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1  | INTRODUCTION

Tropical	forests	play	a	key	role	in	the	global	carbon	cycle	and	are	a	major	
carbon	pool,	with	ca.	285	Pg	of	carbon	estimated	to	be	stored	in	above-	
ground	live	biomass	(Feldpausch	et	al.,	2012).	Current	efforts	to	quan-
tify	global	carbon	stocks	(e.g.	Avitabile	et	al.,	2016),	understand	carbon	
dynamics	 in	 tropical	 forests	 (e.g.	 Brienen	 et	al.,	 2015),	 evaluate	 the	
potential	for	forest	conservation	to	mitigate	climate	change	(e.g.	Jantz,	
Goetz,	&	Laporte,	2014)	and	examine	biodiversity-	ecosystem	function	
relationships	(e.g.	Chisholm	et	al.,	2013)	all	rely	on	robust	estimates	of	
carbon	storage	in	above-	ground	biomass	(AGB).	The	AGB	of	forests	can	
be	estimated	from	ground-	based	inventory	plots,	where	allometric	equa-
tions	are	used	to	estimate	AGB	from	measured	tree	diameters	(Chave	
et	al.,	2014).	Tree	height	is	an	important	component	of	this	allometric	

relationship,	as	tree	biomass	is	partially	a	function	of	tree	volume,	which	
is,	 in	turn,	a	function	of	tree	height,	 trunk	basal	area	and	trunk	taper	
(Chave	et	al.,	2005).	Incorporating	a	height	parameter	is	known	to	mark-
edly	improve	estimates	of	individual	tree	AGB	(Feldpausch	et	al.,	2012),	
and	this	has	a	substantial	effect	at	larger	scales	too.	For	example	esti-
mates	of	global	tropical	forest	biomass	carbon	stocks	vary	by	35.2	Pg	
depending	simply	on	whether	height	is	incorporated	(Feldpausch	et	al.,	
2012),	equivalent	 to	c.	4	years	of	global	 fossil	 fuel	emissions	 (Boden,	
Marland,	 &	Andres,	 2013)	 or	 c. 15 years of the global forest carbon 
sink	(Pan	et	al.,	2011).	This	has	led	to	the	incorporation	of	tree	height	
in	 REDD+	 carbon	monitoring	 (Global	 Forests	Observations	 Initiative,	
2013).	Improved	plot-	level	knowledge	of	height–diameter	relationships	
would	also	help	improve	remote	sensing-	based	estimates	of	local	and	
global	forest	biomass.	For	example	space-		and	airborne	LIDAR	measure	
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Abstract
1.	 Quantifying	the	relationship	between	tree	diameter	and	height	is	a	key	component	
of	efforts	to	estimate	biomass	and	carbon	stocks	in	tropical	forests.	Although	sub-
stantial	site-to-site	variation	in	height–diameter	allometries	has	been	documented,	
the	time	consuming	nature	of	measuring	all	tree	heights	in	an	inventory	plot	means	
that	most	studies	do	not	include	height,	or	else	use	generic	pan-tropical	or	regional	
allometric	equations	to	estimate	height.

2.	 Using	a	pan-tropical	dataset	of	73	plots	where	at	least	150	trees	had	in-field	ground-
based	height	measurements,	we	examined	how	the	number	of	trees	sampled	af-
fects	the	performance	of	locally	derived	height–diameter	allometries,	and	evaluated	
the	performance	of	different	methods	for	sampling	trees	for	height	measurement.

3.	 Using	cross-validation,	we	found	that	allometries	constructed	with	just	20	locally	
measured	values	could	often	predict	tree	height	with	lower	error	than	regional	or	
climate-based	allometries	 (mean	reduction	 in	prediction	error	=	0.46	m).	The	pre-
dictive	performance	of	locally	derived	allometries	improved	with	sample	size,	but	
with	diminishing	returns	in	performance	gains	when	more	than	40	trees	were	sam-
pled.	Estimates	of	stand-level	biomass	produced	using	local	allometries	to	estimate	
tree	height	show	no	over-	or	under-estimation	bias	when	compared	with	biomass	
estimates	 using	 field	 measured	 heights.	We	 evaluated	 five	 strategies	 to	 sample	
trees	 for	 height	measurement,	 and	 found	 that	 sampling	 strategies	 that	 included	
measuring	the	heights	of	the	ten	largest	diameter	trees	in	a	plot	outperformed	(in	
terms	of		resulting	in	local	height–diameter	models	with	low	height	prediction	error)	
entirely	random	or	diameter	size-class	stratified	approaches.

4.	 Our	 results	 indicate	 that	 even	 limited	 sampling	of	 heights	 can	be	used	 to	 refine	
height–diameter	allometries.	We	recommend	aiming	for	a	conservative	threshold	
of	sampling	50	trees	per	 location	 for	height	measurement,	and	 including	 the	 ten	
trees	with	the	largest	diameter	in	this	sample.

K E Y W O R D S

above-ground	biomass	estimation,	allometry,	carbon	stocks,	forest	inventory,	forest	structure,	
sample	size
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canopy	height	(Baccini	et	al.,	2012;	Saatchi	et	al.,	2011)	and	high-	quality	
ground	estimates	of	AGB	are	needed	to	calibrate	height–AGB	allome-
tries	(Jucker	et	al.,	2017).

