
This is a repository copy of NeuroSpeech.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125611/

Version: Accepted Version

Article:

Orozco-Arroyave, J.R., Vásquez-Correa, J.C., Vargas-Bonilla, J.F. et al. (13 more authors) 
(2018) NeuroSpeech. SoftwareX, 8. pp. 69-70. 

https://doi.org/10.1016/j.softx.2017.08.004

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: J.R. Orozco-Arroyave et al., NeuroSpeech: An open-source software for Parkinson’s speech analysis, Digit. Signal Process. (2017),

http://dx.doi.org/10.1016/j.dsp.2017.07.004

JID:YDSPR AID:2156 /FLA [m5G; v1.220; Prn:19/07/2017; 15:01] P.1 (1-15)

Digital Signal Processing ••• (••••) •••–•••

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

NeuroSpeech: An open-source software for Parkinson’s speech analysis

Juan Rafael Orozco-Arroyave a,b,∗, Juan Camilo Vásquez-Correa a,b,
Jesús Francisco Vargas-Bonilla a, R. Arora c, N. Dehak c, P.S. Nidadavolu c, H. Christensen d,
F. Rudzicz e, M. Yancheva e, H. Chinaei e, A. Vann f, N. Vogler g, T. Bocklet h, M. Cernak i,
J. Hannink b, Elmar Nöth b

a Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Colombia
b Pattern Recognition Lab, Friedrich-Alexander-Universtät Erlangen-Nürnberg, 91058 Erlangen, Germany
c Johns Hopkins University, USA
d University of Sheffield, UK
e University of Toronto, Canada
f Stanford University, USA
g University of California-Irvine, USA
h Intel, Germany
i Idiap Research Institute, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:

Available online xxxx

Keywords:

Parkinson’s disease

Dysarthria

Speech processing

Python

Software

A new software for modeling pathological speech signals is presented in this paper. The software is

called NeuroSpeech. This software enables the analysis of pathological speech signals considering different

speech dimensions: phonation, articulation, prosody, and intelligibility. All the methods considered in

the software have been validated in previous experiments and publications. The current version of

NeuroSpeech was developed to model dysarthric speech signals from people with Parkinson’s disease;

however, the structure of the software allows other computer scientists or developers to include other

pathologies and/or other measures in order to complement the existing options. Three different tasks

can be performed with the current version of the software: (1) the modeling of the speech recordings

considering the aforementioned speech dimensions, (2) the automatic discrimination of Parkinson’s vs.

non-Parkinson’s speech signals (if the user has access to recordings of other pathologies, he/she can re-

train the system to perform the detection of other diseases), and (3) the prediction of the neurological

state of the patient according to the Unified Parkinson’s Disease Rating Scale (UPDRS) score. The

prediction of the dysarthria level according to the Frenchay Dysarthria Assessment scale is also provided

(the user can also train the system to perform the prediction of other kind of scales or degrees of

severity).

To the best of our knowledge, this is the first software with the characteristics described above, and we

consider that it will help other researchers to contribute to the state-of-the-art in pathological speech

assessment from different perspectives, e.g., from the clinical point of view for interpretation, and from

the computer science point of view enabling the test of different measures and pattern recognition

techniques.

 2017 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Parkinson’s disease (PD) is a neurological disorder caused by

the progressive loss of dopaminergic neurons in the mid-brain,

leading to clinical symptoms like bradykinesia, rigidity, tremor,

* Corresponding author at: Faculty of Engineering, Universidad de Antioquia

UdeA, Calle 70 No. 52-21, Colombia.

E-mail address: fael.orozco@udea.edu.co (J.R. Orozco-Arroyave).

postural instability, and others. Non-motor symptoms like sleep

disorders and problems in cognition and emotions have also been

observed [1]. Most of Parkinson’s patients develop hypokinetic

dysarthria, which is a multidimensional impairment that affects

different aspects or dimensions of speech including phonation, ar-

ticulation, prosody, and intelligibility [2]. The neurological state of

PD patients is evaluated subjectively by clinicians who are, in most

of the cases, mainly focused on the evaluation of motor deficits

rather than the speech impairments; however, the patients claim

that the reduced ability to communicate is one of the most diffi-

http://dx.doi.org/10.1016/j.dsp.2017.07.004

1051-2004/ 2017 Elsevier Inc. All rights reserved.
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cult aspects of the disease. The Royal College of Physicians in the

NICE guidelines [3] recommends that every PD patient should have

access to speech and language therapy among other kinds of non-

pharmacological treatments [4].

The research community has shown interest in developing com-

putational tools to help patients and clinicians to assess Parkin-

son’s speech. There have been several initiatives towards the de-

velopment of computer-aided tools to support or assist the speech

therapy and the diagnosis of different disorders. In [5] the authors

present VOCALIZA, a software application for computer-aided ther-

apy in Spanish language with three levels: phonological, semantic,

and syntactic. The system is mainly based on a speech recognizer

and it is used to train the language skills of speakers with differ-

ent pathologies. Several characteristics of using automatic speech

recognition (ASR) systems for the assessment of voice, speech, and

language disorders are presented in [6]. Additionally, the use of

such systems to support the speech and language therapy of pa-

tients who had their larynx removed due to cancer and for chil-

dren with cleft lip and palate was evaluated in [7]. In that work

the authors introduced the system PEAKS, which is mainly based

on prosodic features (at word and turn level) and showed to be

suitable to support several applications (diagnosis and monitoring)

in the clinic. Another work based on ASR systems to assist speech

and language therapy is presented in [8]. In that work the authors

introduce the system to evaluate the speech of children with neu-

romuscular disorders, e.g., dysarthria. Further to the use of an ASR

system, the authors use a pronunciation verification (PV) approach

to evaluate the improvement in the communication skills of the

user at both phoneme and word levels. Further to the aforemen-

tioned studies, several works have been published summarizing

the technology that has been developed to support the speech

and language therapy. In [9] the authors present a brief descrip-

tion of several systems that were developed to assist the speech

therapy of Romanian patients with different disorders, e.g., stam-

mering, logoneurosis, dyslexia-dysgraphia, and others. Recently, in

[10] the authors present a systematic review of the literature

about computer-aided systems developed to support speech and

language therapy mainly focused on articulation and phonological

impairments. According to their review, “all the studies introduced

their own developed tools and used them for intervention except

one study, in which a previously developed software was used”.

