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We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder

and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong

constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows

us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression

of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite

spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin–

valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall

effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important

benchmark for testing the validity of numerical methodologies.
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Systems exhibiting strong spin-orbit coupling (SOC)

have received much attention because they host unique spin

transport phenomena that can be harnessed for low-power

spintronics [1,2]. The spin Hall effect (SHE) [3,4] is

indubitably a landmark in this novel approach; combined

with its reciprocal phenomenon (the inverse SHE), it allows

all-electrical generation, detection and manipulation of

nonequilibrium spin currents in nonmagnetic conductors

[5–8]. The exploitation of the SHE has proved fruitful for

manipulation of magnetic order via spin-orbit torque at

interfaces [9–11] and has led to new discoveries, including

the spin Hall magnetoresistance [12].

The interest in spin-orbit phenomena has been invigorated

with the recent discovery of strong Rashba splitting of two-

dimensional electron gases (2DEGs) at nonmagnetic metal

surfaces and heterointerfaces [13–15]. Microscopically, the

splitting can be understood as arising from a potential

gradient normal to the surface, ϕðzÞ, which couples the

electron spin s and in-planemomentump, i.e., in the simplest

approximation, HRB ¼ αẑ · ðs × pÞ, where α ∝ ∂zϕ. The

Rashba-Bychkov (RB) interaction HRB (hereafter, Rashba

interaction) mixes orbital states with opposite spins, leading

to spin-split parabolic bands with counter-rotating spin

textures [16]. The tangential spin winding of Rashba states

enables efficient generation of nonequilibrium spin polari-

zation by application of electric fields [17–23]. Strikingly, the

very helical nature of these states enforces a vanishing SHE in

the presence of (scalar) impurity scattering [24–28], so that,

in practice, the current-induced spin polarization is not easily

accompanied by the formation of spin Hall currents [29].

Given the universality of the Rashba effect (also observed in

ultrathinmetals [30,31], quantumwells [32,33], and surfaces

of topological insulators [34–36]), it is of utmost importance

to understand whether the absence of the SHE is a general

property of nonmagnetic surfaces with broken inversion

symmetry or, rather, a peculiarity of the 2DEG.

The interfacial enhancement of SOC in graphene has

been recently demonstrated [37–42], making it a promising

model system for exploring the above issue. The departure

from the standard Rashba effect in a 2DEG can be readily

appreciated for a minimal model of a graphene subject to

z → −z asymmetric SOC. In the long-wavelength limit, the

relevant spin-orbit interaction is obtained by replacing the

momentum with the pseudospin operator p → σ in HRB

[43,44]. The Hamiltonian density H ¼ H0 þHRB for the

χ ¼ % valley reads

H ¼ ψ
†
χfχ½−{ℏvσi∂i þ λðσ × sÞz' − ϵgψχ ; ð1Þ

where v is the bare Fermi velocity of massless Dirac

electrons, λ is the Rashba coupling, ϵ is the Fermi energy,

and σiði ¼ 1; 2Þ and sjðj ¼ 1; 2; 3Þ are Pauli matrices acting

on pseudospin and spin subspace, respectively. This model

possesses two noteworthy features. First, the band splitting

occurs along the energy axis [Fig. 1]. Second, the Dirac

helical spin texture is momentum dependent, i.e., jhsij is not
conserved [44]. Moreover, Eq. (1) admits a straightforward

generalization by adding further interactions preserving the

inherent SU(2) spin structure, such as a spin-valley coupling.
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Such unique features make the Dirac-Rashba model an ideal

test bed for reexamining the absence of the SHE in interfaces

with spin-split states.

In this Letter, we investigate Dirac-Rashba models in

the presence of disorder and external perturbations. The

existence of a covariant conservation law for the spin

current—stemming from SU(2) gauge invariance—allows

us to obtain the analytic form of two-particle spin-current

vertex functions directly from the self-energy of the Dirac

fermions and show that the spin Hall conductivity in the

minimal model [Eq. (1)] is zero for nonmagnetic disorder,

irrespectively of the Fermi level position. Furthermore,

we show that, when Eq. (1) is generalized to include

additional interactions, the obtained Ward identity imposes

strong constraints on the nonequilibrium spin responses.

Remarkably, this allows us to predict what type of proximity

spin-orbit interactions can lead to a robust SHE in Dirac-

Rashba interfaces of experimental interest.