Despite	the	importance	of	tree	height	for	estimating	biomass,	measured	
heights	are	frequently	unavailable.	This	has	led	to	the	development	both	
of	allometric	models	to	estimate	AGB	without	a	height	parameter	(Chave	
et	al.,	2005),	and	of	pan-	tropical	height–diameter	models	(Brown,	Gillespie,	
&	 Lugo,	 1989)	which	 are	 used	 to	 predict	 tree	 heights	when	measured	
heights	are	unavailable.	While	 these	earlier	efforts	assume	that	a	single	
height–diameter	relationship	can	be	applied	across	the	tropics,	height–di-
ameter	relationships	are	known	to	be	influenced	by	biogeography	and	by	
environmental	and	compositional	variation	at	much	smaller	scales	(Banin	
et	al.,	2012;	Djomo	et	al.,	2016;	Feldpausch	et	al.,	2011;	Thomas,	Martin,	
&	Mycroft,	2015).	Pan-	tropical	allometries	have	therefore	been	refined	to	
incorporate	variation	attributed	to	region	(Feldpausch	et	al.,	2012)	or	cli-
mate	(Chave	et	al.,	2014).	Nevertheless,	height–diameter	relationships	can	
be	expected	to	vary	at	all	scales,	suggesting	that	even	these	regionally	or	
climatically	modified	models	themselves	lack	the	necessary	sophistication	
needed	for	many	applications	(Rutishauser	et	al.,	2013;	Stas,	Rutishauser,	
Chave,	Anten,	&	Laumonier,	2017).	It	is	of	course	also	possible	to	construct	
locally	derived	height–diameter	allometries	that	implicitly	incorporate	vari-
ation	due	to	geography	and	the	environment.	Incorporating	heights	esti-
mated	by	locally	derived	models	has,	for	example	already	been	found	to	
reduce	estimates	of	AGB	 in	Central	Africa	 (Kearsley	et	al.,	2013)	and	to	
increase	estimates	of	biomass	production	 in	Borneo	 (Banin	et	al.,	2014)	
when	 compared	with	 estimates	 derived	 from	 coarser-	scale	 allometries.	
Widespread	 application	 of	 locally	 derived	 allometries	 could	 in	 principle	
lead	to	substantially	changed—and	improved—estimation	and	understand-
ing	of	variation	in	tropical	forest	carbon	storage	and	sequestration.

Measuring	 tree	 heights	 is	 time	 consuming,	 so	 it	 is	 rare	 to	mea-
sure	 the	 heights	 of	 all	 trees	 within	 inventory	 plots.	 As	 a	 result,	 in	
practice,	local	height–diameter	relationships	are	frequently	modelled	
using	 small	 samples	 of	 trees.	 For	 example	 the	RAINFOR	 field	man-
ual	 recommends	measuring	 the	height	of	40	 trees	 in	1-	ha	plots	 for	
convenience	where	time	constraints	prevent	all	trees	being	measured	
(Phillips,	Baker,	Feldpausch,	&	Brienen,	2009),	typically	 leaving	more	
than	 90%	of	 tree	 heights	 to	 be	 predicted.	Height–diameter	models	
parameterised	using	such	small	samples	of	trees	may	perform	poorly	
at	predicting	the	height	of	the	unmeasured	trees,	compared	to	region-
ally	parameterised	models	using	much	larger	samples	of	trees,	for	sev-
eral	reasons:	(1)	the	full	range	of	local	diameters	may	not	be	sampled,	
meaning	that	locally	derived	models	extrapolate	beyond	the	range	of	
data	used	to	train	them	(see	Elith	&	Leathwick,	2009	for	discussion	of	
consequences);	(2)	non-	linear	relationships,	such	as	asymptotic	maxi-
mum	heights,	may	not	be	evident	within	smaller	sets	of	training	data	
(Duncanson,	Rourke,	&	Dubayah,	2015)	and	(3),	models	may	be	exces-
sively influenced by outliers (i.e. trees that are unusually tall or short 
for	 their	 diameter).	 It	 is	 thus	 uncertain	 how	many	 trees	 need	 to	 be	
sampled	to	ensure	that	locally	derived	models	constructed	using	small	
samples	of	trees	actually	do	yield	better	estimates	of	tree	height	than	
regional	models.	Furthermore,	it	would	be	very	helpful	to	understand,	
generally,	 how	 sampling	 effort	 in	 the	 field	 impacts	 the	 reliability	 of	
local-	scale	models	across	tropical	forests.	In	particular,	ecologists	and	

practitioners	aiming	to	generate	improved	accuracy	of	forest	biomass	
estimates	would	benefit	from	knowing	the	sample	size(s)	and	sampling	
protocols	required	to	ensure	that	locally	derived	models	consistently	
outperform	existing	regional	and	climate-	based	models.

Here	we	addressed	these	challenges	by	assembling	a	pan-	tropical	
dataset	of	 plots	where	 large	numbers	 (≥150	per	plot)	 of	 trees	have	
been	sampled	for	height	measurement	and	examining	these	to	quan-
tify	 how	well	 locally	 derived	models	 predict	 tree	 height.	We	 use	 a	
cross-	validation	approach	to	allow	us	to	test	height–diameter	model	
performance	on	data	 that	are	 independent	 to	 those	used	 for	model	
fitting.	Our	specific	objectives	were	to	(1)	examine	how	the	number	of	
trees	used	to	train	locally	derived	models	affects	prediction	errors	with	
reference	to	the	performance	of	existing	regional	and	climate-	based	
models	and	(2)	test	different	strategies	for	sampling	trees	to	produce	
locally derived models.

2  | MATERIALS AND METHODS

2.1 | Forest inventory data

Pan-	tropical	 inventory	 data	 were	 collected	 by	 three	 networks	 of	
ecologists,	working	 in	South	America	 (RAINFOR,	Malhi	et	al.,	2002),	
Africa	(AfriTRON,	Lewis	et	al.,	2013)	and	Southeast	Asia	(T-	FORCES,	
Qie	et	al.,	2017),	with	all	following	standardised	protocols	that	include	
diameter	measurement	of	 all	 trees	≥10	cm	D measured at 1.3 m or 
above	buttresses.	Data	were	curated	in	the	ForestPlots.net	database	
(Lopez-	Gonzalez,	 Lewis,	 Burkitt,	 &	 Phillips,	 2011),	 and	 subject	 to	
identical	quality	control	and	quality	assurance	procedures.	From	this	
dataset	we	 selected	 plots	 in	 intact,	 lowland	 (<1,500	m	 a.s.l.)	 closed	
canopy	forest.	Annual	precipitation,	obtained	from	the	WorldClim	da-
tabase	(Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005),	ranged	from	
1,339	 to	 3,806	mm,	 whereas	 mean	 annual	 temperatures	 were	 be-
tween	22.6°C	and	27.1°C.	We	selected	plots	where	at	least	150	trees	
had height measurements that met the criteria for inclusion (n	=	53	
plots)	or	where	combinations	of	plots	within	5	km	of	each	other	with	
comparable	forest	composition,	elevation	and	edaphic	conditions	had	
≥150	 trees	with	height	measurements	 (n	=	96	 individual	plots	 com-
bined	into	20	plots,	hereafter	also	referred	to	as	“plots”).	The	criteria	
for including individual height measurements were (1) tree stems were 
not	broken,	 leaning	by	≥10%	or	 fallen,	 (2)	 tree	heights	were	meas-
ured	either	using	clinometers,	 laser	 rangefinders,	 laser	hypsometers	
or directly by climbing and (3) tree heights were below 90 m (heights 
above	this	were	assumed	to	be	errors).	Following	application	of	these	
filters,	our	dataset	consisted	of	73	plots	(30	in	South	America,	30	in	
Africa	and	13	in	Asia)	with	28,173	trees	with	measured	heights.