Additionally, the authors mention that the intervention of each

study varies based on the technical abilities of the system, the

disorder targeted, and the intervention framework. The types of in-

terventions covered on the review include phonation, articulation,

phonological awareness, and general intervention.

According to the reviewed literature and the evidence collected

in [10], the research community, patients, medical doctors, and

therapists lack of computational tools with different characteris-

tics including: user-friendly, easy to use, open source, able to per-

form several interventions/analyses, and able to be personalized

or adapted according to the necessities of the users. In this paper

we introduce NeuroSpeech, a new system for the semi-automatic

analysis of speech signals. It includes measurements to model four

speech dimensions: phonation, articulation, prosody, and intelligi-

bility. NeuroSpeech has been designed and tested upon Parkinson’s

speech signals; however, its methods and techniques can be eas-

ily adapted to perform analyses of other speech disorders. Further

to the computation of several speech dimensions, the system is

able to perform a regression analysis based on a support vector

regressor (SVR) to estimate the neurological state of the patient

(according to the Unified Parkinson’s Disease Rating Scale – UPDRS

[11]) and the dysarthria level according to a modified version

of the Frenchay Dysarthria Assessment (FDA-2) score [12]. This

software and its associated documentation, i.e., source code, user

and technical manuals, can be downloaded for free from the link

https://github.com/jcvasquezc/NeuroSpeech. Further details of the

characteristics of NeuroSpeech and several case study examples will

be provided in the next sections.

2. Parkinson’s speech analysis using NeuroSpeech

2.1. General characteristics, the user interface, and the speech tasks

NeuroSpeech is a graphic user interface designed in C++ which

runs Python scripts. The software uses other programs (also open

source) which need to be installed for the correct operation of Neu-

roSpeech. The following is the list of third-party programs:

• Anaconda: it is required to have a Python environment.1

• Praat: this program is required to extract the pitch values from

the voice recordings and to compute the vocal formants.2

• ffmpeg: this tool allows the recording, conversion, and stream-

ing of audio and video files.3

2.1.1. User interface – main window

The main window of the user interface is thought to help the

user to follow the analysis process. It displays the basic infor-

mation of the patient, i.e., name and last name. It has only two

buttons, one to start the recording and another one to play the

recorded file. On the upper right hand side the user can select

sound examples of the speech task that is going to be recorded.

The software enables the user to select the gender of the speaker

(female or male). The raw signal is also displayed on this win-

dow. On the lower side of the window there are six arrows named

phonation, articulation, prosody, DDK, intelligibility, and PD evalua-

tion. By clicking on those arrows the user can perform the analysis

of each speech dimension. The DDK arrow corresponds to diado-

chokinetic evaluation which consists of the repetition of syllables

like /pa/, /ta/, /ka/ or combinations of them like /pa-ta-ka/ or /pa-

ka-ta/. This option is added due to its importance and relevance

in the assessment of dysarthric speech signals [13]. The right hand

side arrow enables two evaluations, the neurological state of the

patient according to the UPDRS-III score and the dysarthria level of

his/her speech according to the adapted FDA-2 score (details about

this evaluation will be provided in the section 2.1.7). Besides the

computation of features, NeuroSpeech allows the user to perform

comparisons with respect to measures obtained from recordings of

the healthy control group in the PC-GITA database [14]. All of the

comparisons are with respect to the corresponding group accord-

ing to the sex of the speaker. The components of this window are

displayed in Fig. 1. Each number inside the blue boxes highlights

different fields on the interface. Each field is described in Table 1.

As it was already introduced above, Parkinson’s disease affects

several aspects or dimensions of speech including phonation, artic-

ulation, prosody, and intelligibility. Each aspect is directly related

with the ability to produce an specific sound, movement, rhythm,

or effect in the receiver of the oral message. Phonation can be de-

fined as the capability to make the vocal folds vibrate to produce

sound, articulation comprises changes in position, stress, and shape

of the organs, tissues, and limbs involved in speech production.

Prosody is the variation of loudness, pitch, and timing to produce

natural speech, and intelligibility is related to the match between

the message produced by the speaker and the information effec-

tively received by the listener [15].

In order to provide more understandable or interpretable re-

sults, the computer-aided systems that support speech therapy (for

1 https://www.continuum.io/downloads.
2 http://www.fon.hum.uva.nl/praat.
3 http://ffmpeg.org/download.html. Last retrieved 06.12.2016.
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Fig. 1. Main window of NeuroSpeech. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 1

Description of the fields in the main window.

Field Description

1 First name of the patient

2 Last name of the patient

3 List of speech tasks to be recorded

4 Allows the user to select the gender of the speaker

5 Starts recording

6 Plays the sound file

7 Plays an example of the speech task

8 Field to visualize the speech signal after recording

9 Performs the phonatory analysis

10 Performs the articulatory analysis

11 Performs the prosody analysis

12 Performs the DDK analysis

13 Performs the intelligibility analysis

14 Performs the dysarthria and PD evaluation

15 Generates the medical report

diagnosis or monitoring) may consider these speech aspects/di-

mensions. NeuroSpeech is designed to perform phonation, articula-

tion, prosody, and intelligibility analyses separately, thus its results

can be interpreted separately by the medical expert. As such meth-

ods have been presented in previous publications, they will be

briefly introduced here, for further details see [16–19].