The suppression of the SHE in 2DEGs subject to

uniform Rashba interactions occurs in the presence of an

arbitrary small concentration of scalar impurities. Formally,

the disorder corrections resulting from the resummation of

ladder diagrams exactly cancel the “clean” spin Hall (SH)

conductivity [24–28]. In Ref. [27], it was shown that this

puzzling cancellation has its origin in the existence of a

covariant conservation law for the spin current. For

example, the spin-y component satisfies

∂tJ
y
0
ðx; tÞ þ ∂iJ

y
i ðx; tÞ ¼ −2αmJzyðx; tÞ; ð2Þ

where Ja
0
(a ¼ x, y, z) is the spin density, Jai is the pure spin

current flowing in the i ¼ x, y direction, m is the effective

electron mass, and α is the Rashba parameter. The main

difference with respect to the charge continuity equation

originates from the non-Abelian nature of spin, which

results in the additional contribution on the right hand side.

Equation (2) suggests that in the steady state of a homo-

geneous system, Jzy is zero irrespectively of the underlying

relaxation mechanism. Below, we show that, albeit the

drastically different nature of electronic states in the Dirac-

Rashba model [Fig. 1], a similar covariant conservation law

exists, and we discuss its consequences.

Conservation laws I.—A peculiarity of Dirac theories

is the possible existence of quantum anomalies due to the

joint effect of an infinite Dirac sea of filled electron states

and an external field [45,46]. Let us consider the minimal

coupling of Eq. (1) to a Uð1Þ gauge field Aμ ≡ ðA0; AiÞ
within a Minkowsky metric. To simplify notation, we take

χ ¼ þ and omit this index hereafter. We also use natural

units (ℏ≡ 1≡ e) and the compact notation ∂μ ≡ ð∂t; ∂iÞ
with summation over dummy indices. The Dirac spin and

charge currents are, respectively, JaμðxÞ¼ψ†ðxÞsavμ=2ψðxÞ

and JμðxÞ¼ψ†ðxÞvμψðxÞ, where v
μ¼ð1;vσÞ and x≡ðt;xÞ.

The Heisenberg equation of motion for the spin density

reads

∂μJaμðxÞ ¼ −
2λ

v
ϵabcϵ

blJcl ðxÞ þ {

Z

dy½Ja
0
ðxÞ; JμðyÞ'A

μðyÞ;

ð3Þ

where ϵbl (ϵabc) is the Levi-Civita symbol of second (third)

rank. The term on the left-hand side and the first term on the

right-hand side result from the commutator of Ja
0
, respec-

tively, with the kinetic and the Rashba term and give a

contribution identical to the one found in the 2DEG

upon identification of m → 1=v, c.f. Eq. (2). Both terms

can be combined as the covariant derivative DμO
a ¼

∂μO
a þ 2ϵabcA

b
μO

c, where Aa
0
¼ 0, Aa

i ¼ −λ=vϵai is a

SOC-induced, homogeneous gauge field. Hence, in the

absence of an external field, Eq. (3) acquires the form of a

covariant conservation law for the spin density DμJaμ ¼ 0.

The current commutator in the last term (Schwinger term)

defines the anomaly. However, a careful analysis shows

that, despite the Dirac nature of the theory, the commutator

is identically zero–see Supplemental Material [47];

therefore, the argument of Ref. [27] implies a vanishing

SHE in the Dirac-Rashba model. At first sight, this

result contradicts the claims of Ref. [49], where the SH

conductivity was evaluated using linear response theory

σSH ¼ limω→0limq→0Θ
z
yxðq;ωÞ=iω, with the response func-

tion Θ
z
yx taken in the disorder-free approximation. Using

the Matsubara propagator given in [47], we find

σSH ¼ −
ϵ

16πλ

!

2λþ ϵ

ϵþ λ
þ θðϵ − 2λÞ

2λ − ϵ

ϵ − λ

"

; ð4Þ

in agreement with Ref. [49]. Here, θð:Þ is the Heaviside step
function, and we assumed ϵ, λ > 0. The apparent contra-

diction is resolved by recalling that, without disorder, there

is no true stationary state. In the following, we show that

Eq. (4) misses on important physics related to scattering-

induced relaxation that leads to σSH ¼ 0.