2.2 | Height–diameter models

We	used	 three	equations	 to	 relate	measured	heights	 (H) to tree di-
ameters (D)	 in	each	plot	(subsequently	referred	to	as	 locally	derived	
models).	First,	we	used	the	Weibull	function

(1)H=a

(

1−exp
(

−bD
C

))

,
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where a,	b and c	are	estimated	parameters.	An	intuitive	property	of	
the	Weibull	 function	 is	 that	a	 can	be	 interpreted	as	 the	asymptotic	
maximum	height	of	a	tree.

Second,	we	used	the	Michaelis–Menten	function

where a and b	 are	 estimated	 parameters.	 For	 both	 Weibull	 and	
Michaelis–Menten	models,	we	also	fitted	height–diameter	models	with	
case	weights	proportional	to	the	volume	of	each	tree	(Molto	et	al.,	2014).	
These	weights	give	more	importance	to	large	trees	during	model	fitting,	
and	may	improve	estimates	of	stand-	level	AGB	as	these	large	trees	are	
dominant	components	of	stand-	level	biomass	due	to	the	nonlinear	rela-
tionship	between	D	and	AGB	(Bastin	et	al.,	2015;	Slik	et	al.,	2013).

Third,	 we	 modelled	 the	 height–diameter	 relationship	 using	 the	
log–log	linear	ordinary	least	squares	regression

where b	 gives	 the	scaling	exponent	of	a	power	 law	relationship	be-
tween height and diameter.

Height–diameter	models	were	fitted	in	R	(R	Core	Team,	2014)	using	
functions in the biomass r	package	(Réjou-	Méchain,	Tanguy,	Piponiot,	
Chave,	&	Hérault,	2017),	with	 the	nonlinear	Weibull	and	Michaelis–
Menten	models	parameterised	using	 the	Levenberg–Marquard	algo-
rithm	implemented	in	the	minpack.lm r	package	(Elzhov,	Mullen,	Spiess,	
Bolker,	 &	Mullen,	 2016).	All	 five	models	were	 parameterised	 sepa-
rately	for	each	set	of	training	data	in	each	plot.

We	compared	these	locally	derived	models	to	regionally	parameter-
ised	height–diameter	Weibull	equations	(i.e.	same	form	as	Equation	1)	
with	 parameters	 for	 each	 biogeographical	 region	 obtained	 from	
Feldpausch	et	al.	(2012),	and	to	the	pan-	tropical	climate-	based	model

from	Chave	et	al.	(2014),	where	E is defined as

C	is	climatological	water	deficit,	T	is	temperature	seasonality	and	P is 
precipitation	seasonality,	see	Chave	et	al.	(2014)	for	further	details.

2.3 | Evaluating model performance

The	performance	of	height–diameter	models	was	assessed	by	training	
models	on	a	subset	of	trees	within	a	plot,	before	randomly	selecting	50	
of	the	remaining	trees	and	predicting	the	height	of	these.	Prediction	
error	 was	 calculated	 as	 the	 square-	root	 of	 the	 mean	 squared	 dif-
ference	 between	 measured	 and	 predicted	 heights	 (i.e.	 root-	mean	
squared	error,	RMSE).	This	approach	allows	the	performance	of	mod-
els	to	be	assessed	on	independent	testing	data.	We	note	that	while	we	
define	prediction	errors	as	differences	between	predicted	and	meas-
ured	heights,	the	measurement	of	tree	height	itself	is	also	subject	to	
errors	(see	Larjavaara	&	Muller-	Landau,	2013).	Reported	differences	
between measurement instruments did not affect our results as infer-
ences	about	the	performance	of	locally	derived	allometries	were	not	
affected by restricting analyses to measurements made with clinom-
eters	(Figure	S1).

We	first	assessed	whether	locally	derived	models	had	lower	pre-
diction	errors	than	regional	models	by	splitting	data	for	each	plot	into	
independent	training	and	testing	subsets,	fitting	Weibull,	Michaelis–
Menten	and	log–log	height–diameter	models	to	the	training	subset	
and	 calculating	 the	 prediction	 errors	 of	 both	 these	 locally	 derived	
models,	and	regional	and	climate-	based	models,	on	the	testing	sub-
set.	We	did	this	for	training	data	sample	sizes	of	10	up	to	100	trees,	
in	increments	of	10	trees.	For	a	given	sample	size,	we	randomly	se-
lected	training	and	testing	subsets	for	100	iterations.	We	used	linear	
mixed-	effects	models	 to	quantify	the	difference	 in	prediction	error	
among	height–diameter	models,	with	plot	identity	and	sample	iden-
tity (i.e. an identifier for each division of the data into training and 
testing subsets) as random effects; 95% confidence intervals were 
obtained	by	parametric	bootstrap.	We	fitted	separate	mixed-	effects	
models	 to	 sample	 size	 increments	 of	 10	 and	 100	 trees.	 For	 each	
height–	diameter	model,	we	also	modelled	the	probability	of	it	being	
the	best	performing	model	 in	a	given	sample	of	trees	as	a	function	
of	 training	 data	 sample	 size	 using	 generalised	 linear	mixed	 effects	
models	with	binomial	errors	and	a	 logit	 link,	with	plot	 identity	as	a	
random effect.