2.1.2. Phonation analysis

The phonatory capability of a speaker has been analyzed typi-

cally in terms of features related to perturbation measures such as

jitter (temporal perturbation of the fundamental frequency), shim-

mer (temporal perturbation of the amplitude of the signal), ampli-

tude perturbation quotient (APQ), and pitch perturbation quotient

(PPQ). APQ and PPQ are long term perturbation measures of the

amplitude and pitch of the signal, respectively. Further to the per-

turbation measures, the degree of unvoiced is also included. A brief

description of the methods is presented below, further details can

be found in [16] and [20]).

Jitter and shimmer

Temporal perturbations in the frequency and amplitude of

speech are defined as jitter and shimmer, respectively. Jitter is

computed according to Equation (1), where N is the number of

frames of the speech utterance, M f is the maximum of the fun-

damental frequency, and F0(k) corresponds to the fundamental

frequency computed on the k-th frame.

Jitter(%) =
100

N · M f

N
∑

k=1

∣

∣F0(k) − M f

∣

∣ (1)

Shimmer is computed using Equation (2), where Ma is the max-

imum amplitude of the signal, and A(k) corresponds to the ampli-

tude on the k-th frame.

Shimmer(%) =
100

N · Ma

N
∑

k=1

|A(k) − Ma| (2)

Amplitude and Pitch Perturbation Quotients (APQ and PPQ)

APQ measures the long–term variability of the peak-to-peak

amplitude of the speech signal. Its computation includes a smooth-

ing factor of eleven voice periods and it is calculated as the ab-

solute average difference between the amplitude of a frame and

the amplitudes averaged over its neighbors, divided by the average

amplitude. Similarly, PPQ measures the long–term variability of the

fundamental frequency, with a smoothing factor of five periods. It

is computed as the absolute average difference between the fre-

quency of each frame and the average of its neighbors, divided by

the average frequency. Both perturbation quotients are computed

using Equation (3), where L = M − (k− 1), D(i) is the pitch period

sequence (PPS) when computing the PPQ or the pitch amplitude

sequence (PAS) when computing the APQ. M is the length of PPS

or PAS, k is the length of the moving average (11 for PAQ or 5 for

PPQ), and m = (k − 1)/2.

PQ =
1

L

L
∑

i=1

∣

∣

∣

1
k

∑k
j=1 D(i + j − 1) − D(i +m)

∣

∣

∣

∣

∣

∣

1
M

∑M
n=1 MD(i)

∣

∣

∣

(3)

Degree of unvoiced

This measure is calculated as the ratio between the duration of

unvoiced frames and the total duration of the utterance. It is cal-

culated upon sustained phonations, thus it gives information about

the amount of aperiodicity in the phonation.

Implementation for developers

The phonation analysis in NeuroSpeech is performed with the

python script named phonVowels.py, which is stored in the

folder /phonVowels/. The syntax to perform the analysis is as

follows:
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Fig. 2. Speech signal and fundamental frequency of a sustained phonation of vowel A for a healthy speaker (left), and for a PD patient (right).

Fig. 3. Radar-type figures for a healthy speaker (left) and for a PD patient (right). (For interpretation of the colors in this figure, the reader is referred to the web version of

this article.)

python phonVowels.py <file_audio>

<filef0.txt>

<file_features.txt> <path_ base>

where <file_audio> corresponds to the name of the audio file

that will be analyzed, <filef0.txt> is a file that will con-

tain the contour of the fundamental frequency (computed using

Praat), <file_features.txt> is a file that will contain the

values of the measures, i.e., jitter, shimmer, APQ, and PPQ. Finally,

<path_base> corresponds to the path where the script is con-

tained.

In addition to the measures computed upon the signal that

is under evaluation, NeuroSpeech has a pre-computed reference

based on speech recordings of 50 healthy speakers of the PC-GITA

database [14]. All of the features are computed and averaged over

those healthy speakers in order to provide a numerical and graph-

ical reference to the user, thus besides the numerical results and

the references, NeuroSpeech creates a plot with the contour of the

fundamental frequency, and a radar-type figure. All of the com-

parisons are performed with respect to the corresponding healthy

group according to the sex of the speaker. Such a figure allows

visual comparisons of the result w.r.t. the values obtained from

PC-GITA. Fig. 2 displays the contour of the fundamental frequency

computed over a sustained vowel /a/ uttered by a healthy speaker

(left) and a PD patient (right). Note that the contour of the healthy

speaker is more stable than the contour obtained from the pa-

tient.

Fig. 3 shows the radar-type figure with the perturbation mea-

sures extracted from the vowel uttered by a healthy speaker (left)

and a PD patient (right). The polygon in green corresponds to val-

ues of the features obtained from the patient, and the polygon in

blue corresponds to the average values of the features extracted

from the healthy speakers of PC-GITA (female or male, depending

on the sex of the test speaker). Typically, when the green pentagon

coincides or is inside the blue one it means that the features of the

patient are in the same range of the reference. If any of the corners

in the green pentagon does not match with the reference pen-

tagon, it suggests that the vibration of the vocal folds is abnormal.

For instance, the utterance of the patient in Fig. 3 shows abnor-

mal values of shimmer and APQ, which means that the amplitude

(volume) of his/her voice is not stable while producing a sustained

vowel, which is a typical sign of dysarthria due to Parkinson’s dis-

ease.

Implementation for end-users

The window of NeuroSpeech that enables phonation analysis is

displayed in Fig. 4. This window is divided into two fields. On the

left hand side the user can observe the speech recording in the

time domain and the F0 contour. The values of the measures ex-

tracted from the sustained phonation are displayed on the right

hand side in both formats, numerical and using the radar-type fig-

ure.
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Fig. 4. Window for phonation analysis.

