF, predict the proportion of OoB votes in each local classifier (for both 318 

the training data and for external validation data) and translate the proportion of OoB votes to a 319 

ĐƌŝƐƉ ĐůĂƐƐ ƵƐŝŶŐ ĞŝƚŚĞƌ ƐƚĞƉǁŝƐĞ Žƌ ŵƵůƚŝƉůŝĐĂƚŝǀĞ ŵĂũŽƌŝƚǇ ƌƵůĞ͘ TŚĞ ͚HieRanFor͛ package further 320 

includes functions to estimate the performance of the model using either flat or hierarchal indices. 321 

Finally, the package allows extraction of variable importance values for each class in each local 322 

classifier.  323 

We first used the training data to fit a FRF model and an HRF model. For the FRF model we used 324 

ĞǆĐůƵƐŝǀĞůǇ ĨƵŶĐƚŝŽŶƐ ĂǀĂŝůĂďůĞ ŝŶ ƚŚĞ ͚randomForest͛ ƉĂĐŬĂŐĞ ĨŽƌ ŵŽĚĞůůŝŶŐ͕ ĞǆƚƌĂĐƚŝŶŐ ƚŚĞ 325 

proportion of OoB votes for the training set, and predicting the proportion of votes for the validation 326 

set. For the HRF model we first ran ƚŚĞ ŵŽĚĞů ƵƐŝŶŐ ƚŚĞ ͚‘ƵŶH‘F͛ function of ͚HieRanFor͛. Then, we 327 

ƵƐĞĚ ƚŚĞ ĨƵŶĐƚŝŽŶ ͚PerformanceHRF to extract the proportion of OoB votes for each local classifier, 328 

as well as the multiplicative proportion of OoB votes, ĂŶĚ ƚŚĞ ͚PerformanceNewHRF͛ ĨƵŶĐƚŝŽŶ for 329 

predicting the proportion of votes for the validation dataset. At this stage, we had for each case of 330 

the training and validation set the proportion of OoB votes required to translate the soft 331 

classification into a crisp one.  332 

In FRF, we translated the soft classification into crisp by employing a simple majority rule, i.e., 333 

selecting for each case the H/LC that received the highest proportion of OoB votes. For HRF, we used 334 

both the stepwise majority rule and the multiplicative majority rule (see above and in Figure 1C). The 335 

crisp H/LC for each case were then used to assess the performance of the models separately for the 336 

FRF, the stepwise HRF, and the multiplicative HRF. We estimated performance separately for the 337 

training and validation set, using the overall accuracy (based on the diagonal of the error matrix), 338 

CŽŚĞŶ͛Ɛ KĂƉƉĂ (Cohen, 1968), and the Hierarchical F measure (Kiritchenko et al., 2005), for a total of 339 

18 performance values for each dataset. The unweighted kappa and accuracy were computed using 340 

the confusionMatrix function of the ͚caret͛ R package (Kuhn et al., 2016). For the Hierarchical F 341 

measure (Hie.F), we implemented within ͚HieRanFor͛ a function that calculates the Kiritchenko et al. 342 

(2005) index directly from the confusion matrix. Additional information on Hie.F can be found in 343 

supporting information 2. 344 

3.6 Variable Importance 345 

In FRF, variable importance is quantified as the mean decrease in accuracy of the entire model when 346 

the values of a focal variable are permutated, and all other values remain unchanged. In HRF, 347 

variable importance is estimated separately for each variable in each local classifier, thereby 348 

allowing more information on why certain variables are more important than others. We explored 349 
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the variable importance separately for each classification scheme by taking the mean over all 15 350 

runs.  351 

3.7 Statistical Analysis 352 

After fitting the FRF and HRF for the 45 datasets following the procedure outlined above, we 353 

explored the models performance using mixed-effect models. We used one of the model 354 

performance indices (kappa, accuracy or Hie.F measure) as the dependent variables. For fixed 355 

effects, we used the data type (2 levels- training or validation), the crisp rule (3 levels: simple 356 

majority for the FRF, stepwise for the HRF and multiplicative for the HRF) and their interaction. For 357 

random effects we used the data type, grouped according to the model run (i.e., the specific set of 358 

training and validation datasets created randomly -- a paired design). We used this model since it 359 

received the lowest AICc (Akaike Information Criteria corrected for small sample size values) from a 360 

set of 9 nested mixed effect models (supporting information S3). We repeated the analysis 361 

separately for each of the three H/LC classification schemes.  362 

4. Results 363 

In each run, we have used a total of 1333, 1661 and 1980 pixels in the training set for CORINE, 364 

