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Perineuronal nets (PNNs) are mesh-like structures, composed of a hierarchical assembly

of extracellular matrix molecules in the central nervous system (CNS), ensheathing

neurons and regulating plasticity. The mechanism of interactions between PNNs and

neurons remain uncharacterized. In this review, we pose the question: how do PNNs

regulate communication to and from neurons? We provide an overview of the current

knowledge on PNNs with a focus on the cellular interactions. PNNs ensheath a subset

of the neuronal population with distinct molecular aspects in different areas of the CNS.

PNNs control neuronal communication through molecular interactions involving specific

components of the PNNs. This review proposes that the PNNs are an integral part of

neurons, crucial for the regulation of plasticity in the CNS.

Keywords: perineuronal nets, hyaluronan, chondroitin sulfates, plasticity, neuronal communication, interneurons

INTRODUCTION

Perineuronal nets (PNNs) were first described by Camillo Golgi as a reticular structure that
enveloped nerve cells (Spreafico et al., 1999). They are a hierarchical assembly of proteoglycans
and a selection of proteins. PNNs start with a meshwork of hyaluronan backbone synthesized
by hyaluronan synthase (HAS), which is expressed on the surface of neurons (Brückner et al.,
1993). The hyaluronan backbone provides a scaffold for the attachment of proteoglycans,
including chondroitin sulfate proteoglycans (CSPGs) from the lectican family aggrecan, brevican,
versican, and neurocan (Day and Prestwich, 2002). Proteoglycans are a family of glycans with
glycosaminoglycan chains attached to a core protein. Themajority of the glycosaminoglycan chains
are chondroitin sulfate (CS) chains, which exist in different sulfation patterns (Deepa et al., 2006).
A di-sulfation pattern occurs in CS-D and CS-E, while a single sulfation pattern occurs in CS-A
and CS-C (Miyata and Kitagawa, 2015). The attachment of the proteoglycans to the hyaluronan
backbone is stabilized by link proteins, the hyaluronan and proteoglycan link protein (HAPLN)
family (Day and Prestwich, 2002). Tenascin R (TN-R) links the CSPGs together at their C-terminals
(Morawski et al., 2014). Although the basic components are similar, the PNNs are not identical in
each brain region, the quantities and precise composition of the components varies (Dauth et al.,
2016). Although many of the components of the PNNs have been identified, more may exist and
the details of their interactions remain unknown.

The PNNs appear around a subset of neurons and regulate plasticity, the capacity of neurons to
adjust their synapses based on inhibitory or excitatory signals, after the closure of critical periods
(Pizzorusso et al., 2002; Carulli et al., 2005; Kwok et al., 2015). The critical period is a period of high
plasticity during development when neuronal networks develop and eventually consolidate their
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connections (Hensch, 2004). Critical periods in distinct brain
regions occur at different ages. When the critical period of a
neuronal network ends, the PNNs form and reduce plasticity of
the neurons they envelope (Kwok et al., 2015). Removal of the
PNNs by an enzyme called chondroitinase ABC (ChABC), which
digests the CS chains and the hyaluronan backbone, reactivates
plasticity (Pizzorusso et al., 2002; Grøndahl et al., 2011). A more
specific enzyme, Streptomyces hyaluronidase, is applied to digest
specifically the hyaluronan in the PNNs and also reactivates
plasticity (Happel et al., 2014).

In this review, we address the question of the neuronal identity
of PNN neurons in each brain region. These neurons are mostly
fast spiking interneurons, which are key to the regulation of
plasticity. Furthermore, we provide molecular mechanisms by
which the PNNs influence the neuron it envelopes. We then
describe the pathways through which the PNNs control the
communication between neurons. The active participation of the
PNNs with the properties of the wrapped neurons suggests that
the PNNs are not just an extracellular coat, but an integral part of
the neuron, which is crucial in regulating neuronal plasticity.

NEURONAL POPULATION OF THE PNNS

The PNNs are found around specific subgroups of neurons. We
first discuss the populations of neurons enwrapped by the PNNs
in different regions of the central nervous system (CNS) (Table 1)
and subsequently, the recurring characteristics of the neurons
enveloped with PNNs.