2.1.3. Articulation analysis

Articulation is related to the modification of position, stress,

and shape of several limbs and muscles involved in the speech

production process. This kind of analysis can be performed with

sustained vowels or with continuous speech signals. When sus-

tained utterances are considered, several measures to assess the

position of the tongue are typically used [21,22]. For the case of

continuous speech signals, a new approach to evaluate the capa-

bility of PD patients to start and to stop the vocal fold movement

was introduced recently in [17] motivated on the results obtained

in [18]. In NeuroSpeech we have implemented both approaches, us-

ing sustained vowels and continuous speech signals.

Articulation in sustained vowels

This analysis is mainly based on the computation of the first

two vocal formants F1 and F2 . Measures such as the vowel space

area (VSA), vocal pentagon area (VPA), and formant centralization

ratio (FCR) are calculated to evaluate the articulation capabilities

of the speakers.

VSA is calculated to quantify possible reduction in the articu-

latory capability of the speaker. Such a reduction is observed as a

compression of the area of the vocal triangle which is found by ex-

tracting the first two vocal formants from the vowels /a/, /i/, and

/u/. Then the VSA is estimated using Equation (4).

VSA =
|F1i(F2a − F2u) + F1a(F2u − F2i) + F1u(F2i − F2a)|

2
(4)

When the first two formants of the five Spanish vowels are

considered as the vertexes of a polygon, the vocal pentagon is

formed, and its area is called VPA. This measure quantifies the ar-

ticulatory capabilities of the speakers when they pronounce the

five Spanish vowels. VPA was introduced in [23] to evaluate ar-

ticulatory deficits in PD patients. This measure is calculated using

Equation (5), where ps1 = F1aF2o − F1oF2a , ps2 = F1oF2u − F1uF2o ,

ps3 = F1uF2i − F1iF2u , ps4 = F1iF2e − F1eF2i , and ps5 = F1eF2a −

F1aF2e .

VPA =

∣

∣ps1 + ps2 + ps3 + ps4 + ps5
∣

∣

2
(5)

Finally, FCR is a measure introduced in [21] to evaluate changes

in the articulatory capability of people. According to the authors,

this measure presents a reduced inter–speaker variability, thus it

is suitable for diagnosis and monitoring of voice disorders such as

dysarthria. FCR is computed with Equation (6).

FCR =
F2u + F2a + F1i + F1u

F2i + F1a
(6)

Articulation in continuous speech

The articulation capabilities of the patients in continuous

speech is evaluated considering the energy content in the tran-

sition from unvoiced to voiced segments (onset), and in the tran-

sition from unvoiced to voiced segments (offset). These features

were introduced in [16] and are described with details in [18]. The

main hypothesis that motivates the modeling of such transitions in

PD speech is [24]:

PD patients produce abnormal unvoiced sounds and have difficulty

to begin and/or to stop the vocal fold vibration. It can be observed

on speech signals by modeling the frequency content of the unvoiced

frames and the transitions between voiced and unvoiced sounds.

To compute those measures, the fundamental frequency of the

speech signal is estimated using Praat [25] to detect the voiced and

unvoiced segments. Afterwards, onsets and offsets are detected and

40ms of the signal are taken to the left and to the right of each

border. Finally, the spectrum of the transitions is distributed into

22 critical bands following the Bark scale, and the Bark-band ener-

gies (BBE) are calculated according to [26]. For frequencies below

500Hz the bandwidths of the critical bands are constant at 100Hz

while for medium and high frequencies the increment is propor-

tional to the logarithm of frequency. The Equation (7) reproduces

the frequency distribution proposed by Zwicker et al. with an ac-

curacy of ±0.2 Bark.

Bark( f ) = 13 arctan (0.00076 f ) + 3.5 arctan

(

f

7500

)2

, (7)

arctan is measured in [radians] and f is in [Hz].

Note that the minimum duration of the voiced frames to be

processed is 40ms and the maximum duration of the unvoiced

frames is 270ms (longer unvoiced frames are considered pauses).

These lower and upper limits have been tuned manually by direct

observation during several experiments.
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Fig. 5. Vocal triangle and pentagon for a healthy speaker (up) and for a PD patient (bottom).

Implementation for developers – case 1: sustained vowels

This analysis is performed with the python script called

artVowels.py, which is contained in the folder artVowels.

The syntax to perform the analysis is as follows:

python artVowels.py <file_audioA>

<file_audioE> <file_audioI>

<file_audioO> <file_audioU>

<file_resultsA> <file_resultsE>

<file_resultsI> <file_resultsO>

<file_resultsU> <file_features>

<path_base>

where <file_audioX> corresponds to the audio file of vowel X

and X ∈ {A, E, I, O ,U }, <file_resultsX.txt> is the file with

the values of the formant frequencies of vowel X (computed using

Praat), <file_features.txt> is the file that will contain the

features previously described (the average of the vocal formants,

VSA, VPA, and FCR), and <path_base> corresponds to the path

where the script is stored.

The script generates also figures of the vocal triangle and the

vocal pentagon. The polygons obtained with the speech recordings

of the healthy speakers of PC-GITA are also displayed for com-

parison purposes. Fig. 5 shows the vocal triangle and the vocal

pentagon obtained from a healthy speaker (up side), and for a PD

patient (bottom side). Note the reduction in the area of the trian-

gle and the pentagon for the case of the PD patient relative to the

areas obtained for healthy speakers. This fact indicates a reduction

of the articulatory capabilities of the patient. Note also that the

formant frequencies for each vowel are more spread for the PD

patient than for the healthy speaker, indicating a loss of control of

the tongue and velum while producing the sustained phonation.

Implementation for developers – Case 2: continuous speech

This analysis is performed with a python script called art-

Cont.py, which is stored in the folder /artCont/. The syntax

to perform the analysis is as follows:

python artCont.py <file_audio>

<file_features> <path_base>

where <file_audio> corresponds to the audio file that will be

analyzed, <file_features.txt> is a file that will contain the

results, and <path_base> corresponds to the path where the

script is stored.