FAO-LCCS and EUNIS, respectively -- only 2.2-3.2% of the study area͛Ɛ 61453 pixels (supporting 365 

information S4 for breakdown of the training set to classes and for examples of several confusion 366 

matrices). Despite the small training set, all methods in all classification schemes produced maps 367 

that are very similar to the observed map, both for the small training set and the large validation set 368 

(see examples in Figures 2-4). In all 3 classification schemes, we found the environmental variables 369 

to have considerably higher variable importance values relative to the spectral reflectance values 370 

and the vegetation indices derived from the remotely-sensed images (Figure 2-4, lower left panels). 371 

Among the environmental variables, water quality, soil group, soil bare and lithology showed the 372 

highest variable importance values, followed by the cadastral and elevation variables, and finally 373 

canopy height. This pattern was observed for both the FRF and HRF approaches in all 3 classification 374 

schemes. However, the HRF approach provided more detailed information on the importance of 375 

each variable in each local classifier, flagging different variables as important in different locations 376 

along the hierarchy, even if they had relatively low importance when averaged across all categories 377 

using FRF. For example, elevation was identified as the most important variable in local classifier C.8 378 

for CORINE (Figure 2). Similarly, the cadastral variable received relatively low relative importance 379 

score in the flat model, but it was identified as the most important variable in one of the local 380 

classifiers of the FAO-LCCS (C.4 in Figure 3). This may be due to the fact that cadastral allows the 381 

discrimination of barren land from artificial structures for objects characterized by similar spectral 382 
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signature, when additional context-sensitive features are not considered (e.g., texture). For EUNIS, 383 

water quality was identified as having very low importance for some classifiers but was very 384 

important in several others, including being the only important variable for separating the two 385 

children nodes of habitat A2.52 (Figure 4, C.10). This is justified by the importance of water salinity 386 

for discriminating EUNIS habitats such as C3.421 (fresh water) and A2.51 (salt water) corresponding 387 

to the same FAO-LCCS class (A24/A2.A5.E7, i.e., inland water habitats (see Table 6 in Tomaselli et al., 388 

2013). 389 

The overall performance of both the FRF and HRF was very high. Kappa values were above 0.9 for 390 

CORINE and FAO-LCCS, with slightly lower values for EUNIS (Figure 5, middle column). Accuracy 391 

values were above 0.9 for CORINE and FAO-LCCS, i.e., more than 90% of the cells were correctly 392 

classified (Figure 5, left column). Accuracy for EUNIS was slightly lower, but still above 0.86 in all 393 

runs. Similar high values were also observed for the Hie.F measure (Figure 5, right column). The 394 

variance between the 15 runs for a given combination of performance index and classification 395 

scheme was very low, suggesting that the choice of training set had little effect on the results. Given 396 

the overall high performance values, it was hard to detect performance differences between the FRF 397 

and HRF approaches (Figure 5). In CORINE we observed a slight decrease in all three performance 398 

measures in the two HRF approaches relative to the FRF, for both the training and validation 399 

datasets. For EUNIS, FRF performed slightly better in the training set, yet the two HRF approaches 400 

slightly outperformed the FRF in the validation set. A similar pattern regarding the hierarchical 401 

stepwise approach was also observed for the FAO-LCCS classification scheme. When comparing the 402 

medians, while the FRF outperformed the two HRF in all 9 cases in the training set (3 classification 403 

schemes × 3 performance indices), the HRF outperformed the FRF in 6 out of 9 cases in the 404 