Cortex
In the cortex, PNN neurons occur in high density in the motor
and sensory cortex, as well as in the prefrontal and the temporal
cortex. They are mostly found in layers 2–5 of the cortex
(Brückner et al., 1999). However, there is some variation between
cortical regions in the layers in which the PNNs can be found:
the visual cortex shows the PNNs mostly in layer 4 and the lower
part of layer 5, while in the medial entorhinal cortex (mEC) the
PNNs are mostly found in layer 2 and 3(Lensjø et al., 2017a). The
time at which PNNs mature also varies between cortical regions,
in the mEC, PNNs mature earlier than in the visual cortex.
Maturation of PNNs in the mEC coincides with the maturation
of the grid cell pattern at postnatal day 30 (Lensjø et al., 2017a),
while maturation of the PNNs in the visual cortex occurs at
postnatal day 42 (Ye and Miao, 2013). The majority of neurons
surrounded by PNNs in the cortex are GABAergic interneurons,
while a smaller number of neurons surrounded by PNNs are
pyramidal cells (Härtig et al., 1999; Beebe et al., 2016). There is
a high co-localization of the GABAergic neurons ensheathed by
PNNs and parvalbumin (Baig et al., 2005), specifically the myosin
binding protein C (mbpC) positive parvalbumin neurons, while
the somatostatin parvalbumin positive neurons do not show
PNNs (Rossier et al., 2015). Parvalbumin positive neurons are
inhibitory interneurons and they form the largest population
of PNN positive cells in the brain (Baig et al., 2005). They
are fast spiking interneurons which regulate pyramidal neurons,
which in turn project out of the cerebral cortex and provide
excitatory signals. When PNNs are removed from the visual

cortex with ChABC, inhibitory activity is indeed reduced (Lensjø
et al., 2017b). Electrophysiological recordings display an altered
excitatory-inhibitory balance which resemble a reset to a juvenile
state of the cortex, with increased plasticity (Lensjø et al.,
2017b).

In the visual cortex, the formation of the PNNs can be
delayed by dark rearing (Pizzorusso et al., 2002). Deprivation
of stimuli by dark rearing disturbs the formation of the PNNs,
delays the closure of critical period (a period of high plasticity
during development) and thus the maturation of neural circuits
in the visual cortex (Pizzorusso et al., 2002, 2006; Hensch, 2004).
Furthermore, plasticity in the visual cortex can be reopened in
adults by removing PNNs using ChABC treatment (Pizzorusso
et al., 2002). Similar results were found in the auditory cortex
when treatment with hyaluronidase reopened the window of
plasticity (Happel et al., 2014). This suggests CS and hyaluronan
in the PNNs are important for controlling plasticity in the
cortex. Moreover, in C6ST-1 knockin mice, in which the ratio
of 4S:6S is reduced, both the formation of PNNs and the
maturation of parvalbumin neurons are impaired (Miyata et al.,
2012). This genetic mutation also delays the closure of the
critical period. In HAPLN1 KO mice, which show a reduction
in PNNs, long term depression (LTD) is facilitated (Romberg
et al., 2013). LTD is a reduction of the efficacy of the neuronal
synapse lasting long after the stimulus, a form of plasticity.
These changes in plasticity enhance the long term memory of
the HAPLN1 KO mice (Romberg et al., 2013). Interestingly,
PNNs in the cortex are also necessary for fear learning, which
also requires plasticity. However, instead of blocking plasticity,
in fear learning PNNs need to be dynamically regulated to
make plasticity possible. A recent study shows that 4 h after
fear conditioning, mRNA of PNN components were upregulated
and more cells were surrounded with PNNs (Banerjee et al.,
2017). This finding indicates that cells may respond to episodes
of plasticity by increasing their PNNs. Together, these results
show that PNNs in the cortex surround parvalbumin positive
GABAergic interneurons and pyramidal cells and it regulates the
closure of critical periods of plasticity.

Amygdala
Perineuronal nets (PNNs) in the amygdala ensheath parvalbumin
and calbindin positive neurons (Härtig et al., 1995). Both
parvalbumin and calbindin positive neurons are GABAergic
interneurons and both innervate pyramidal neurons. PNNs are
also found surrounding excitatory neurons in the amygdala;
PNNs in this region co-localize with Ca2+/calmodulin-
dependent protein kinase II (CaMKII) (Morikawa et al., 2017).
These excitatory neurons are necessary for fear memory. When
cFos was used to mark activity in neurons, a correlation was
found between the level of activity in the PNN excitatory neurons
and the amount of freezing seen in the behavior of the animal
(Hisaoka et al., 2010). Moreover, the appearance of the PNNs
in the amygdala coincides with a developmental switch in fear
memory resilience (Gogolla et al., 2009). This developmental
switch specifies a period when the brain changes from a young
brain, able to erase fear memories, to a mature brain in which
fear memories can no longer be erased. The removal of the PNNs
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TABLE 1 | The identities of PNN neurons in the central nervous system.

CNS region Neuron type Location References

Cortex GABAergic inhibitory interneurons, inhibitory

pyramidal cells positive for parvalbumin (Härtig

et al., 1999), specifically the mbpC positive

parvalbumin neurons (Rossier et al., 2015).

Motor cortex, sensory cortex, prefrontal cortex,

temporal cortex, layer 2-5 (Brückner et al., 1999), in

visual cortex mostly 4-5, in mEC mostly 2-3 (Lensjø

et al., 2017a).