The script creates also a radar figure that allows comparisons

of the computed features w.r.t. those computed from the refer-

ence. Fig. 6 shows the radar-type plot of the articulation measures

in continuous speech for a healthy speaker (left) and a PD patient

(right). BBE_onXX corresponds to the Bark band energy number XX

computed upon the onsets of the utterance, and BBE_offXX corre-

sponds to the Bark band energy number XX computed upon the

offsets of the utterance. The area in green corresponds to the val-

ues of the features obtained from the speaker under evaluation

(typically a patient), and the area in blue corresponds to the val-

ues of the reference. When the green area is inside the blue one, it

means the features of the current speaker are in the same range of

the healthy speakers. In Fig. 6 note that in the left hand side, the

values exhibited by the healthy speaker are inside the blue area,

conversely in the right hand side, the patient exhibits lower energy

values in BBE_on01 to BBE_on07, and in BBE_off04 to BBE_off07.
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Fig. 6. Radar-type figures for a healthy speaker (left) and for a PD patient (right). (For interpretation of the colors in this figure, the reader is referred to the web version of

this article.)

Fig. 7. Window for articulation analysis. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Implementation for end users

The articulation analysis using the graphic user interface is per-

formed by clicking on the articulation button of the main win-

dow 1. The result is displayed in Fig. 7. This window consists of

two fields. On the left hand side the articulation analysis based

on sustained utterances is displayed. It includes the vocal triangle,

the vocal pentagon (for cases where the five Spanish vowels are

available), and the values of the measures introduced in Section

2.1.3. Those values that exceed the reference ones are displayed

in red. On the right hand side the window displays the results of

the analysis upon continuous speech signals. In the upper part of

this field there is a plot with the log-energy values of the Bark

bands extracted from the onsets and offsets. Below this plot, there

is a radar-type figure displaying the result of the Bark band ener-

gies compared with respect to the reference set (healthy controls

of PC-GITA).

2.1.4. Prosody analysis

Prosody studies variables like timing, intonation, and loudness

during the production of speech. These features are necessary to

produce intelligible and natural speech and they have been studied

in the research community since several years ago [27–29], and

[30]. Prosody is commonly evaluated with measures derived from

the fundamental frequency, the energy contour, and duration. In

NeuroSpeech the prosody analysis can be performed with the read

text and/or the monologue.

Features related to the fundamental frequency

With the aim of modeling intonation patterns of the PD pa-

tients, the contour of the fundamental frequency is computed, and

statistical functionals are computed: average, standard deviation,

and maximum values are calculated to evaluate the monotonicity

of the patient, and the maximum frequency that the speaker can

reach.

Features related to energy

Similar to the fundamental frequency, the energy contour of

the utterance is computed and statistical functionals are calculated

from such a contour. The average and standard deviation of the

energy besides its maximum value are calculated.
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Table 2

Prosody features.

Measure Description

Vrate Number of voiced segments per second (voiced rate)

avgdurV Average duration of voiced segments

stddurV Standard deviation of the duration of voiced segments

silrate Number of silence segments per second (silence rate)

avgdurSil Average duration of silence segments

stddurSil Standard deviation of the duration of the silence segments

avgF0 Average fundamental frequency

stdF0 Standard deviation of the fundamental frequency

maxF0 Maximum value of the fundamental frequency

avgE Average energy

stdE Standard deviation of the energy

maxE Maximum value of the energy

Features related to duration

Several duration measures are computed from the speech sig-

nal. The complete list of the prosody features extracted in Neu-

roSpeech is displayed in Table 2.

Implementation for developers

The prosody analysis is performed with a python script called

prosody.py, which is stored in the folder /prosody/. The syn-

tax to perform the analysis is as follows:

python prosody.py <file_audio>

<filef0.txt> <fileEn.txt> <file_fea-

tures.txt> <path_base>

where <file_audio> is the audio file to be analyzed, <filef0.

txt> is a file with the result of the F0 contour, <fileEn.txt>

contains the energy contour, <file_features.txt> is the file

that will contain the features described above, and <path_base>

is the path where the script is stored. The script creates also a fig-

ure with the contours of F0 and energy. A radar-type figure with

the prosody features is also created for comparison purposes w.r.t.

the reference speakers.

Fig. 8 shows the contours of the fundamental frequency and

energy for a healthy speaker (left) and for a PD patient (right).

These figures corresponds to results obtained from recordings of

the read text. Note that both contours are more stable for the

healthy speaker than for the PD patient.

Fig. 9 contains the radar-type plots obtained for a healthy

speaker (left) and for a PD patient (PD). Note that most of the ex-

tracted features of the healthy speaker (green area) are inside the

reference (blue area), only the standard deviation and the average

value of the energy are slightly below the reference. Conversely,

the PD patient (right) shows higher values of the standard de-

viation of the duration of silences, and the standard deviation of

the duration of voiced segments. Additionally, the standard devia-

tion of the fundamental frequency is also lower than the reference,

which confirms the monotonicity of dysarthric speech. These two

features are commonly mentioned in the literature as typical in-

dexes of dysarthric speech.

Implementation for end users

When the user clicks on the prosody button of the main win-

dow of NeuroSpeech the software enables the prosody analysis.

Fig. 10 displays an example. The window is divided into two fields.

On the left hand side there are three figures, the speech signal in

the time domain, the F0 contour, and the energy contour. On the

right hand side there is a list with the twelve prosodic features

that were listed above. The obtained values and the references are

displayed. Those values that exceed the reference ones are in red.

Finally, a radar-type figure is also displayed in order to allow the

user to make quick analyses and comparisons.