validation set. The hierarchical multiplicative approach outperformed the hierarchical stepwise 405 

approach in EUNIS and CORINE, while the hierarchical stepwise approach outperformed the 406 

hierarchical multiplicative approach in FAO-LCCS.  407 

In the validation datasets, the pairs of H/LC that were responsible for the highest number of 408 

classification errors in each of the three schemes are summarized in table 1. In general, the main 409 

source of confusion over all schemes is amongst the olive groves and conifer plantations. The 410 

inclusion of more images covering the seasonal cycle and/or the introduction of context-sensitive 411 

features related to agricultural practices may improve the discrimination (e.g., olive trees are 412 

organized in parallel rows at regular distances). These habitats were either misclassified as one 413 

another, or as road or fields. In CORINE, confusion between Coniferous Forest (3.1.2) or Olive Groves 414 

(2.2.3) on one side and Permanently Irrigated Lands (2.1.2) or Road and Rail Networks and 415 

Associated Land (1.2.2) on the other side accounted for 71.5%, 76.9% and 75.0% of all classification 416 
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errors for the flat, H.Mult and H.Step approaches, respectively. In FAO-LCCS, confusion between 417 

Plantations: needle-leaved evergreen tree crops- monoculture + rainfed 418 

(A11_A1.B1.A8.A9.B3.W7.C1.D1) or Orchards: broad-leaved evergreen tree crops- monoculture + 419 

rainfed (A11_A1.B1.A7.A9.B4.W8.C1.D1) on one side and Fields of irrigated no graminoid crops + one 420 

additional crop (A11_A3.A5.B2.C2.D3) or Paved roads (B15_A1.A3.A7.A8) on the other side 421 

accounted for 55.8%, 55.5% and 47.2% of all classification errors for the flat, H.Mult and H.Step 422 

approaches, respectively. In EUNIS, confusion between Native Conifer Plantations (G3.F1) or Olea 423 

europaea Groves (G2.91) on one side and Arable Land with Unmixed Crops Grown by Low-intensity 424 

Agricultural Methods (I1.3) or Road Networks (J4.2) on the other side accounted for 40.3%, 40.0% 425 

and 38.4% of all classification errors for the flat, H.Mult and H.Step approaches, respectively. In 426 

addition, for EUNIS (and to a lesser extent, for FAO-LCCS) misclassification of different types of salt 427 

marshes as one another also contributed considerably to the overall error rate. These errors where 428 

avoided in CORINE due to the lower thematic resolution.  429 

5. Discussion 430 

5.1 Performance of the Flat and Hierarchical Models 431 

In this manuscript we introduce the HRF: a machine learning classification algorithm that accounts 432 

for the pre-defined hierarchical structure of user-defined classification schemes. Our main objective 433 

was to explore whether this novel hierarchical approach provides better performance relative to the 434 

commonly used flat classification approach. We further explored whether the additional information 435 

provided by the HRF approach could shed light into the ͚black-box͛ of RF. A single study site was 436 

used, for which we had complete independent coverage data based on two different LC and one H 437 

classification schemes. In general, we have found that for all three classification schemes, both the 438 

FRF and the HRF were able to predict the observed H/LC with high accuracy (Figure 5), despite using 439 

as low as 2.2% of the study site as training cells. This was observed not only in the training sets, but 440 

also in the external, much larger and independent validation sets. 441 

Given the very high performance of both FRF and HRF, it is difficult to identify explicit 442 

differences between the two approaches. The difference in performance between the FRF, H.Mult 443 

and H.Step were very small. However there were some differences, with the flat approach best for 444 

CORINE, the H.Step best for FAO-LCCS and the H.Mult best for EUNIS (Figure 5). Although a single 445 

case-study is not enough for generalization, these differences may be attributed to differences in 446 

class hierarchy. The hierarchical approaches outperformed the flat one in the two classification 447 

schemes that have a complex hierarchical structure, with more nodes and more levels. In addition, 448 

the H.Step outperformed the H.Mult in FAO-LCCS, perhaps since FAO-LCCS classifies only two classes 449 
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in the local classifier closest to the tree root (C.1 in Figure 3) while EUNIS already has ten classes in 450 