Brückner et al., 1999; Härtig et al., 1999;

Rossier et al., 2015; Lensjø et al., 2017a

Amygdala Parvalbumin and calbindin positive inhibitory

interneurons (Härtig et al., 1995) and excitatory

neurons positive for CaMKII (Morikawa et al., 2017).

Lateral and basolateral nuclei (Morikawa et al.,

2017).

Härtig et al., 1995; Morikawa et al., 2017

Hippocampus Basket cells and bistratified neurons with high

parvalbumin levels (Yamada et al., 2015). Excitatory

pyramidal cells (Carstens et al., 2016).

Highest in CA2 (Lensjø et al., 2017a) CA1 and CA3

(Kochlamazashvili et al., 2010), dentate gyrus

(Jansen et al., 2017).

Kochlamazashvili et al., 2010; Yamada

et al., 2015; Carstens et al., 2016; Jansen

et al., 2017; Lensjø et al., 2017a

Cerebellum Excitatory Golgi neurons (Carulli et al., 2006) and

Purkinje cells (Mabuchi et al., 2001) positive for

parvalbumin.

Cerebellar cortex (Mabuchi et al., 2001) and nuclei

(Lafarga et al., 1984; Blosa et al., 2016).

Lafarga et al., 1984; Mabuchi et al., 2001;

Carulli et al., 2006; Blosa et al., 2016

Spinal cord Large interneurons, 30% of motoneurons (Smith

et al., 2015).

30% of motoneurons in ventral horn, 20% of

neurons in the dorsal horn (Galtrey et al., 2008).

Galtrey et al., 2008; Smith et al., 2015

with ChABC completely blocks the expression of fear memory,
suggesting that the memory is erased, which is not normally
possible in the adult brain when the neuronal circuit is mature
and PNNs have formed (Gogolla et al., 2009). Interestingly, the
PNNs in the amygdala are both necessary for the protection and
renewal of fear memories (Gogolla et al., 2009). This indicates
the PNNs are not simply blocking the plasticity of neurons,
but are also a crucial component of the plasticity. Treatment
with ChABC abolishes spontaneous recovery and renewal of
conditioned fear memory, while it does not interfere with
memory consolidation (Gogolla et al., 2009). In the amygdala,
the PNNs envelope both inhibitory and excitatory interneurons
and the development of PNNs in the amygdala coincides with a
switch in fear memory regulation.

Hippocampus
In the hippocampus, a high density of PNNs is found in the CA2
(Lensjø et al., 2017a), fewer PNNs are found in the CA1, CA3
(Kochlamazashvili et al., 2010) and the dentate gyrus (Jansen
et al., 2017) The PNNs are found around basket cells and
bistratified neurons with high parvalbumin levels (Yamada et al.,
2015). These inhibitory interneurons control pyramidal cells in
the local circuit. In the CA2, the PNNs are also found around
the excitatory pyramidal neurons (Carstens et al., 2016). The
PNNs on the excitatory neurons suppress plasticity of excitatory
synapses. Removal of the PNNs with ChABC leads to synaptic
potentiation and the excitatory postsynaptic current (EPSC)
amplitude increases (Carstens et al., 2016).

In a mouse model where PNN components brevican,
neurocan, TN-R, and Tenascin C were deleted, synaptic
depression was found amplified in the dentate gyrus (Jansen
et al., 2017). When neurons and astrocytes from this KO model
are cultured, a reduction in frequency of both EPSCs and
inhibitory postsynaptic currents (IPSCs) was observed (Geissler
et al., 2013). These studies indicate that the deletion of the
PNN components leads to a loss of synaptic plasticity in
hippocampal neurons. Similarly, in a TN-R KOmodel, reduction
of long term potentiation (LTP) was found in the CA1 region

(Bukalo et al., 2001). The threshold for the induction for LTP is
also increased and the basal excitatory synaptic transmission is
elevated (Bukalo et al., 2007). LTP is a persistent strengthening
of the synapse and a form of synaptic plasticity. The loss of the
potential to strengthen synapses when TN-R, a component of the
PNNs, is missing, shows the PNNs do not only block plasticity
but regulate plasticity of neurons in various manners. Indeed,
removal of the PNNs with hyaluronidase treatment reduces
calcium currents, which are crucial for neuronal activity, in the
CA3 and CA1 (Kochlamazashvili et al., 2010).

Similar to findings in the amygdala and the cortex, PNN
removal with ChABC and hyaluronidase in the hippocampus
disrupts fear memory formation (Hylin et al., 2013). The function
of the PNNs as a regulator of plasticity is also demonstrated
in status epilepticus, a prolonged state of seizure. After status
epilepticus, a period of enhanced neuronal activity, PNNs are
lost (McRae et al., 2012). This finding indicates the PNNs are
regulated by neuronal activity. Status epilepticus causes synaptic
reorganization in the hippocampus, which is possible due to PNN
removal (McRae et al., 2012). These findings indicate the PNNs
in the hippocampus surround both excitatory and inhibitory
neurons and in both cases the PNNs are crucial for the control
of plasticity.