2.1.5. Diadochokinetic analysis

The DDK evaluation is commonly used to assess dysarthric

speech. The speech tasks associated with DDK include the repe-

tition of syllables like /pa/, /ta/, /ka/, or combinations of them like

/pa-ta-ka/ or /pe-ta-ka/. The main purpose of these evaluations is

to assess the capability of the speaker to move several articulators

of the vocal tract including tongue, lips, and velum [18]. The DDK

analysis performed in NeuroSpeech considers several speech tasks

including the repetition of /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/,

/ta/, and /ka/.

Features extracted to perform the DDK analysis

The measures calculated upon DDK tasks are mainly related

with changes in energy, pause rate, DDK regularity, duration, and

others. The complete list of measures extracted in the DDK analy-

sis is presented in Table 3.

Implementation for developers

The DDK analysis is performed with a python script called

DDK.py, which is stored in the folder /DDK/. The syntax to per-

form the analysis is as follows:

python DDK.py <file_audio> <filef0.txt>

<fileEn.txt> <file_features.txt>

<path_base>

where <file_audio> is the audio file to be analyzed, <filef0.

txt> is a file with the result of the F0 contour, <fileEn.txt>

contains the energy contour, <file_features.txt> is the file

that will contain the features described above, and <path_base>

is the path where the script is stored. The script creates also a fig-

ure with the contours of F0 and energy. A radar-type figure with

the prosody features is also created for comparison purposes w.r.t.

the reference speakers.

Fig. 11 shows the contours of the fundamental frequency and

energy for a healthy speaker (left) and for a PD patient (right).

These figures corresponds to results obtained from recordings of

the rapid repetition of the syllables /pa-ta-ka/. Note that both con-

tours are more stable for the healthy speaker than for the PD

patient.

Fig. 12 contains the radar-type plots obtained for a healthy

speaker (left) and for a PD patient (PD). Note that the extracted

features of the healthy speaker (green area) are inside the refer-

ence (blue area). Conversely, the PD patient (right) shows higher

values in six measures, confirming observations reported by other

scientists about the deviation of DDK tasks exhibited by PD pa-

tients compared to healthy speakers.

Implementation for end users

When the user clicks on the DDK button of the main window

of NeuroSpeech the software enables the DDK analysis. Fig. 13 dis-

plays an example. The window is divided into two fields. On the

left hand side there are three figures, the speech signal in the time

domain, the F0 contour, and the energy contour. On the right hand

side there is a list with the eleven features that were listed above

in Table 3. The obtained values and the references are displayed

along with the reference values which are obtained from the ref-

erence group in PC-GITA according to the sex of the test speaker.

Finally, a radar-type figure is also displayed in order to allow the

user to make quick analyses and comparisons.

2.1.6. Intelligibility analysis

Intelligibility is related to the capability of a person to be

understood by other person or by a system. Intelligibility is de-

teriorated in patients with neurological disorders, and it causes

loss of their communication abilities and produces social isolation

specially at advanced stages of the disease, thus it is an important
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Fig. 8. Contours of the fundamental frequency and energy for a healthy speaker (left), and for a PD patient (right). Speech task: read text.

Fig. 9. Radar-type figures for a healthy speaker (left) and for a PD patient (right). (For interpretation of the colors in this figure, the reader is referred to the web version of

this article.)

Fig. 10. Window for prosody analysis. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Table 3

DDK features.

Measure Description

F0 variability [Semitones] Variance of the fundamental frequency in semitones

F0 variability [Hz] Variance of the fundamental frequency in Hz

Avg. energy [dB] Average energy

Energy variability [dB] Variance of energy

Max. energy [dB] Maximum value of energy

DDK rate Number of syllables per second

DDK regularity Variance of the syllables duration

Avg. duration DDK Average of the syllables duration

Pause rate [1/s] Number of pauses per second

Avg. duration pause Average duration of the pauses

Regularity pause Variance of the pauses duration

marker that deserves attention from medical experts, care givers,

patients [31]. In order to help these persons to analyze and moni-

tor this speech dimension, NeuroSpeech includes a module to per-

form intelligibility analyses based on several speech tasks including

a set with ten sentences that are read by the patient and a text

that contains all of the Spanish sounds that are spoken in Colom-

bia. The analysis is based on the automatic speech recognizer (ASR)

provided by Google Incr. It can be accessed by Internet through

https://www.google.com/intl/es/chrome/demos/speech.html, thus

this part of the analysis in NeuroSpeech needs to have Internet ac-

cess (unless the developers decides to implement their own ASR,

which is also possible).

Two measures are calculated for the intelligibility analysis: the

word accuracy (WA), and a similitude measure based on dynamic

time warping (sDTW). The measures were introduced in [19] and

[32] to model the intelligibility deficits of PD patients.

Word accuracy (WA)

The WA has been established as a marker to analyze the perfor-

mance of ASR systems and the intelligibility of persons. It has been

successfully used to assess intelligibility of people with other kind

of speech disorders [33], and the authors indicate that WA can be a

good descriptor of speech intelligibility in people with pathological

voice. WA is defined as the number of words correctly recognized

by the ASR system relative to the total of words in the original

string. It is computed with Equation (8).

WA =
# words correctly recognized

# of total words
(8)

Similarity based on dynamic time warping

DTW is a technique to analyze similarities between two time–

series when both sequences may have differences in time and

number of samples. It is performed by a time-alignment between

the sequences. The DTW distance is computed between the pre-

dicted string, i.e., the complete sentence recognized using the ASR

system and the original sentence read by the speaker. The distance

is computed over the text, at the grapheme level, then the dis-

tance is transformed into a similarity score using Equation (9). If

the sequences are the same, the DTW _distance is zero, and the

similarity will be 1, conversely if the strings are very different, the

DTW _distance will be high, and the similarity will be close to

zero.

sDTW =
1

1+DTW_distance
(9)

Implementation for developers

This analysis is performed with a script called intelligi-

bility.py, which is stored in the folder /intelligibil-

ity/. The syntax to perform the analysis is as follows.

python intelligibility.py <file_audio>

<file_txt.txt> <pred_txt.txt>

<file_features.txt>

where <file_audio> is the audio file to be analyzed, <file_

txt.txt> is the transcription of the audio file, <pred_txt.

txt> will contain the string predicted by the ASR, and <file_

features.txt> is the file that will contain the intelligibility

measures.