C.1 (Figure 4). The small number of classes in the first classifier provides an advantage to the 451 

stepwise approach, with the higher weights it gives to the early classifier affecting the overall 452 

performance. Thus, based on this single case-study we suggest use of the flat approach when the 453 

hierarchy is relatively simple, the H.Step approach when the hierarchy is more complex but with 454 

simple early classifiers and the H.Mult when the hierarchy is complex right from the start. 455 

In fact, as clearly noted by Haest et al. (2017), the main advantage of the H.Step approach may 456 

be its ability to separate thematically distinct but spectrally similar classes, assuming the classifier 457 

close to the tree-root performs well. However, when this classifier does not perform well, the errors 458 

will be carried down the class structure with no option to undo them. The H.Mult approach does not 459 

give higher weights to classifiers close to the tree root and thus errors made in certain classifiers 460 

have only a limited effect on the overall predicted probabilities. Instead, the probabilities are 461 

multiplied along the tree root along every path. Thus, probabilities of classes that have more 462 

children nodes further down the hierarchy may be diluted relative to other classes that terminate 463 

closer to the tree root. This can potentially bias the method toward shallower classes. If such a bias 464 

affected our results, we would expect the H.Mult to classify more cases to classes that are closer to 465 

the tree root than the flat and H.Step approaches. We have not found any evidence for such a bias 466 

when comparing the number of cases classified to each level in the two classification schemes that 467 

have terminal classes at different levels (FAO-LCCS and EUNIS).  468 

5.2 Types of Misclassifications 469 

Both FRF and HRF made most misclassification errors when trying to classify two main H/LC types 470 

ʹ the conifer plantations and the olive groves (table 1). In these H/LC types, the actual cover of trees 471 

is considerably lower than 100%. The gaps between the trees are covered with bare soil or with 472 

green/dry annual vegetation (depending on the intensity of grazing, the agricultural practice and the 473 

time of the year). Thus, ƚŚĞ ŵĂŝŶ ƐŽƵƌĐĞ ŽĨ ĐŽŶĨƵƐŝŽŶ ǁĂƐ ƚƌĞĂƚŝŶŐ ƚŚĞ ŐĂƉƐ͛ ďĂƌĞ ƐŽŝů ĂƌĞĂ ĂƐ ƌŽĂĚƐ 474 

Žƌ ƚŚĞ ŐĂƉƐ͛ annuals areas as agricultural fields. These misclassifications most likely represent cases 475 

that are thematically distant yet spectrally similar. Our general expectation was that HRF will make 476 

fewer such errors than FRF, since local classifiers closer to the tree root would already separate the 477 

H/LC at early stage. We further expected the stepwise approach to be better than the multiplicative 478 

approach in that respect, since the stepwise approach gives higher weights to local classifiers closer 479 

to the tree root while the multiplicative approach gives equal weights to all local classifiers. Indeed, 480 

we observed such a pattern for EUNIS, with 2669 vs. 2830 misclassifications of the above types for 481 

H.Step and FRF, respectively. Similarly, for the FAO-LCCS there were 2291 vs. 2851 such 482 
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misclassifications for the H.Step and FRF, respectively. For the FAO-LCCS, the difficultly in classifying 483 

gaps resulted for H.Step mainly in confusion between the orchards and plantations, that are 484 

classified at the same local classifier (C.4 in Figure 3). Interestingly, in CORINE, the flat approach 485 

outperformed the H.Step (2793 vs. 3178 misclassifications, respectively).  486 

5.3 Variable importance 487 

In all three classification schemes, the environmental variables were more important than the 488 

raw spectral variables or the variables derived from the remotely sensed images (lower left panels in 489 

figures 2-4). Perhaps, the poor performance of the spectral variables is due to a scale issue; spectral 490 

variables in high resolution images change over very short distances on the ground (even after 491 