Cerebellum
In the cerebellum, the PNNs can be found in the cerebellar
cortex (Mabuchi et al., 2001) as well as in lateral and basolateral
nuclei (Lafarga et al., 1984; Blosa et al., 2016) of the cerebellum.
The PNNs in the cerebellum envelope the large excitatory Golgi
neurons (Carulli et al., 2006), which synapse on the granule cells.
Thin and compact PNNs can also be found around the Purkinje
cells (Mabuchi et al., 2001), which project to the deep cerebellar
nuclei. Both Golgi neurons and Purkinje cells are positive for
parvalbumin. When PNN formation is blocked by the removal
of one of the link proteins, HAPLN1, the Purkinje cell terminal
is enhanced (Foscarin et al., 2011). Furthermore, when animals
are reared in an enriched environment, which leads to higher
plasticity in the cerebellum, the formation of the PNNs is reduced
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(Foscarin et al., 2011). The formation of the PNNs is linked to the
level of plasticity in the cerebellum.

Spinal Cord
In the spinal cord, the PNNs are mostly found around
interneurons, as well as around 30% of the motoneurons (Smith
et al., 2015) in the ventral horn and around 20% of the neurons
in the dorsal horn (Galtrey et al., 2008). Thickness of PNNs in
the spinal cord increases with exercise, which suggests higher
synaptic activity can enlarge PNNs (Smith et al., 2015). Treatment
with ChABC in the spinal cord reinstates plasticity, which allows
for the recovery of forelimb functions after spinal cord injury
(Galtrey et al., 2007; Wang et al., 2011). This suggests that PNNs
also act as a brake on plasticity in the spinal cord. Interestingly,
the removal of the PNNs only leads to recovery when it is
accompanied by rehabilitation (Wang et al., 2011). New stimuli
to the spinal cord are needed to make use of the reopening of the
plasticity by the removal of the PNNs.

Common Features and Divergence of PNN
Neurons across CNS Regions
A review on the identities on PNN neurons in different regions
of the CNS allows us to draw a comparison on the properties
on PNN neurons. There are many parallels on the formation
of PNNs from the various CNS regions. In the cerebellum, the
CSPGs which form the PNNs are produced both by glial cells
and by neurons (Carulli et al., 2006). However, only neurons have
the mRNA for the hyaluronan synthases (HASs) which produce
hyaluronan, the backbone of the PNNs. Similar to the findings in
the cerebellum, in the spinal cord HAS, together with aggrecan,
HAPLN1 and brain link protein 2 (BRAL2) are only expressed
by neurons (Galtrey et al., 2008). In both regions many PNN
components are produced bymultiple cell types but only neurons
produce HASs (Carulli et al., 2007; Galtrey et al., 2008). This
similarity indicates there is a shared underlying mechanism for
the formation of the PNNs although variation between regions
can also be found. Indeed, recombinant expression of HASs in
cell culture allows the formation of pericellular matrix similar to
PNNs (Kwok et al., 2010; Giamanco and Matthews, 2012).

Divergence between PNNs in different regions is caused
by variations in the components of the PNNs, such as
aggrecan (Matthews et al., 2002). Aggrecan exists with different
glycosylation patterns and subtypes of neurons produce aggrecan
with different glycosylation patterns (Lander et al., 1997;
Matthews et al., 2002). The components of the PNNs also have
distinct spatial patterns in the brain (Dauth et al., 2016). For
example, aggrecan, brevican, and Tn-R differ in their spatial
patterns, brevican intensity is higher in the caudate-putamen
than in the thalamus, whilst aggrecan, and Tenascin-R show
lower intensity in the caudate-putamen than in the thalamus.
It is likely the heterogeneity of the PNNs reflects the variety of
functions carried out by neurons with PNNs.

Overall, across CNS regions, PNNs surround a variety of
interneurons and regulates plasticity. Since PNNs are mostly
found around inhibitory interneurons in the cortex, an initial
proposal for PNN functions is that PNNs act as a regulator
on inhibitory neurons to balance the inhibitory and excitatory

inputs (Dityatev et al., 2010). However, this proposal has been
adjusted due to the identification of PNNs on excitatory neurons.
It has been proposed that PNNs surrounding excitatory synapses
could lead to an early closure of critical period (Carstens et al.,
2016). The fast spiking interneurons have a high capacity for
plasticity and the consistent presence of PNNs on the fast
spiking interneurons provides an extra “tool” for the regulation
of plasticity.