A radar figure is also created with the intelligibility features

computed from different utterances. Fig. 14 contains the radar fig-

ures obtained for the intelligibility analysis of a healthy speaker

(left), and for a PD patient (PD). Note the high reduction in the in-

telligibility of the PD patient, compared to the figure obtained for

the healthy speaker.

Implementation for end users

The intelligibility analysis of NeuroSpeech is performed upon a

set with ten sentences and a text of 36 words that are read by the

speakers (see [14] for details of the proposed recording protocol

for the analysis of PD speech).

Fig. 15 displays the window of NeuroSpeech that is activated af-

ter clicking on the intelligibility button. This window shows the

Fig. 11. Contours of the fundamental frequency and energy for a healthy speaker (left), and for a PD patient (right). Speech task: read text.
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Fig. 12. Radar-type figures for a healthy speaker (left) and for a PD patient (right). (For interpretation of the colors in this figure, the reader is referred to the web version of

this article.)

Fig. 13. Window for prosody analysis.

Fig. 14. Radar-type figures for a healthy speaker (left) and for a PD patient (right).
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Fig. 15. Window for intelligibility analysis.

Table 4

List of items included in the mFDA-2 evaluation.

Aspect Item and speech task

Respiration Sustained vowel /a/ to assess the respiratory capability

DDK evaluations to assess the respiratory capability

Lips DDK evaluations to assess the strength of closing the lips

Read text and monologue to assess general capability to control the lips

Palate Read text and monologue to assess nasal escape

DDK evaluations to assess the velar movement

Laryngeal Sustained vowel /a/ to assess the phonatory capability

Read text and monologue to assess the phonatory capability in continuous speech

Read text and monologue to assess monotonicity

Read text and monologue to assess the effort to produce speech

Tongue DDK evaluations to assess the velocity to move the tongue

Repetition of the syllable /ta/ to assess the velocity to move the tongue

Intelligibility Read text and monologue to assess intelligibility

original text of the speech tasks (sentences and text) and the texts

predicted by the ASR. The results of the WA and DTW are also dis-

played. On the right hand side of the window, there is a radar-type

figure that shows how the intelligibility aspect of the speaker un-

der evaluation is compared w.r.t. the reference. The average values

of the DTW similarity and the WA are also displayed.

2.1.7. Neurological state and the dysarthria level assessment

The neurological state of PD patients is typically evaluated ac-

cording to the Unified Parkinson’s Disease Rating Scale (UPDRS)

[11]. This scale evaluates motor and non-motor aspects of PD. It is

divided into four parts, part one evaluates non-motor experiences

of daily living and it has a total of 13 items; part two evaluates

motor activities of daily living and it is composed by 13 items; part

three includes the motor examination and comprises 33 items; and

part four is to assess the motor complications with a total of 6

items. The ratings of each item range from 0 (normal) to 4 (se-

vere), and the total score of each part corresponds to the sum of

its items. During a typical neurological evaluation of a PD patient,

the medical expert performs the evaluation of the third part of the

UPDRS scale (UPDRS-III), thus each patient is typically labeled with

a score ranging between 0 and 132 (33× 4).

The motor evaluation of the UPDRS has shown to be suitable to

assess Parkinson’s patients; however, such an evaluation only con-

siders speech in one of its items, thus the deterioration of the com-

munication abilities suffered from PD patients is not properly eval-

uated. In order to help clinicians, speech and language therapists,

patients, and care givers to assess and to monitor the communi-

cation abilities of PD patients, we started recently the develop-

ment of an adapted version of the Frenchay Disathria Assessment

(FDA-2) [12]. The original version of the FDA-2 considers several

factors that are affected in people suffering from dysarthria, such

as reflexes, respiration, lips movement, palate movement, laryngeal

capability, tongue posture/movement, intelligibility, and others. Al-

though this tool covers a wide range of aspects, it requires the

patient to be in front of the examiner. In our case it is not pos-

sible to have a new appointment with the patients, thus we only

have access to the recordings captured several months or years

ago. In order to perceptually evaluate such recordings following a

tool similar to the FDA-2, we introduced the modified FDA (mFDA-

2). This scale includes the following aspects of speech: respiration,

lips movement, palate/velum movement, larynx, tongue, and intel-

ligibility. The m-FDA is administered considering different speech

tasks including sustained vowels, rapid repetition of the syllables

/pa-ta-ka/, read texts, and monologues. It has a total of 13 items

and each of them ranges from 0 (normal or completely healthy) to

4 (very impaired), thus the total score of the mFDA-2 ranges from
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0 to 42. Table 4 shows details of the items included in the mFDA-2

evaluation.

NOTE: this is a preliminary version and it is still under review,

evaluation, and validation. We decided to include it in this paper

because we consider that it could be interesting for the research

community to see how they can include other reference labels or

scales into NeuroSpeech, thus the community can train different

models for the evaluation of other diseases and use the framework

of our software to perform specialized assessments.

According to the rating scales introduced above, there are two

different labels to be predicted per patient, i.e., UPDRS-III and

mFDA-2. The prediction of the UPDRS-III labels is performed us-

ing a support vector regressor (SVR) like in [19] and [24]. For the

case of mFDA-2, as each aspect of speech is evaluated with partic-

ular speech tasks and the resulting label is formed by a set of six

sub-scores, we decided to perform the evaluation of each sub-score

using a multi-class support vector machine (SVM).

The process of labeling the speech recordings of the PD patients

in PC-GITA (reference set) was performed by three phoniatricians.