resampling) but the environmental variables were based on relatively coarse resolution data and 492 

may have tied in better with the spatial scale of the classification. This can be a common issue in 493 

complex ecosystems or habitats. In addition, the remote sensing data were only from two dates (one 494 

of which was approaching winter leaf-off) and the spectral variables may increase in importance if 495 

more dates were available at key phenological stages in the season.  496 

Nonetheless, the HRF approach also provided more detailed information on the importance of 497 

each variable in each local classifier. For example, in the EUNIS classification scheme (Figure 4) the 498 

local classifier C.10 reveals that distinguishing between the Mediterranean Juncus maritimus and 499 

Juncus acutus saltmarshes (A2.522) and Mediterranean saltmarsh scrubs (A2.526) requires 500 

information on water quality (salinity). However, distinguishing between Marine saline beds of 501 

Phragmites australis (A2.53C) and Geolittoral wetlands and meadows: saline and brackish reed, rush 502 

and sedge stands (A2.53D) in local classifier C.11 requires information on both water quality and soil 503 

groups, perhaps because A2.53C has a much wider ecological range with its distribution ranging 504 

from the dune area to the inland area. In FAO-LCCS (Figure 3) the first local classifier (C.1) reveals 505 

that none of the available explanatory variables are extremely important in distinguishing between 506 

primarily vegetated areas (habitat A) and primarily non-vegetated areas habitat (B). In the FAO-LCCS 507 

(Figure 3), the explanatory variables of cadastral information and the canopy height model were not 508 

identified as important by the flat model. However, these are the main explanatory variables that 509 

distinguish between the three descendent H/LC of Cultivated and Managed Terrestrial Areas (A11) in 510 

local classifier C.4. Similarly, in the CORINE classification scheme (Figure 2), the elevation variable is 511 

not identified as important by the flat model, yet the HRF analysis reveals it to have a relatively high 512 

effect on accuracy in at least 2 local classifiers (e.g., C.2 and C.8). 513 

5.4 The Potential of Hierarchical Classification Models 514 

http://eunis.eea.europa.eu/habitats/661
http://eunis.eea.europa.eu/habitats/661
http://eunis.eea.europa.eu/habitats/669
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The hierarchical approach we tested here is only one of several potential hierarchical approaches 515 

that have been used for classification problems in other research areas. In fact, in their review, Silla 516 

and Freitas (2011) list several types of hierarchical models including: 517 

 Local classifier per parent node ʹ a local classification model is fitted in every internal node that 518 

has more than one sibling. This is the approach followed here and in Pena et al. (2014). 519 

 Local classifier per node- a binary model is fitted to each internal and terminal node, e.g., 9 local 520 

models in the example of Figure 1, each for one habitat (H1-H8).  521 

 Local classifier per level ʹ A local model is fitted for each level of the hierarchy, classifying all the 522 

habitats in the level. In the example of Figure 1, two classification models would be fitted, one 523 

for classifying H1, H2 and H3 and one classifying H4, H5, H6, H7 and H8.  524 

 Global classifier ʹ a single model is fitted which simultaneously captures the entire class 525 

hierarchy. As far as we know, this approach has never been tested using machine learning 526 

algorithm for remote-sensing. Interestingly, knowledge-based classifiers, which tend to follow a 527 

hierarchical classification structure, are the closest example we could think of.  528 

It is probable that different approaches may be more suitable for particular applications. For 529 

example, the local classifier per node approach may be most suitable for situations in which not all 530 

cases in the training data are classified to the lowest level (e.g., some cases in Figure 1C are labelled 531 

as H1, without further labelling as either A4 or A5). Alternatively, local classifier per level may be 532 

most suitable for cases in which all terminal classes are at the same level (e.g., CORINE), especially if 533 

the probabilities of models closer to the tree root are entered as explanatory variables in models 534 

lower down the hierarchy (O'Connell et al., 2015). The local classifier per parent node approach may 535 

better suit cases in which the hierarchy is more complex (e.g., EUNIS). 536 

We can further envision usage of hierarchical models even in the absence of a pre-defined 537 