HOW DO THE PNNS INFLUENCE
NEURONS?

Perineuronal nets (PNNs) influence neurons through different
mechanisms: it acts as (1) a physical barrier between the neuron
and the soluble extracellular matrix; (2) a binding partner for
molecules that interact with neurons; and (3) a barrier to
prevent lateral mobility of molecules on the neuronal membrane
(Figure 1). Here, we discuss these processes and their effects
on the function of neurons and the region regulated by those
neurons.

Physical Barrier
The PNNs act as a physical barrier between the neuron and
the extracellular space. It acts as a local buffering reservoir for
ions (Morawski et al., 2015), protects the neuron from oxidative
stress (Suttkus et al., 2014) and toxic protein species (Miyata
et al., 2007). Both hyaluronan and CSs are highly negatively
charged molecules, and their presence allows PNNs to act as a
local buffer for cations close to the synapse (Härtig et al., 1999).
The PNNsmostly envelope fast spiking interneurons, which have
high activity at their synapses and therefore need buffering for
the cations involved in the neurotransmission. Using Fe3+ as a
cationic probe, PNNs have been detected as a structure with high
local charge density in patches on neuronal surfaces on tissue
slices (Morawski et al., 2015). The concentration of negative
charge in the PNNs is high enough for the PNNs to perform
ion sorting properties on the neuronal surface (Morawski et al.,
2015). The PNNs can also buffer ions, such as Fe3+, to prevent
oxidative damage in the neuronal microenvironment (Suttkus
et al., 2014). This was shown in the aggrecan, TN-R and HAPLN1
triple KO model, in which PNN formation is impaired (Suttkus
et al., 2014). The study showed that PNNs protect neurons from
oxidative stress induced by FeCl3. After a deletion of aggrecan,
TN-R or HAPLN1, protection against the oxidative stress caused
by FeCl3 is lost (Suttkus et al., 2014). Similarly, PNN removal
with ChABC makes parvalbumin neurons more vulnerable to
oxidative stress (Cabungcal et al., 2013). The PNNs also protect
neurons from the toxicity of amyloid beta (Miyata et al., 2007).
Amyloid beta has a neurotoxic effect on neurons without PNNs,
but not on neurons surrounded with PNNs. When the PNNs are
removed with ChABC, neuronal death caused by amyloid beta
is increased. Similar observation is made in human brains where
PNN neurons are indeed protected from amyloid beta plaques
(Morawski et al., 2012). These examples show that PNNs act as
a physical barrier to molecules that can damage their underlying
neurons.

Frontiers in Integrative Neuroscience | www.frontiersin.org 4 December 2017 | Volume 11 | Article 33

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


van 't Spijker and Kwok Perineuronal Nets in Neuronal Communication

FIGURE 1 | Molecular mechanisms of PNNs. (1) The PNNs block lateral diffusion of membrane bound proteins such as AMPA receptors. By this mechanism the

PNNs limit synaptic plasticity. (2) The PNNs bind specifically to proteins such as Sema3A and Otx2. This binding regulates which ECM proteins can reach the PNN

neuron and also present these proteins on its surface to signal to approaching axons from other neurons. (3) The PNNs act as a physical barrier for ion sorting and

buffering on the neuronal surface. The high negative charge of the PNNs repels anionic ions/molecules (such as reactive oxygen) to reach the neuronal surface, while it

attracts the cationic ions/molecules and creates a reservoir for fast buffering of ions required for the synaptic function and to prevent oxidative stress induced by Fe3+.

Apart from acting as a barrier between the extracellular matrix
molecules and the neurons, the PNNs also inhibit the growth of
neurites and thus deters synapse formation. CSPGs, one of the
main components of the PNNs, are strong inhibitory molecules
highly up-regulated in the glial scar after CNS injury, they
collapse growth cones and inhibit neural regeneration (Cheah
et al., 2016; Shinozaki et al., 2016). Breaking down CSPGs with
ChABC treatment improves the regeneration of axons (Shinozaki
et al., 2016). The role as a plasticity brake of PNNs is partially
attributed to the presence of CSPGs in the structure.

Specific Binding of Proteins
The different components of the PNNs have specific binding
capacities for proteins. Several growth factors, such as midkine
and fibroblast growth factor 2, have been shown to bind
specifically to chondroitin sulfate E (CS-E) which is enriched
in PNNs compared to the soluble extracellular matrix (ECM)
(Deepa et al., 2002). Similarly, the chemorepulsive molecule
Semaphorin3a (Sema3A) binds to the PNNs via CS-E (Dick et al.,
2013). Removal of the PNNs with ChABC removes Sema3A from
the neuronal surface (Vo et al., 2013). The finding suggests that
the PNNs present Sema3A to approaching axons from other
neurons to allow Sema3A to function as a repulsive signaling
molecule (de Winter et al., 2016).