Conservation laws II: disorder effects.—Broadly speak-

ing, the Fermi surface contribution to σSH is dominated by

incoherent multiple scattering off impurities, which can be

viewed as a series of skew scattering and side jump events

(a) (b)

ε

p

p-
p+

FIG. 1. Schematic of the splitting of electronic states due to the

Rashba effect in a 2DEG (a) and graphene (b). The Fermi surface

consists of two branches in a 2DEG. In graphene, for energies

in the Rashba pseudogap jϵj < 2jλj, the Fermi surface is simply

connected. Arrows indicate the type of splitting.
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[50–52]. To determine how such effects change the above

picture, we add to the bare Hamiltonian (1) a random scalar

potential VðxÞ, which we will assume to be Gaussian

distributed with zero mean: hVðxÞVðx0Þi ¼ niα
2
0
δðx − x0Þ,

where ni is the impurity areal density and α0 parametrizes

the potential strength. This approximation is accurate in the

limit of weak potential scattering provided cross sections

are right-left symmetric (see below). We note that short-

range impurities lead to scattering potentials that are

off-diagonal in both sublattice and valley spaces. The

intervalley scattering produced by such matrix disorder

affects the charge conductivity σxx [53], but it does not

change the covariant conservation law for the spin current.

Disorder enters the evaluation of response functions both

in the propagator (as a self-energy) and the interaction vertex

[54]. These two quantities are not independent of each other,

but they are related by Ward identities (WIs); these relations

are the key to establishing gauge invariance in quantum

electrodynamics at a nonperturbative level [46]. Remarkably,

we find that the non-AbelianWI associated to the spin current

vertex completely determines the spin current Jzi in the dc

limit, and therefore, it can be used to directly evaluate the

SH conductivity. To see this, consider the three-legged

spin vertex function Λ
y
μðx;x0;x00Þ¼hTτJ

y
μðxÞψðx0Þψ†ðx00Þi,

where “Tτ” stands for the imaginary time ordering operator.

Moving to frequency-momentum space, we perform analytic

continuation {ωn→ωþ {signðωÞ0þ, where ωn are fermionic

Matsubara frequencies. Vertex corrections appear perturba-

tively as a series of impurity lines ladder diagrams, where

only combinations of Green’s functions, having poles on

opposite sides of the real axis, contribute to the renormaliza-

tion of the vertex [54]. In this way, by projecting the vertex

functionΛ
y
μ in the retarded (R)—advanced (A) sector,we find

qμΛ
y
μ ¼ −{

2λ

v
Λ
z
y þ

1

2
½SyG

R
kþqðϵÞ − GA

k ðϵÞSy'; ð5Þ

where k and q are three vectors. The disorder averaged

Green’s function (a ¼ A, R) formally reads Ga
kðϵÞ ¼

½k0 −H − Σ
aðϵÞ'−1, where H is given by the first quantiza-

tion form of Eq. (1) and Σ
aðϵÞ is the disorder induced self

energy (see SM [47] for an explicit form). Owing to the non-

Abelian nature of the WI, taking the dc (q→ 0) limit in

Eq. (5) completely determines the effective vertex. The final

step consists in recasting Λz
y in terms of the truncated vertex,

Λ
z
y ¼ GA~jzyG

R [55], as appearing in the Kubo formula. After

algebraic manipulations, we arrive at the important inter-

mediate result

~jzy ¼ −{
v

4λ
f½sy; ~H'− þ {½sy; ImΣ

RðϵÞ'þg. ð6Þ

where% stands for the (anti-)commutator and ~H ¼ H þ ReΣ

is the Hamiltonian renormalized by the real part of the self

energy. This result provides an exact relation between the

truncated spin current vertex and the self energy, and as such,

it is independent of the particular approximation scheme used

to evaluate disorder effects. Within the Gaussian approxima-

tion, we find −ImΣ
RðϵÞ¼1=ð2τÞ½1þθð2λ−ϵÞλ=2ϵ'σ0s0 þ

θð2λ−ϵÞ½λ=ð2τϵÞσ3s3−1=ð8τÞðσ×sÞz', where 1=2τ ¼

niϵα
2

0
=4v2 is the quasiparticle broadening. Using the expres-

sion of the self energy in Eq. (6), we arrive at

~jzy ¼
v

2
×

8

>

>

<

>

>

:

σysz −
1

2λτ
σ0sy; ϵ > 2λ

σysz −
1

4λτ
ð1þ λ

ϵ
Þσ0sy

þ 1

8λτ
σxs0 þ

1

4πτλ
σzsx; ϵ ≤ 2λ:

ð7Þ

The first term is just the bare spin current vertex

jzy ¼ ðv=2Þσysz, while, for ϵ > 2λ, the second term, gener-

ated by the disorder, is the bare spin density vertex σ0sy=2

apart from the factor −v=2λτ. This shows that the parameter

λτ plays a fundamental role in determining the importance of

disorder. At first sight, one could be tempted to think that

within the weak disorder limit (ϵτ ≫ 1) and for strong SOC

(λτ ≫ 1), all disorder corrections can be neglected. However,

it turns out that the spin polarization response is of order λτ

(see below),whereas thebare spin current response, due to the

first term inEq. (7), is of order ðλτÞ0. Hence, the two terms are
of the same order irrespective of the disorder strength. Similar

considerations also apply for ϵ < 2λ.