To	provide	an	objective	measure	of	any	turning	points	in	the	rela-
tionship	between	RMSE	and	sample	size,	and	hence	evaluate	whether	
there	are	any	threshold	sample	sizes	beyond	which	further	sampling	
gives	diminishing	returns,	we	numerically	estimated	the	second	deriv-
ative	(Fewster,	Buckland,	Siriwardena,	Baillie,	&	Wilson,	2000)	of	the	
smoothed	relationship	between	RMSE	and	sample	size	as

where In	is	the	trend	curve	at	sample	size	n.	We	expected	the	relation-
ship	between	RMSE	and	sample	size	 to	be	negative,	with	potentially	
saturating	rates	of	decline.	For	negative	relationships,	positive	second	
derivative	values	indicate	a	slowing	in	the	rate	of	change,	so	that	peaks	
in	the	second	derivative	highlight	threshold	sample	sizes	beyond	which	
returns	from	further	sampling	diminish.	The	trend	curve	was	obtained	by	
fitting	a	generalised	additive	model,	implemented	in	the	mgcv r	package	
(Wood,	2006),	of	RMSE	as	a	function	of	sample	size,	setting	the	max-
imum	base	dimension	of	the	spline	to	four.	The	exact	turning	point	is	
sensitive	to	the	degree	of	smoothing	of	the	trend	curve,	so	we	interpret	
results	from	this	method	alongside	visual		inspection	of	relationships.

To	evaluate	how	height	prediction	errors	propagated	to	errors	in	
AGB	estimates,	we	used	the	allometric	equation	of	Chave	et	al.	(2014),	
implemented	in	the	biomasaFP	r	package	(Lopez-	Gonzalez,	Sullivan,	&	
Baker,	2015),	to	estimate	the	AGB	of	each	tree	from	their	diameter	D 
and estimated height H

where ρ	 is	wood	density	derived	from	Chave	et	al.	 (2009)	and	Zanne	
et	al.	 (2009).	Although	we	do	not	know	the	true	AGB	of	trees	 in	our	
dataset,	as	trees	were	not	destructively	sampled,	we	can	identify	errors	
in	AGB	estimates	due	to	the	height	component	of	allometric	equations	
by	comparing	estimates	of	AGB	using	observed	heights	with	estimates	
using	modelled	heights.	We	therefore	used	the	difference	between	the	
summed	AGB	of	the	50	trees	in	the	testing	dataset	when	height	was	
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predicted	using	a	height–diameter	model	and	when	observed	height	
was	used	as	an	indication	of	stand-	level	AGB	prediction	errors.

2.4 | Evaluating different strategies for sampling 
trees for height measurement

To	evaluate	whether	different	strategies	for	sampling	trees	reduced	
height	prediction	errors	we	evaluated	prediction	errors	of	locally	de-
rived	Weibull	and	Michaelis–Menten	models	(selected	as	these	were	
the	 best	 performing	 models,	 see	 Results)	 trained	 using	 samples	 of	
trees	selected	using	different	sampling	strategies.	These	were	(1)	ran-
domly	sampling	n	 trees	 (Rand),	 (2)	sampling	n	 trees	 in	proportion	to	
the	number	of	trees	in	different	size	classes	(<200	mm	D,	≥200	mm	D 
and	<300	mm	D,	≥300	mm	D	and	<500	mm	D	and	≥500	mm	D,	Strat),	
(3)	sampling	the	n	 trees	with	the	 largest	diameter	 (Big),	 (4)	sampling	
the	10	largest	trees	then	randomly	sampling	the	remaining	n−10	trees	
(BigRand)	and	(5)	sampling	the	10	largest	trees	and	taking	a	size-	class	
stratified	random	sample	of	the	remaining	n−10	trees	(BigStrat).	We	
repeated	this	for	samples	of	10	to	100	trees	in	increments	of	10,	and	
took	100	samples	from	each	plot	and	each	sample	size.	Some	sampling	
strategies	(e.g.	sampling	the	n largest trees) systematically removed a 
portion	of	trees	from	the	testing	dataset,	so	differences	between	sam-
pling	 strategies	evaluated	using	 independent	 testing	data	may	arise	
through differences in the variance of tree heights in the testing data-
set.	To	avoid	this,	we	tested	model	performance	using	all	trees	with	
a	height	measurement	in	the	plot	in	this	analysis.	We	then	calculated	

mean	RMSE	and	stand-	level	AGB	prediction	errors	 for	each	sample	
size	 and	 plot,	 and	 for	 each	 plot-	sample	 size	 combination	 identified	
which	 sampling	 strategy	gave	 the	 smallest	RMSE	and	minimum	ab-
solute	AGB	prediction	error	(identified	as	the	lowest	prediction	error	
across	the	Weibull	and	Michaelis–Menten	models).	The	probability	of	
a	sampling	strategy	resulting	in	the	best	performing	model	was	then	
modelled	for	both	height	RMSE	and	AGB	prediction	error	as	a	func-
tion	of	sample	size	using	generalised	additive	models,	setting	the	max-
imum	base	dimension	of	the	spline	to	four	as	a	compromise	between	
allowing	nonlinear	relationships	and	avoiding	overfitting.