TN-R carries a HNK-1 epitope, which allows it to bind
GABA receptors (Bukalo et al., 2007). GABA receptors are key

regulators of synaptic activity, so this binding capacity allows the
PNNs to regulate the synapse. In TN-R KO animals, a higher
calcium influx is observed (Bukalo et al., 2007), which shows a
relation to plasticity of the synapse. The hyaluronan backbone
of the PNNs has the capacity to modulate postsynaptic L-type
calcium channels (Kochlamazashvili et al., 2010). Treatment
with hyaluronidase indeed reduced calcium currents in the
hippocampus (Kochlamazashvili et al., 2010). Another regulator
of synaptic proteins is brevican, which regulates potassium
channels and AMPA receptors (Favuzzi et al., 2017). This
function allows brevican to regulate the activity dependent gating
of parvalbumin interneuron function (Favuzzi et al., 2017).
Brevican deficient mice indeed have impaired LTP in the CA1
of the hippocampus (Brakebusch et al., 2002).

The transcription factor orthodenticle homeobox 2 (Otx2),
needs to be captured by PNNs to be internalized by the neuron
(Beurdeley et al., 2012). This internalization is crucial for the
maturation of parvalbumin positive neurons in the cortex and
regulate plasticity. Treatment with ChABC removes the PNNs
and reduces the amount of Otx2 inside the neuron. A recent
study also demonstrates that the PNNs regulate the level of
PV expression and thus the plasticity capacity of a neuron
(Donato et al., 2013). In an animal model with a point mutation
on the Otx2 gene, maturation of parvalbumin interneurons is
delayed (Lee et al., 2017). Similar to the previous literature using
OTX2 blocking peptide, the closure of critical period plasticity
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is also delayed in this model, confirming the importance of
the binding of Otx2 to the function of PNNs in critical period
plasticity. This suggests that PNNs affect neurons through its
capacity to selectively bind growth factors, transcription factors
and signaling molecules, which ultimately affect the neuronal
functions.

In addition to the binding partners discussed above, there are
other proteins which may play a similar role as Sema3A or OTX2
to the PNNs. Recently, the tumor necrosis factor-stimulated
gene-6 (TSG-6) was identified in the glial scar (Coulson-Thomas
et al., 2016). The expression of TSG-6 is up-regulated after
spinal cord injury (Coulson-Thomas et al., 2016). TSG-6 binds
to hyaluronan and stabilizes the hyaluronan matrices (Baranova
et al., 2011). Since the backbone of PNNs consists of hyaluronan
it is possible TSG-6 binds to the PNNs and has a stabilizing
role comparable to its role in the glial scar. Other than TSG-6,
another extracellular protein neuronal pentraxin 2 (Nptx2) has
also been proposed as a PNN binding partner. ChABC treatment,
which removes PNNs, removes Nptx2 from the surface of
neurons (Chang et al., 2010). Since Nptx2 is involved in the
regulation of critical periods, just like the PNNs, and ChABC
removes Nptx2, it is likely the protein is a binding partner of the
PNNs via the CS component (Gu et al., 2013). Nptx2 controls
plasticity through clustering of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors (Pelkey et al., 2015). It
has been previously shown that the PNNs limit AMPA receptor
movement (see the next section) (Frischknecht et al., 2009).
PNNs may regulate AMPA receptors through the regulation
of NPTX2. Both proteins are potential candidates for specific
binding partners of the PNNs.

Limitation to Lateral Mobility on the
Neuronal Membrane
Perineuronal nets (PNNs) limit the mobility of membrane bound
proteins on the neuronal surface. When the PNNs are removed
from the neuronal surface using hyaluronidase in neuronal
cultures, lateral diffusion of AMPA receptor subunits increases
(Frischknecht et al., 2009). Whole-cell patch-clamp recordings
showed that the induced increase in diffusion allows a fast
exchange of desensitized receptors under high stimulation, which
then leads to an increase in paired-pulse ratio, a form of short
term synaptic plasticity (Frischknecht et al., 2009). The limitation
to the lateral mobility of membrane bound proteins caused by the
PNNs allow the PNNs to inhibit synaptic plasticity.