They were asked in the beginning to agree in the first ten evalua-

tions, then each expert performed the evaluation of the remaining

recordings independently. The inter-rater reliability among the la-

belers is 0,75. Regarding the labeling of the neurological state of

the patients, they were evaluated by one Neurologist certified by

the Movement Disorders Society to perform such kind of evalua-

tions. All of the predictions performed in NeuroSpeech are based on

the criteria of the medical experts that supported this research.

Implementation for developers

The prediction of the mFDA-2 and the UPDRS-III scores is per-

formed with a python script called predictPD.py, which is

stored in the folder /evaluation/. The syntax to perform the

prediction is as follows:

Python predictPD.py <path_base>

<file_audio>

where <file_audio> is the audio file to be analyzed and

<path_base> is the folder where the script is stored. The

script will generate a file called <pred.txt> in the folder

<path_base>. The file contains a total of eight fields: the to-

tal score of mFDA-2, the six items of the scale, and the predicted

score of the UPDRS-III scale.

If the user wants to re-train the models to predict the UPDRS-

III or the mFDA-2 scores using another features or speech tasks,

the following script has to be executed as follows:

Python TrainSVRNeuroSpeech.py

<file_matrix.txt> <file_labels.txt>

<file_ scaler.obj> <fileSVR.obj>

where <file_matrix.txt> is a txt file with the feature ma-

trix, the txt file is named as <file_ labels.txt> and

it contains the labels/scores originally assigned by the experts

(in the folder there are files for the UPDRS-III <labelsUP-

DRS.txt> and for the mFDA-2 scores <labelsmFDA.txt>).

<file_scaler.obj> is an output file that contains an object

with the mean value and standard deviation which can be used for

the standardization of the feature matrix, and <fileSVR.obj>

will contain the re-trained SVR. The <file_scaler.obj> has

to be named as <scalerUPDRS.obj> or <scalermFDA.obj>

for the prediction of the UPDRS-III or the mFDA-2 scores, re-

spectively. The file with the trained SVR has to be named as

<SVRtrainedUPDRS.obj> for the prediction of the UPDRS-III,

and for the prediction of the mFDA-2 scores the required name is

<SVRtrainedmFDA.obj>.

To re-train the multi-class SVMs for the prediction of the

mFDA-2 sub-scales the following script needs to be followed:

Python TrainSVMNeuroSpeech.py <file_ma-

trix.txt> <sub-scale> <file_labels.txt>

<file_scaler.obj> <fileSVM.obj>

Note that the script <TrainSVMNeuroSpeech.py> may be

executed similarly to <TrainSVRNeuroSpeech.py>, adding

the parameter <sub-scale>, which refers to the sub-scale that

will be trained, i.e., <r> for respiration, <l> for lips, <p> for

palate, <x> for larynx, <t> for tongue, and <i> for intelligibil-

ity.

Implementation for end users

This part of the analysis can be performed by the user by click-

ing on the evaluation button of the main window of NeuroSpeech.

Fig. 16 shows an example of the information that is displayed af-

ter performing the analysis. The left hand side of the evaluation

window displays the result of each speech aspect evaluated in the

mFDA-2 scale. Besides, the total score of the predicted mFDA-2 and

the predicted value of the UPDRS-III score are included. There are

two figures on the right hand side of the window, one displays a

histogram with the values of the mFDA-2 assigned by the experts

to the people in PC-GITA, and the other one displays a histogram

of the values of the UPDRS-III scores assigned by the neurologists

to the same population. The predicted values of the speaker under

evaluation are displayed as a red line painted on the histogram

bars.

3. Generation of the report

As it was mentioned before, in order to help the patients, clini-

cians, and care givers, NeuroSpeech is able to generate a report with

the results of the evaluation of phonation, articulation, prosody,

and intelligibility. An example of this report is in the same folder

of the software documentation.4

4. Contributions of NeuroSpeech to the state of the art

A new software for the analysis of pathological speech signals

is presented in this paper. The software is based on state-of-the-

art methods that have been validated in previous publications.

In this paper we have presented a configuration of the software

to analyze voice recordings of Parkinson’s patients; however, the

same platform can be easily adapted to perform the analysis of

other voice pathologies like dysphonia or hypernasality. Four dif-

ferent aspects or dimensions of speech can be modeled using Neu-

roSpeech: phonation, articulation, prosody, and intelligibility. The

analysis of pathological speech signals based on such a “division”

by dimensions allows the user to make specific conclusions re-

garding different aspects of the speech production process. This

characteristic makes NeuroSpeech a very good option for clinicians,

patients, and care givers to assess pathological voices.

NeuroSpeech will contribute the state of the art in several as-

pects including, (1) its methods are based on state of the art tech-

niques which enables the research community to address up-to-

dated tests in a very easy way, (2) it can be used by patients, clin-

icians, and computer scientists. Patients can give feedback about

its usability, clinicians can contribute with the interpretation of re-

sults, and computer scientists can contribute with new methods,

4 https://github.com/jcvasquezc/NeuroSpeech.
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Fig. 16. Window for the evaluation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

(3) this software is freely accessible and open source, and (4) to

the best of our knowledge, this is the first attempt to launch an

easy to use software, freely accessible and open source to help

people of different nature (clinicians, patients, or scientists) to per-

form their own analyses and to make their own conclusions re-

garding different aspects of speech pathologies.

We are currently working on two different fields, the imple-

mentation of more measures and pattern recognition techniques,

and the construction and characterization of databases with other

neurological diseases, such that in the near future we expect to

include models of more pathologies in NeuroSpeech.
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XMLVIEW: extended

Appendix A. Supplementary material

The following is the Supplementary material related to this article.
begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent

Label: MMC 1

caption: SoftwareX impact statement: general description of the NeuroSpeech software and details of the current code and executable

software versions.

link: APPLICATION : mmc1
end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent
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