3  | RESULTS

3.1 | Performance of locally derived models

On	 average,	 locally	 derived	 height–diameter	 models	 predicted	 the	
height	of	independent	samples	of	trees	more	accurately	than	biogeo-
graphical	 region	or	climate-	based	models	 (Figure	1a).	When	only	10	
height	measurements	were	used	to	train	models,	height	prediction	er-
rors	of	Michaelis–Menten	models	were	statistically	significantly	lower	
than	those	of	regional	models	obtained	from	Feldpausch	et	al.	(2012)	
(statistical significance indicated by confidence intervals of difference 
in	 prediction	 error	 from	 regional	models	 not	 overlapping	 zero)	 or	 a	
climate-	based	model	obtained	from	Chave	et	al.	(2014),	with	a	reduc-
tion	in	prediction	error	from	regional	models	of	0.18	m	(95%	CI	=	0.15–
0.21	m).	When	20	height	measurements	were	used	to	train	models,	all	

F IGURE  1 Relationship	between	the	number	of	height	measurements	used	to	train	tropical	tree	height–diameter	models	and	(a)	height	
prediction	error	(the	square-	root	of	mean	squared	error,	RMSE)	when	tested	on	an	independent	sample	of	50	trees	in	the	same	permanent	
sampling	plot	and	(b)	difference	in	the	above-	ground	biomass	(AGB)	of	these	50	trees	when	estimated	using	predicted	height	and	when	
estimated	using	observed	height.	The	performances	of	regional	(Feldpausch	et	al.,	2012)	and	climate-	based	(Chave	et	al.,	2014)	height–diameter	
models	tested	on	the	same	testing	data	are	shown	for	comparison	with	locally	derived	Weibull,	Michaelis–Menten	and	log–log	models.	Boxplots	
show	variation	in	values	averaged	across	iterations	for	each	sample	size	in	each	plot.	For	clarity,	outliers	(points	>1.5	×	box	length	away	from	the	
upper	or	lower	quartile)	are	not	plotted.	The	grey	line	in	each	plot	shows	the	median	RMSE	value	for	regional	height–diameter	models	pooled	
across	all	plots	and	iterations,	whereas	the	red	line	shows	the	median	RMSE	value	for	the	climate-	based	height–diameter	model—in	some	cases	
only	one	line	is	visible	due	to	over-	plotting
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locally	derived	model	forms	had	lower	prediction	errors	than	regional	
or	climate-	based	models.	Reductions	 in	prediction	error	were	great-
est	 for	Michaelis–Menten	models	 (mean	difference	=	−0.46	m,	 95%	
CI	=	−0.44	to	−0.48	m),	followed	by	Weibull	models	(mean	difference	
in	 prediction	 error	 from	 regional	 model	=	−0.35	m,	 95%	 CI	=	−0.33	
to	 −0.37	m)	 then	 log–log	 models	 (mean	 difference	=	−0.31	m,	 95%	
CI	=	−0.29	 to	 −0.33	m).	 The	 prediction	 errors	 of	 local	 height–diam-
eter	models	 decreased	with	 increasing	 sample	 size	 (Figure	1a),	 and	
were	>0.5	m	 lower	 than	 those	of	 regional	models	when	100	height	
measurements	were	used	to	train	local	models	(Weibull	model:	mean	
difference	=	−0.67	m,	95%	CI	=	−0.66	to	−0.69	m;	Michaelis–Menten	
model:	mean	difference	=	−0.68	m,	95%	CI	=	−0.66	to	−0.69	m;	log–
log	model:	mean	difference	=	−0.56	m,	95%	CI	=	−0.55	 to	−0.58	m).	
Weighted	 forms	 of	Weibull	 and	Michaelis–Menten	models	 showed	
smaller	improvements	in	prediction	error	(weighted	Weibull:	mean	dif-
ference	from	regional	model	=	−0.48	m,	95%	CI	=	−0.47	to	−0.50	m,	
weighted	 Michaelis–Menten	 model:	 mean	 difference	=	−0.43	m,	
95%	 CI	=	−0.42	 to	 −0.45	m).	 Prediction	 errors	 were	 significantly	
lower	when	climate-	based	height–diameter	models	were	used	 than	
when	 regional	models	were	 used	 (mean	 difference	=	−0.09	m,	 95%	
CI	=	−0.07	to	−0.11	m),	although	there	was	considerable	variation	in	
the	performance	of	these	two	methods	among	plots	(Figure	1a).

The	lower	mean	prediction	error	of	local	models	was	reflected	in	
the	high	probability	of	a	 local	model	being	the	best	height-	diameter	
model	for	a	sample	of	trees	(Figure	2).	When	local	models	were	trained	
on	samples	of	10	trees,	the	probability	of	the	model	with	the	lowest	
height	prediction	errors	being	one	of	the	five	locally	derived	models	
was	0.77	 (95%	CI	=	0.69–0.83),	 rising	to	0.86	 (95%	CI	=	0.80–0.90)	
when	 40	 trees	were	 sampled	 and	 0.95	 (95%	CI	=	0.93–0.97)	when	
100	 trees	were	 sampled.	Note	 that	 this	 analysis	 includes	 occasions	
when	nonlinear	models	did	not	to	converge	as	failures,	so	the	supe-
rior	performance	of	 locally	derived	models	 is	 robust	 to	convergence	
failure.	No	single	locally	derived	model	consistently	outperformed	the	
others	 (Figure	2),	 although	 at	 small	 sample	 sizes	Michaelis–Menten	
models	outperformed	other	models	 (probability	of	being	best	model	
when	10	trees	were	sampled	=	0.21,	95%	CI	=	0.18–0.23,	cf.	Weibull	
0.11,	 95%	CI	=	0.10–0.12).	 However,	when	 all	 trees	 in	 a	 plot	were	
used	to	construct	allometric	models,	Weibull	models	had	the	lowest	
height	RMSE	in	92%	of	plots,	Michaelis–Menten	in	7%	and	log–log	in	
1%	(Figure	S2).

Locally	 derived	Weibull	 and	Michaelis–Menten	 height–diameter	
models	 provided	 unbiased	 estimates	 of	 stand-	level	 biomass	 (stand-	
level	biomass	defined	here	as	AGB	summed	over	the	50	trees	in	the	
training	dataset)	relative	to	estimates	using	observed	height,	and	also	
had	 lower	 AGB	 prediction	 errors	 than	 regional	 and	 climate-	based	
models	(Figure	1b).	In	contrast,	log–log	models	showed	a	tendency	to	
overestimate	stand-	level	biomass	relative	to	estimates	using	observed	
height	(Figure	1b).