thematic scheme as a way to focus models on sets of classes that are not easily distinguished from 538 

one another. In the local classifier per parent approach this can be done by first fitting a flat model 539 

to produce a confusion matrix. Then hierarchical cluster analysis may be used to create the thematic 540 

hierarchy, such that classes that are commonly confused (e.g. olive and pine plantations) will be 541 

closer to each other in the thematic tree. A hierarchical model based on such a tree could then fit 542 

specific local classifiers to the most hard-to-distinguish sets. 543 

Even if the marginal increase in performance of hierarchical vs. flat models would be low, the 544 

more detailed variable importance information of hierarchical models may provide information on 545 

the processes that govern the distribution of various habitats. Similarly, the accuracy of specific local 546 

classifiers may help identify sets of habitats that none of our predictors can distinguish between. 547 
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Finally, hierarchical models can be used as an automated tool to lower the costs of knowledge-based 548 

classification models, by suggesting variables that are most suitable at distinguishing groups of 549 

habitats from one another.  550 

6. Conclusion 551 

This is one of the first applications of a machine learning classification algorithm that accounts for a 552 

pre-defined hierarchical thematic structure (but see: Haest et al., 2017; O'Connell et al., 2015; Pena 553 

et al., 2014; Thoonen et al., 2013). We did not observe considerable differences in performance 554 

between this new hierarchical approach and a typical flat approach. This is in accordance with Pena 555 

et al. (2014) that followed a similar local classifier per parent node approach. However, our results 556 

do suggest that the best strategy may depend on the complexity of the hierarchical structure. 557 

Furthermore, we found that the hierarchical approach provides valuable information on variable 558 

ŝŵƉŽƌƚĂŶĐĞ ƚŚĂƚ ƐŚĞĚ ƐŽŵĞ ůŝŐŚƚ ŝŶƚŽ ƚŚĞ ƵƐƵĂůůǇ ͚ďůĂĐŬ-ďŽǆ͛ ŽĨ ŵĂĐŚŝŶĞ-learning algorithms. We 559 

hope that this work will trigger additional works on the potential of using hierarchical models for 560 

H/LC classification.  561 
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TABLES 695 

Table 1: The top 5 pairs of habitat/land-cover that were responsible for the highest number of classification 696 

errors in the validation sets in each of the three classification schemes. Results for the flat, hierarchical 697 

multiplicative (H.Mult) and hierarchical stepwise (H.Step) are given as the mean over all 15 runs. Number of 698 

errors is the total number of mix-up (i.e., number of times A was classified as B plus the number of times B was 699 

classified as A). 700 

Habitat/Land-cover 1 Habitat/Land-cover 2 
Number of errors (rank) 

Flat H.Mult H.Step 

CORINE Total errors: 3907 3956 4239 

Coniferous forest 
Road and rail networks and 
associated land 

1718 (1) 1890 (1) 1964 (1) 

Olive groves Permanently irrigated land 438 (2) 488 (2) 508 (2) 

Olive groves 
Road and rail networks and 
associated land 

412 (3) 400 (3) 389 (3) 

Coniferous forest Discontinuous urban fabric 312 (4) 181 (6) 299 (5) 

Coniferous forest Olive groves 245 (5) 253 (5) 250 (6) 

Coniferous forest Permanently irrigated land 225 (6) 265 (4) 318 (4) 

FAO-LCCS Total errors: 5107 5310 4857 

Plantations: needleleaved evergreen 
tree crops- monoculture + rainfed 

Paved roads 1415 (1) 1448 (1) 877 (2) 

Plantations: needleleaved evergreen 
tree crops- monoculture + rainfed 

Orchards: broadleaved 
evergreen tree crops- 
monoculture + rainfed 

1144 (2) 1213 (2) 1469 (1) 

Orchards: broadleaved evergreen 
tree crops- monoculture + rainfed 

Paved roads 773 (3) 752 (3) 537 (4) 