SHE evaluation using the WI.—We start by computing

the Fermi surface contribution

σISH ¼
1

2π

Z

dk

ð2πÞ2
tr½~jzyG

R
kðϵÞvxG

A
kðϵÞ'

¼ σ̄SH þ σ̄SG þ σ̄xx þ σ̄zx; ð8Þ

where vx¼vσxs0 is the bare charge current vertex.

Moreover, σ̄SH, σ̄SG, σ̄xx, and σ̄zx are the conductivity

“bubbles” corresponding to the various terms in Eq. (7),

respectively, a spin Hall (σysz), spin galvanic (SG) (σ0sy),

longitudinal (σxs0), and “staggered” (σzsx) conductivities.
Outside the pseudogap, where the Fermi surface splits into

two branches [Fig. 1], we find σ̄xx¼ σ̄zx¼0 and σ̄SH¼−σ̄SG,

where

σ̄SH ¼ −
1

8π

!

ϵ2

ϵ2 − λ2
−

1

1þ 4λ2τ2

"

; ð9Þ

and thus, the type I contribution to the SH conductivity

is zero, σISH ¼ 0. This result deserves a few comments: First,

in the λτ ≫ 1 limit, one recovers Eq. (4). Second, the “empty

bubble” SH conductivity (σ̄SH) is precisely counteracted by

the corresponding empty bubble for the spin density-charge

current response function (σ̄SG) [56]. This means that the

absence of the SHE is linked to the onset of a current-

induced, in-plane spin polarization known as the inverse SG

effect [17–19]. The remaining (type II) contribution

σIISH¼
−1

2π

Z

dk

ð2πÞ2

Z

0

−∞

dk0Retr½G
R
k ðϵÞj

z
y∂k0

⟷

GR
k ðϵÞvx'; ð10Þ
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accounts for processes away from the Fermi surface [57].

Explicit evaluation shows that σIISH ¼ 0, and thus, σSH ¼
σISH þ σIISH is zero, in agreement with our earlier argument

viz., Eqs. (2)–(3). Interestingly, in the 2DEG-Rashbamodel,

the type II term is only zero in the formal limit ϵτ → ∞ and

can attain large values for λτ ≈ 1 [58]. The exact vanishing

of the off-Fermi surface contribution is a unique feature of

the Dirac theory. We now move gears to the regime ϵ < 2λ,

where only one subband is occupied. We note that this

regime has no analogue in the 2DEG model, for which the

Fermi surface always consists of two disconnected rings

[Fig. 1]. Thus, the mechanism leading to σSH ¼ 0 is far from

obvious. To investigate this issue, we evaluate the Fermi

surface contribution making use of the WI [see Eq. (7)] and

the type II contribution using Eq. (10). After a lengthy

calculation, we find, for both contributions,

σISH ¼
1

16π

ϵ

λ
; σIISH ¼ −σISH: ð11Þ

so that σSH ¼ 0. Note that, since σISH is of order τ0, we can

evaluate the type II contribution [Eq. (10)] directly in the

absence of disorder. Therefore, the suppression of the SHE

in the regime 0 < ϵ < 2λ results from a compensation

between scattering corrections to the clean SH conductivity

and off-Fermi surface processes.

Diagrammatic evaluation.—Now, we show the consis-

tency of our results with a standard diagrammatic evalu-

ation. The renormalized charge current vertex satisfies the

following Bethe-Salpeter coupled equations [see Fig. 2]:

~vx;μa ¼ vδμ1δa0 þ Tμaρd
νbλcIνbλc ~v

ρd
x ; ð12Þ

Tμaρd
νbλc ¼ tr½σμsaσνsbσρsdσλsc'; ð13Þ

Iνbλc ¼
nα2

0

4

Z

dk

ð2πÞ2
GR
k;νbðϵÞG

A
k;λcðϵÞ: ð14Þ

In principle, I spans the entire Clifford Algebra. However,

not all matrix elements contribute to the renormalization of

the charge vertex. It is convenient to consider the effect of a

single impurity density insertion, for which thevertex has the

structure: v̄x ¼ δv10σ1s0þ δv23σ2s3þ δv02σ0s2þ δv31σ3s1,
with δvij some nonzeromatrix elements. This result suggests

the form of the ansatz for ~vx to use in Eq. (12). Since no new
matrix element is generated in this procedure, the ansatz

closes the system. In addition to the renormalized charge

vertex ~v10x , we find that disorder induces effective SH (~v23x ),

SG (~v02x ), and staggered ( ~v31x ) interactions. Their explicit

form reads (for ϵ > 2λ): ~v10x ¼ 2v, ~v02x ¼ −2vðλ=ϵÞ,
~v31x ¼ 0, and ~v23x ¼ 0. In order to evaluate the SH conduc-

tivity, now, we use Eq. (8), with the ladder series now

included in the charge vertex (i.e., ~jzy → jzy and vx → ~vx).