FUNCTIONAL CHANGES IN THE NEURON

The molecular assembly of the PNNs leads to functional changes
in the neurons they envelope: when the physical barrier function
is lost, FeCl3 causes oxidative stress in the neuron (Suttkus
et al., 2014); when the binding function of the PNNs is lost,
proteins such as Otx2 no longer reach the neuron and thus
affect its maturation (Beurdeley et al., 2012); and when the lateral
mobility of neuronal membrane proteins is increased by the
removal of PNNs, short-term plasticity is increased (Frischknecht
et al., 2009). These molecular mechanisms demonstrate that

the molecular properties and interactions of the PNNs are
crucial for the function and identity of neurons. This also
means that manipulation of PNNs can change the function of
neurons. When the PNN formation is prevented by knocking
out several of the PNN components, an increased number of
synapses is formed (Geissler et al., 2013). However, the newly
formed synapses do not function as normal synapses, because
they show a reduced frequency of excitatory and inhibitory
postsynaptic currents (Geissler et al., 2013). This indicates that
the PNNs are necessary for effective synaptic signaling and
stabilization of synapses. Interestingly, temporarily removing the
PNNs with ChABC leads to increased sprouting of axons in the
cerebellum (Corvetti and Rossi, 2005) and in the spinal cord
(Barritt et al., 2006). Axonal sprouting is a form of structural
neuronal plasticity, the axon grows in a new direction to make
new synaptic connections possible. The PNNs normally block
this form of neuronal plasticity. The temporary removal of the
PNNs not only allows for the formation of new synapses, but the
synapses can also be functional: ChABC treatment can promote
recovery of forelimb function (Wang et al., 2011). Since the
PNNs are necessary to stabilize synapses, the recovery of PNNs
after temporary removal can be helpful to stabilize the newly
formed connections. Knowledge of the molecular interactions of
the PNNs can increase our capacity to subtly interfere with the
PNNs to allow for treatment without permanent damage.

THE ROLE OF PNNS IN COMMUNICATION
BETWEEN CELLS

Communication between neurons is regulated by the PNNs.
The PNNs regulate which molecules produced by other neurons
or glia reach the neuron, present molecules to other neurons
and regulate cell signaling at the synapse. All processes will be
described here and their influence on the functioning of the
neuron will be discussed.

Regulation of Molecules Accessing the
Neuron
As discussed earlier in this review, many of the components of
the PNNs have binding capacities for specific proteins. The PNNs
can apply this function to attract proteins to the neuron. This
process has been investigated with Otx2. Otx2 relies on the PNNs
to enter the neuron and influence plasticity (Beurdeley et al.,
2012). Otx2 is expressed in the choroid plexus and spreads to
other brain regions through the cerebrospinal fluid (Spatazza
et al., 2013). When Otx2 reaches the visual cortex, it binds the
PNNs and enters the neuron to regulate maturation and thus
affect plasticity (Sugiyama et al., 2008). The Otx2 internalization
is mediated through its binding to CS-D and CS-E in the PNNs.
Consequently, when the PNN is removed with ChABC, the
amount of Otx2 in the neurons is reduced (Beurdeley et al.,
2012). This indicates that the communication between choroid
plexus and the visual cortex relies on the PNNs to bind Otx2. The
PNNs enable long distance communication between neurons by
its binding specificity.
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Presentation of Molecules to Other
Neurons
The PNNs also regulate the signals which a neuron presents to
its surrounding ECM and potentially other cells. Semaphorin
3A (Sema3A) binds the PNNs and potentiates the inhibition of
PNNs to the growth of axons (Dick et al., 2013) and potentially
to the formation of synapses. Inhibition of neurite outgrowth
of dorsal root ganglion cultures on a surface of PNN glycans,
is stronger when the surface of PNN glycans is mixed with
Sema3A (Dick et al., 2013). This finding indicates the binding of
Sema3A to the PNNs allows the PNNs to inhibit the approach
of axons from other neurons toward the neuron it surrounds.
In contrast, the PNNs block integrin activation and signaling
to other neurons (Orlando et al., 2012). Removal of the PNN
with ChABC allows activation of integrins which leads to
enhanced spine motility (Orlando et al., 2012). In conclusion,
the PNNs control communication of the neurons they surround
toward other neurons through the altered presentation of protein
signals.

Regulation of Cell Signaling at the
Synapses
Neurons communicate through signaling at the synapse and the
PNNs regulate the synapse with several methods. As described
earlier in this review, PNNs acts as a physical barrier to
limit AMPA receptor mobility on the neuronal membrane
(Frischknecht et al., 2009). The limitation of the AMPA receptor
mobility blocks them from leaving the synaptic cleft, which keeps
the amount of AMPA receptors at the synapse constant. The
physical barrier function of the PNNs thus reduces the capacity
for plasticity.

The PNNs also regulate the synapse through parvalbumin.
Many of the neurons surrounded by PNNs are parvalbumin
expressing interneurons (Härtig et al., 1995; Baig et al., 2005;
Yamada et al., 2015). Parvalbumin is a calcium binding protein
which regulates short term synaptic plasticity, which was shown
with electrophysiology experiments on a parvalbumin knockout
mouse model (Caillard et al., 2000). It is likely parvalbumin
regulates the short term plasticity by binding the calcium ions. In
themouse hippocampus, digestion of PNNs with ChABC leads to
a decrease of parvalbumin levels inside neurons (Yamada et al.,
2015). Both the amount of parvalbumin mRNA as well as the
amount of the protein itself are reduced by ChABC injection into
the brain. These results show that PNNs help in maintaining the
amount of parvalbumin in the neuron which allows it to regulate
plasticity.