Orchards: broadleaved evergreen 
tree crops- monoculture + rainfed 

Fields of irrigated no graminoid 
crops + one additional crop 

500 (4) 544 (4) 602 (3) 

Orchards: broadleaved evergreen 
tree crops- monoculture + rainfed 

Scattered industrial or other 
areas 

312 (5) 294 (6) 271 (7) 

Temporarily flooded land with 
perennial closed tall grasslands  

Temporarily flooded land with 
Aphyllous closed dwarf shrubs  

299 (6) 369 (5) 369 (5) 

EUNIS Total errors: 7025 6885 6955 

Fen Cladium mariscus beds 
Marine saline beds 
of Phragmites australis 

3177 (1) 3115 (1) 3129 (1) 

Native conifer plantations Road networks 1711 (2) 1635 (2) 1635 (2) 

Olea europaea groves Road networks 467 (3) 425 (4) 442 (3) 

Olea europaea groves 
Arable land with unmixed crops 
grown by low-intensity 
agricultural methods 

421 (4) 431 (3) 389 (5) 

Native conifer plantations Scattered residential buildings 316 (5) 208 (7) 278 (6) 

Native conifer plantations Olea europaea groves 235 (6) 362 (5) 407 (4) 
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FIGURE LEGENDS 704 

Figure 1: Main concept of hierarchical random forest. 705 

Flow chart for creating: (A) a single classification tree, (B) a single randomForest model, and (C) a single 706 

ŚŝĞƌĂƌĐŚŝĐĂů ƌĂŶĚŽŵFŽƌĞƐƚ ŵŽĚĞů͘ “ĞĞ ƚĞǆƚ ĨŽƌ ĚĞƚĂŝůƐ͘ PƌŽƉ͛ ʹ proportion; OoB-- Out-of-Bag.  707 

Figure 2: The results for CORINE.  708 

The top panel is an example of the observed map and the maps predicted by a flat RF model, by Hierarchical 709 

multiplicative RF model and by hierarchical stepwise RF. Land-covers legend is given in the class hierarchy 710 

(lower right panel) alongside the location of seven local classifiers (e.g., C.1). The lower left panel shows the 711 

variable importance values in each local classifier and in the flat model. The variables are divided to 712 

environmental variables (blue), variables derived from the remote sensing images (black) and the raw 713 

reflectance values of the two remotely-sensed images (red). 714 

Figure 3: The results for FAO-LCCS.  715 

The top panel is an example of the observed map and the maps predicted by a flat RF model, by Hierarchical 716 

multiplicative RF model and by hierarchical stepwise RF. Land-covers legend is given in the class hierarchy 717 

(lower right panel) alongside the location of eight local classifiers (e.g., C.1). The lower left panel shows the 718 

variable importance values in each local classifier and in the flat model. The variables are divided to 719 

environmental variables (blue), variables derived from the remote sensing images (black) and the raw 720 

reflectance values of the two remotely-sensed images (red). 721 

Figure 4: The results for EUNIS.  722 

The top panel is an example of the observed map and the maps predicted by a flat RF model, by Hierarchical 723 

multiplicative RF model and by hierarchical stepwise RF. Habitats legend is given in the class hierarchy (lower 724 

right panel) alongside the location of eleven local classifiers (e.g., C.1). The lower left panel shows the variable 725 

importance values in each local classifier and in the flat model. The variables are divided to environmental 726 

variables (blue), variables derived from the remote sensing images (black) and the raw reflectance values of 727 

the two remotely-sensed images (red). 728 

Figure 5: SƵŵŵĂƌǇ ŽĨ ŵŽĚĞůƐ͛ ƉĞƌĨŽƌŵĂŶĐĞ͘ 729 

Performance of the FRF (Flat), HRF with multiplicative majority rule (H.Mult) and HRF with stepwise majority 730 

rule (H.Step) in each classification scheme, for the training and validation sets. Box plots represent the 25, 50 731 

and 75% percentiles of the 15 runs, while the whiskers give the 1.5 IQR. Outliers are given as points while the 732 

mean is given as a triangle. 733 
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