3.2 | Effect of sample size

There	were	diminishing	returns	in	improvement	in	model	performance	
with	 increasing	sample	size	 (Figure	1).	For	Weibull	models	and	 log–
log,	the	greatest	decrease	in	the	gradient	of	the	fitted	generalised	ad-
ditive	model	of	the	relationship	between	height	prediction	error	and	
sample	size	(as	indicated	by	the	maximum	value	of	the	second	deriva-
tive)	occurred	once	40	height	measurements	were	used,	whereas	for	
Michaelis–Menten	models	this	occurred	when	41	trees	were	sampled.	
Visual	inspection	of	relationships	support	this	(Figure	1a)	and	indicate	
that	similar	flattening	occurred	for	the	probability	of	a	locally	derived	
model	outperforming	a	regional	model	(Figure	2)	when	30–50	height	
measurements were used.

3.3 | Evaluation of different sampling strategies

For	samples	sizes	of	greater	than	20,	sampling	strategies	that	included	
the 10 trees with the largest diameter had a statistically significantly 
higher	probability	of	resulting	the	model	with	lowest	height	prediction	
error	(Figure	3).	Although	the	strategy	of	sampling	the	largest	n trees 
performed	well	on	average	(Figure	3),	for	some	plots	it	resulted	in	very	
high	prediction	error	(Figure	S3).	Random	and	size	class	stratified	sam-
pling	strategies	were	more	 likely	 to	produce	models	 that	minimised	
AGB	prediction	error,	although	there	was	considerable	overlap	in	con-
fidence	intervals	at	larger	sample	sizes	(Figure	3).	Note	that	for	both	
height	and	AGB	prediction	error,	the	probability	of	a	given	sampling	

F IGURE  2 Relationship	between	sample	size	and	the	probability	
of	a	given	height–diameter	model	being	the	best	performing	model	
for	a	sample	of	tropical	trees.	The	probability	of	a	given	height–
diameter	model	being	the	best	performing	model	was	modelled	as	a	
function	of	sample	size	using	generalised	linear	mixed	effects	models	
with	binomial	errors	and	a	logit	link,	with	plot	identity	as	a	random	
effect.	We	also	modelled	the	probability	that	one	of	the	five	local	
height–diameter	models	was	the	best	performing	model	(Local).	
For	the	latter,	fitted	relationships	and	95%	confidence	intervals	
are shown. 95% confidence intervals where calculated based on a 
normal	approximation	on	the	scale	of	the	linear	predictor.	Note	that	
for	a	sample	size	of	40	trees	local	height–diameter	models	are	six	
times	more	likely	to	provide	a	better	fit	than	either	a	biogeographical	
regional or climate model
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strategy	producing	the	best	model	was	low	(<0.3),	indicating	that	no	
single	sampling	strategy	consistently	outperformed	the	others.

4  | DISCUSSION

Although	 the	 importance	 of	 tree	 height	 in	 allometric	models	 used	
to	estimate	 tropical	 tree	biomass	 is	widely	 recognised	 (Feldpausch	
et	al.,	2012),	 it	 is	 rare	 to	measure	 the	heights	of	all	 trees	 in	a	per-
manent	 sample	plot,	meaning	 that	 it	 is	often	necessary	 to	use	ex-
isting	allometric	models	to	estimate	tree	height	(Chave	et	al.,	2014;	
Feldpausch	et	al.,	2012).	Our	results	show	that	sampling	as	 few	as	
ten	 trees	 in	 a	 plot	 is,	 on	 average,	 sufficient	 to	 construct	 height–	
diameter	 allometries	 that	 perform	 better	 than	 existing	 regional	 or	
climate-	based	models.	 Sampling	 further	 trees	 improved	 locally	de-
rived	allometries,	albeit	with	diminishing	returns.	Analysis	of	turning	
points	supports	the	use	of	a	threshold	of	40	trees	as	a	compromise	
between	fieldwork	effort	and	improvements	in	model	performance.	
Our	results	demonstrate	that	with	remarkably	limited	fieldwork	ef-
fort	 it	 is	possible	to	collect	 local	height	data	that	will	 improve	esti-
mates	of	forest	biomass.	More	widespread	collection	of	height	data	
will	of	course	also	be	useful	to	further	understanding	of	spatial	vari-
ation	 in	 forest	 architecture	 (Banin	 et	al.,	 2012;	Chave	 et	al.,	 2014;	
Feldpausch	 et	al.,	 2011)	 and	 to	 further	 develop	 regional	 and	 pan-	
tropical	height–diameter	allometries.

While	our	results	demonstrate	the	potential	for	local	height–diam-
eter	allometries	 to	 refine	understanding	of	spatial	variation	 in	carbon	
stocks,	the	consequences	of	using	local	height-	diameter	allometries	for	
estimates	of	total	carbon	stocks	in	tropical	forests	are	unclear,	with	re-
gional models tending to overestimate tree height in some areas and 
underestimate	it	in	others.	For	example	in	Central	Africa,	estimates	of	

carbon	 stocks	were	 reduced	when	 local	 height–diameter	 allometries	
were	used	 instead	of	regional	models	 (Kearsley	et	al.,	2013),	whereas	
in	 Borneo	 the	 use	 of	 local	 height-	diameter	 allometries	 increased	 es-
timates	 of	 above-	ground	 woody	 production	 compared	 to	 estimates	
using	pan-	tropical	 allometries	 (Banin	et	al.,	 2014).	 In	our	pan-	tropical	
dataset,	 climate-	based	 and	 regional	 height-	diameter	 allometries	
tended	 to	 slightly	overestimate	 stand-	level	AGB	 relative	 to	estimates	
using	observed	height,	but	this	effect	varied	considerably	among	plots	
(Figure	1b).