Using Eq. (12), it is now easy to relate the renormalized

vertex directly to the SH and Drude conductivity

σSH ¼
1

2π

!

2v

niα
2
0

"

~v23x ¼ 0; ð15Þ

σxx ¼
1

2π

!

4v

niα
2

0

"

ð~v10x − vÞ ¼
2ϵτ

π
: ð16Þ

Discussion.—We mentioned earlier that higher-order

scattering contributions to the self energy (and ladder

series) could generate important corrections. This happens

when impurities in the system lead to skew scattering. In

the 2DEG, it is well known that skew scattering is absent

(unless other ingredients, such as spin-orbit active impu-

rities are considered). The absence of skewness has, in fact,

an intuitive explanation: the spin of Rashba eigenstates is

locked in-plane, so that, in a given scattering event,

quasiparticles cannot distinguish left and right. The same

picture holds in the Dirac-Rashba model and, so, here, too,

there should be no skewness. We verified this by means of

the self-consistent diagrammatic approach introduced in

Ref. [52] together with the WI [Eq. (6)].

The formalism developed in this Letter also allows us to

predict the behavior of more complicated systems. For

instance, it is easy to see that a nonzero SH conductivity

emerges when adding suitable interactions to Eq. (1),

altering the covariant conservation law expressed in

Eq. (3) and, hence, the WI [Eq. (6)]. For example, let us

consider a spin-valley interaction of the form Aa
0
¼ χλ0δaz

with λ0 a constant. This interaction generates, in Eq. (3), a

new term proportional to hsχxi, where hsχxi is the non-

equilibrium average of the x̂-spin polarization at a given

valley. Taking the steady state of a homogeneous system,

we find an exact relation between the spin Hall current and

the difference between the nonequilibrium spin density at

the two inequivalent valleys, namely

hJzyi ¼ v
λ0

λ
ðhsχ¼1

x i − hsχ¼−1
x iÞ: ð17Þ

This suggests that SHE can emerge provided there is a

mechanism to generate hsχxi ≠ 0 with opposite signs for

χ ¼ %1. A strong candidate is skew scattering. In principle,

skewness is now allowed since the spin-valley interaction

takes the spin of bare eigenstates out of the plane. We

have computed both (nonvanishing) sides of Eq. (17)

diagrammatically and verified that the identity holds at

all orders in the scattering potential strength (not shown).

This is a significant finding since the spin-valley coupling

(a)

(b)

FIG. 2. Feynman diagrams for (a) dressed SH conductivity.

(b) Charge vertex renormalization. The empty dot represents the

bare charge vertex while the red x and the black dots represent,

respectively, impurity density and scattering potential insertions.
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λ0 can attain sizable values in graphene with proximity SOC

[59,60]. The possibility to have skew scattering exclusively

driven by SOC in the band structure appears to be a unique

feature of Dirac systems.

In this context, we note in passing that random spatial

fluctuations in the Rashba coupling (e.g., due to corruga-

tions) provide an alternative source of SHE [61]. The

skew scattering contribution discussed above is dominant

in clean samples due to its characteristic scaling (n−1i
opposed to n0i in the random mechanism) and the relatively

small size of the fluctuations expected for atomically flat

interfaces.

Our work constitutes a major step towards a unified

theory of spin and charge dynamics for Dirac-Rashba

models in generic nonstationary conditions. Real-space

methodologies for numerical evaluation of transverse con-

ductivities have recently been proposed [62,63], which can

help tackling more complex scenarios. The exact symmetry

relations presented here provide a stringent test for real-

space numerical approaches, for which the achievable

energy resolutions still represent a major limiting factor.
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Barnaś , Phys. Rev. B 86, 161401(R) (2012).

[62] J. H. Garcia, L. Covaci, and T. G. Rappoport, Phys. Rev.

Lett. 114, 116602 (2015).

[63] F. Ortmann, N. Leconte, and S. Roche, Phys. Rev. B 91,

165117 (2015).

PRL 119, 246801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 DECEMBER 2017

246801-6