The PNNs also block the formation of new synapses between
neurons (Geissler et al., 2013). When the formation of the
PNNs is decreased in cultured neurons by knockout of brevican,
neurocan, TN-R, and Tenascin-C, the neurons show an increase
in the amount of inhibitory synapses they form. Similarly, when
the PNNs are removed with ChABC, synaptogenesis is increased
between transplant and host neurons (Suzuki et al., 2007). The
formation of new synapses allows neurons to form a new route to
communicate. In conclusion, the PNNs regulate cell signaling at
the synapse.

CONCLUSION

Perineuronal nets (PNNs) are an integral part of a neuron and
regulate communication between neurons. The PNNs are found
in most brain regions and in each region, the PNNs envelope
a limited group of neurons. In general, the PNNs are mostly
formed around subpopulations of inhibitory neurons but also
around some excitatory neurons. The PNN interneurons are
mostly fast spiking neurons. It is likely these neurons have
evolved to produce PNNs because they are in need of a tool to
handle this high level of synaptic activity. PNNs allow the neuron
to react to the stress of a high amount of inhibitory and excitatory
stimuli.

The PNNs regulate plasticity through a variety of molecular
interactions. They function as a physical barrier to block the
entrance of toxic substances such as amyloid β. The components
of PNNs bear a highly negative charge, which allows the PNNs
to buffer Fe3+ and thus protect the neuron from oxidative stress.
The negative charge also regulates ion sorting, which is crucial
for fast spiking neurons that have a high utilization of ions. The
PNNs have binding capacities for specific molecules, such as
Otx2 and Sema3A. They also specifically bind several synaptic
receptors and ion channels to regulate the synapse. Furthermore,
the PNNs limit lateral mobility of membrane bound proteins.
The limitation of lateral mobility affects synaptic proteins such as
AMPA receptors. The localization of synaptic proteins is crucial
for the efficiency of the synapse, which can in turn lead to
plasticity. The three molecular mechanisms described here are
mechanisms by which PNNs regulate plasticity.

The molecular interactions in which the PNNs are involved
allow the PNNs to regulate communication between neurons.
The PNNs regulate which molecules produced by other neurons
reach the neuron through its selective binding properties. The
PNNs also present signaling molecules to other neurons. Lastly,
the PNNs are directly involved in the cell signaling taking place at
the synapse. The different communication methods are essential
for highly active interneurons to adapt to their surroundings.
Interneurons process high amounts of input and fire at a high
rate, which leads to high metabolic activity and the risk of
oxidative stress. The interneurons produce PNNs to manage this
high amount of activity. It is possible that PNNs enable neurons
to synchronize their activity. Removal of PNNs with ChABC
increases high frequency oscillations in the anterior angulate
cortex (Steullet et al., 2014). In TN-R KO mice the hippocampal
gamma oscillation are enhanced (Gurevicius et al., 2004). These
findings indicate PNNs regulate the activity of whole fields of
neurons, which means the regulatory effects on the level of the
single neuron allow the neurons to cooperate. Moreover, the
formation of PNNs in many regions coincides with the end of
a critical period, which means PNNs allow neurons to regulate
their whole region. The PNNs are multi-application tools for the
neuron to regulate communication.

Further investigations into function of the PNNs need to focus
on the PNNs as a tool which neurons actively apply to regulate
communication. The PNNs form at the outermost surface of the
neuron and can serve as an easily accessible target for plasticity
treatment to be applied. This would facilitate the modification
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of neuronal communication. Currently, the enzymatic removal
of PNNs by ChABC and hyaluronidase is widely applied as
tools for PNN regulation but these are very harsh and non-
specific treatments since they remove PNNs and the loose ECM
completely. More subtle manipulations of the PNNs by changing
the ratio of the different proteoglycans would potentially allow
for fine modifications of neuronal plasticity without harming
the neuron. In diseases which present with a loss of PNNs,
stimulation of PNN formation by providing of PNN components
could help to protect neurons. Application of binding partners of
PNNs might be another approach to modulate PNN functions
without damaging it. Treatment designed to alter the PNNs
would not have to enter cells, which makes the PNNs an
accessible molecular structure for treatments. Since the PNNs
are involved in a variety of diseases, such as schizophrenia
(Pantazopoulos et al., 2010), epilepsy (Arranz et al., 2014),
Alzheimer’s disease (Brückner et al., 1999) and spinal cord injury

(Bradbury et al., 2002), such an accessible tool for neuronal
communication is very promising.
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