Despite	 the	 reduction	 in	 height	 prediction	 error	when	 locally	
derived	 allometries	 were	 used,	 prediction	 errors	 of	 around	 4	m	
remained	 even	 when	 using	 locally	 derived	 allometries	 (Figure	1).	
Substantial	variability	around	average	relationships	persisted	when	
all	trees	in	a	plot	were	used	to	construct	allometries	(Figure	S2),	and	
may	be	due	to	species-	specific	differences	in	allometry	(Goussanou	
et	al.,	 2016)	 or	 variation	 in	 the	 local	 competitive	 environment	
within	 stands	 (Forrester,	 Benneter,	 Bouriaud,	&	Bauhus,	 2017).	A	
potential	source	of	within-	plot	variation	is	topography.	This	can	in-
fluence	 height-	diameter	 relationships,	with	 taller	 canopies	 in	 val-
leys	 than	 ridges	 (Detto,	Muller-	Landau,	Mascaro,	&	Asner,	 2013).	
Because	of	this,	the	performance	of	height-	diameter	allometries	in	
topographically	heterogeneous	plots	may	be	improved	by	stratify-
ing	sampling	by	topography.	Available	data	suggest	variation	in	tree	
height	may	be	greatest	at	scales	>100	m	(Detto	et	al.,	2013)	so	this	
may	become	an	important	consideration	in	plots	considerably	larger	
than 1 ha.

Our	 analysis	 focuses	 on	 the	 consequences	 of	 different	 sample	
sizes	and	strategies	 for	 the	performance	of	height-	diameter	models,	
so	prediction	errors	result	from	the	fit	of	statistical	models.	However,	
it	is	important	to	note	that	the	measurement	of	tree	height	itself	is	also	
subject	to	random	and	directional	error.	We	anticipate	that	the	latter	

F IGURE  3 Probability	of	different	sampling	strategies	resulting	in	the	best	performing	tropical	tree	local	height–diameter	model,	where	
model	performance	was	assessed	as	(1)	height	root-mean	squared	error	(RMSE)	and	(2)	the	difference	between	estimated	stand-	level	above-
ground	biomass	(AGB)	using	modelled	heights	and	stand-	level	above-ground	biomass	(AGB)	estimated	using	observed	heights.	n trees were 
sampled	either	randomly,	stratified	according	to	size	class	(Strat),	the	largest	n	trees	were	sampled	(Big),	the	10	largest	trees	where	sampled	with	
the	remaining	trees	randomly	sampled	or	stratified	by	size	class	(BigStrat).	For	each	plot.	The	probability	of	a	sampling	strategy	resulting	in	the	
best	performing	model	was	modelled	as	a	function	of	sample	size	using	generalised	additive	models.	Fitted	relationships	and	95%	confidence	
intervals are shown
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will	have	the	greatest	consequences	for	the	construction	of	regional	
and	 local	 height-	diameter	 allometries,	 leading	 to	models	 systemati-
cally	under	or	over-	predicting	tree	height	and	hence	biomass.	To	date	
there	have	been	few	attempts	to	quantify	the	magnitude	of	such	er-
rors	(Larjavaara	&	Muller-	Landau,	2013	is	a	notable	exception).	We	re-
iterate	Larjavaara	&	Muller-	Landau’s	call	for	more	studies	to	tackle	this	
issue—better understanding is needed of how measurement errors 
vary	among	biogeographical	regions,	across	environmental	gradients,	
with forest structure and with human and technical factors in order to 
develop	appropriate	correction	factors	and	to	understand	their	impact	
on	tropical	forest	biomass	estimates.

The	performance	of	 locally	 derived	height-	diameter	models	was	
influenced	 by	 the	 form	 of	 the	 allometric	 equation	 used.	 We	 used	
three-	parameter	Weibull,	log–log	linear	and	Michaelis–Menten	mod-
els	relate	tree	height	to	tree	diameter,	but	alternative	model	structures	
(e.g.	Gompertz)	could	have	been	used	(Ledo	et	al.,	2016).	As	our	aim	
was	 to	 investigate	 the	 consequences	 of	 in-	field	 sampling	 decisions	
rather	than	post-	fieldwork	modelling	choices,	we	did	not	explore	the	
full	range	of	possible	models.	However,	a	previous	evaluation	of	12	al-
lometric	models	recommended	using	three-	parameter	Weibull	models	
(Ledo	et	al.,	2016).	Our	results	are	somewhat	consistent	with	this,	as	
although	log–log	models	were	sometimes	the	best	performing	model	
when	samples	sizes	were	small,	prediction	errors	of	Weibull	models	
were	 on	 average	 lower	 than	 those	 of	 log–log	models	 at	 all	 sample	
sizes.	 However,	we	 also	 found	 that	Michaelis–Menten	models	 per-
formed	better	on	average	than	Weibull	models	(in	terms	of	reducing	
height	prediction	error)	when	sample	sizes	were	small,	with	the	rela-
tive	performance	of	Weibull	models	increasing	with	sample	size.	The	
failure	of	a	single	model	form	to	consistently	outperform	others	at	mi-
nimising	height	prediction	errors	(Figure	2)	supports	previous	studies	
that	have	found	that	the	best	performing	model	form	varies	between	
forest	types	(Cuni-	Sanchez	et	al.,	2017).	For	example	in	locations	with	
frequent	 natural	 disturbances	 trees	may	 not	 reach	 their	 asymptotic	
maximum	 heights,	 and	 in	 these	 plots	 log–log	 models	 may	 perform	
better	 than	 asymptotic	 models.	 Despite	 this	 general	 variability,	 our	
results also indicate that log–log models were biased towards overes-
timating	tree	height	and	hence	AGB	(relative	to	AGB	estimates	using	
observed	heights),	especially	when	trained	on	small	sample	sizes	that	
were	likely	to	miss	the	largest	diameter	trees.	This	is	consistent	with	a	
previous	investigation	of	the	sample	size	sensitivity	of	the	power	law	
relationship	between	crown	radius	and	tree	height,	which	found	that	
power	 law	models	overestimated	 tree	height	when	 trained	on	small	
samples	of	 trees	 (Duncanson	et	al.,	2015).	 In	 contrast,	 local	Weibull	
and	Michaelis–Menten	models	showed	little	bias	 in	stand-	level	AGB	
estimates,	 even	when	 trained	on	 small	 samples	of	 trees	 (Figure	1b),	
supporting	the	use	of	asymptotic	models	of	tree	height–diameter	rela-
tionships	(Fayolle	et	al.,	2016;	Ledo	et	al.,	2016).

The	 best	 sampling	 strategy	 differed	 depending	 on	whether	 per-
formance	was	assessed	by	height	prediction	errors	or	AGB	prediction	
errors	(Figure	3).	This	could	result	from	a	tension	between	maximising	
the	 fit	 of	 height-	diameter	models	 for	 small	 trees	 and	maximising	 fit	
for	large	trees,	as	sampling	strategies	focused	on	capturing	the	height-	
diameter	 relationships	 of	 the	 largest	 trees	 performed	 less	well	 than	

random	sampling	at	predicting	stand-	level	AGB,	potentially	due	to	over-
estimation	of	the	heights	of	smaller	trees.	We	interpret	this	tension	as	
indicating	that	while	Weibull	and	Michaelis–Menten	height-	diameter	
relationships	give	a	good	approximation	of	true	height-	diameter	rela-
tionships	 in	most	 plots,	 there	 is	 insufficient	 parameterisation	 to	 de-
scribe the differences in allometries between small and large trees. 
This	is	consistent	with	a	previous	assessment	which	found	a	tendency	
for	 Weibull	 models,	 along	 with	 other	 three-	parameter	 asymptotic	
functions,	to	underestimate	the	height	of	the	largest	trees	(Banin	et	al.,	
2012).	Differences	in	allometry	between	small	and	large	trees	could	re-
sult	from	differences	in	the	severity	of	light	competition	and	exposure	
to	high	winds	between	the	canopy	and	understory	(O’Brien,	Hubbell,	
Spiro,	Condit,	&	Foster,	1995),	and	possible	hydraulic	limitation	of	large	
trees	(Ryan	&	Yoder,	1997),	and	supports	the	idea	that	the	allometery	
and	abundance	of	canopy	trees	may	be	constrained	differently	to	those	
of	understory	trees	(Farrior,	Bohlman,	Hubbell,	&	Pacala,	2016).	It	may	
be	 desirable	 to	 give	more	weight	 to	 errors	 in	 the	 prediction	 of	 the	
heights	of	large	trees	than	errors	for	small	trees	as	AGB	is	nonlinearly	
related	to	tree	diameter.	This	can	be	achieved	by	applying	case	weights	
proportional	 to	 tree	 volume	 when	 fitting	 height-	diameter	 models.	
Surprisingly,	we	found	that	these	weighted	models	tended	to	perform	
worse	than	unweighted	models	(Figure	2).

It	is	important	to	note	that	we	did	not	perform	an	exhaustive	com-
parison	of	all	possible	sampling	strategies.	For	example	a	strategy	of	
sampling	 all	 emergent	 trees	would	 ensure	 that	 the	 tallest	 trees	 are	
measured,	so	may	perform	better	than	strategies	based	on	sampling	
the trees with the largest diameters.

Although	 our	 results	 show	 that	 locally	 derived	 height-	diameter	
models	 can	 be	 constructed	with	 40	 height	measurements,	 there	will	
remain	cases	where	no	 local	height	data	are	available.	 In	these	cases,	
it	will	be	necessary	to	use	height-	diameter	models	developed	at	other	
locations.	Pan-	tropical	height-	diameter	models	have	been	refined	to	in-
clude	variation	in	allometry	with	climate	(Chave	et	al.,	2014)	or	among	
biogeographical	regions	(Feldpausch	et	al.,	2012).	Our	results	still	sup-
port	the	use	of	these	models	when	local	height	data	are	not	available,	
as	reductions	in	prediction	error	with	locally	derived	allometries	were,	
on	average,	 less	 than	1	m.	We	show	that	 the	 relative	performance	of	
regional	and	climate-	based	models	were	similar,	with	slightly	lower	pre-
diction	errors	from	the	climate-	based	model	on	average,	although	this	
varied	among	plots.	However,	biogeographical	region	is	known	to	have	
a	strong	influence	on	tree	allometry	(Banin	et	al.,	2012),	so	it	is	likely	that	
allometric	models	could	be	improved	by	incorporating	both	variation	in	
climate	and	region.	Furthermore,	accounting	for	local	variation	in	height-	
diameter	relationship	is	key	in	forests	that	have	experienced	recurrent	
climatic	 (Thomas	 et	al.,	 2015)	 or	 human	 disturbances	 (Rutishauser,	
Hérault,	Petronelli,	&	Sist,	2016),	and	where	generic	models	developed	
in	more	preserved	forests	are	likely	to	return	wrong	estimates.

4.1 | Recommended protocol for sampling trees for 
height measurement

Measuring	more	tree	heights	had	diminishing	returns	in	terms	of	re-
ductions	in	height	prediction	error.	We	found	the	strongest	reduction	
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in	 the	slope	of	 the	 relationship	between	sample	size	and	prediction	
error	to	be	when	41	trees	were	sampled,	but	as	prediction	errors	con-
tinue	to	decline	with	increasing	sample	size	we	recommend	sampling	
50	 trees	as	a	conservative	 threshold.	Sampling	 the	 largest	 trees	 re-
duced	height	prediction	error,	but	biomass	estimates	were	more	ac-
curate	when	random	or	stratified	sampling	was	used.	The	strategy	of	
sampling	the	ten	largest	trees	in	a	plot,	then	randomly	sampling	the	
remaining	trees	showed	intermediate	performance	in	both	height	and	
biomass	prediction,	but	stratified	sampling	of	the	remaining	trees	may	
be	more	preferable	as	 it	 ensures	height	data	are	available	 for	 trees	
of	each	size	class.	Following	these	recommendations,	the	procedure	
in	the	field	would	simply	be	to	first	identify	the	ten	largest	diameter	
trees	 in	 a	 plot	 for	 height	 measurement,	 then	 take	 a	 diameter	 size	
class	stratified	random	sample	of	a	further	40	trees	for	careful	height	
measurement.
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