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Abstract

In this paper we establish a general form of the mass transference principle for
systems of linear forms conjectured in 2009. We also present a number of applications
of this result to problems in Diophantine approximation. These include a general
transference of Lebesgue measure Khintchine–Groshev type theorems to Hausdorff
measure statements. The statements we obtain are applicable in both the homogeneous
and inhomogeneous settings as well as allowing transference under any additional
constraints on approximating integer points. In particular, we establish Hausdorff
measure counterparts of some Khintchine–Groshev type theorems with primitivity
constraints recently proved by Dani, Laurent and Nogueira.

1. Introduction

The main goal of this paper is to settle a problem posed in [BBDV09] regarding the mass
transference principle, a technique in geometric measure theory that was originally discovered
in [BV06a] having primarily been motivated by applications in metric number theory. To some
extent the present work is also driven by such applications.

To begin with, recall that the sets of interest in metric number theory often arise as the
upper limit of a sequence of ‘elementary’ sets, such as balls, and satisfy elegant zero-one laws.
Recall that if (Ei)i∈N is a sequence of sets then the upper limit or lim sup of this sequence is
defined as

lim sup
i→∞

Ei : = {x : x ∈ Ei for infinitely many i ∈ N}

=
⋂

n∈N

⋃

i>n

Ei.

These zero-one laws usually involve simple criteria, typically the convergence or divergence of a
certain sum, for determining whether the measure of the lim sup set is zero or one. To give an
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A mass transference principle for systems of linear forms

example, consider Khintchine’s classical theorem [Khi24] that deals with the set K(ψ) of x ∈ [0, 1]
such that

|qx− p| < ψ(q) (1)

holds for infinitely many (p, q) ∈ Z× N. Clearly, K(ψ) is the lim sup set of the intervals defined
by (1), which are the ‘elementary’ sets in this setting. Khintchine proved that for any arithmetic
function ψ : N → R

+ := [0,+∞) such that qψ(q) is monotonic the Lebesgue measure of K(ψ) is
zero if

∑∞
q=1 ψ(q) <∞ and one otherwise.

Around 1930, Jarńık and Besicovitch both independently considered the size of K(ψ) using
Hausdorff measures and dimension, thus proving results enabling us to see the difference between
sets K(ψ) indistinguishable by Khintchine’s result. For example, the Jarńık–Besicovitch theorem
says that the Hausdorff dimension of K(q 7→ q−v) is 2/(v + 1) for v > 1.

Over time the findings of Khintchine, Jarńık and Besicovitch have been sharpened and
generalised in numerous ways, including to involve problems concerning systems of linear forms.
The theories for the ambient measure and Hausdorff measures had been evolving relatively
separately until the discovery of the so-called mass transference principle [BV06a]. This is a
technique that enables one to easily obtain Hausdorff measure statements from a priori less
general Lebesgue measure statements.

Let f be a dimension function and let Hf ( · ) denote Hausdorff f -measure (see § 3.1 for
definitions). Given a ball B := B(x, r) in R

k of radius r centred at x, let Bf := B(x, f(r)1/k).
When f(x) = xs for some s > 0 we will denote Bf by Bs. In particular, we always have that
Bk = B. The following statement is the main result of [BV06a].

Mass transference principle. Let {Bj}j∈N be a sequence of balls in R
k with r(Bj) → 0 as

j → ∞. Let f be a dimension function such that x−kf(x) is monotonic. Suppose that, for any
ball B in R

k,

Hk
(
B ∩ lim sup

j→∞
Bf

j

)
= Hk(B).

Then, for any ball B in R
k,

Hf
(
B ∩ lim sup

j→∞
Bk

j

)
= Hf (B).

The original mass transference principle [BV06a] stated above is a result regarding lim sup
sets which arise from sequences of balls. For the sake of completeness, we remark here that
recently some progress has been made towards extending the mass transference principle to deal
with lim sup sets defined by sequences of rectangles [WWX15]. In this paper, we will be dealing
with the extension of the mass transference principle in the setting where we are interested in
approximation by planes. This is not a new direction of research. Indeed, such an extension has
already been obtained in [BV06b]. However, the mass transference principle result of [BV06b]
carries some technical conditions which arise as a consequence of the ‘slicing’ technique that was
used for the proof. These conditions were conjectured to be unnecessary and verifying that this
is indeed the case is the main purpose of this paper.

Let k,m > 1 and l > 0 be integers such that k = m + l. Let R := (Rj)j∈N be a family of
planes in R

k of common dimension l. For every j ∈ N and δ > 0, define

∆(Rj , δ) := {x ∈ R
k : dist(x, Rj) < δ},

where dist(x, Rj) = inf{‖x− y‖ : y ∈ Rj} and ‖ · ‖ is any fixed norm on R
k.
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D. Allen and V. Beresnevich

Let Υ : N → R : j 7→ Υj be a non-negative real-valued function on N such that Υj → 0 as
j → ∞. Consider

Λ(Υ) := {x ∈ R
k : x ∈ ∆(Rj ,Υj) for infinitely many j ∈ N}.

In [BV06b], the following was established.

Theorem BV1. Let R and Υ be as given above. Let V be a linear subspace of Rk such that
dimV = m = codimR,

(i) V ∩Rj 6= ∅ for all j ∈ N; and

(ii) supj∈N diam(V ∩∆(Rj , 1)) <∞.

Let f and g : r → g(r) := r−lf(r) be dimension functions such that r−kf(r) is monotonic and
let Ω be a ball in R

k. Suppose that, for any ball B in Ω,

Hk(B ∩ Λ(g(Υ)1/m)) = Hk(B).

Then, for any ball B in Ω,
Hf (B ∩ Λ(Υ)) = Hf (B).

Remark. In the case that l = 0 and Ω = R
k, Theorem BV1 coincides with the mass transference

principle stated above.

The conditions (i) and (ii) in Theorem BV1 arise as a consequence of the particular proof
strategy employed in [BV06b]. However, it was conjectured [BBDV09, Conjecture E] that
Theorem BV1 should be true without conditions (i) and (ii). By adopting a different proof
strategy (one similar to that used to prove the mass transference principle in [BV06a] rather than
‘slicing’) we are able to remove conditions (i) and (ii) and, consequently, prove the following.

Theorem 1. Let R and Υ be as given above. Let f and g : r → g(r) := r−lf(r) be dimension
functions such that r−kf(r) is monotonic and let Ω be a ball in R

k. Suppose that, for any ball
B in Ω,

Hk(B ∩ Λ(g(Υ)1/m)) = Hk(B). (2)

Then, for any ball B in Ω,
Hf (B ∩ Λ(Υ)) = Hf (B).

At first glance, conditions (i) and (ii) in Theorem BV1 do not seem particularly restrictive.
Indeed, there are a number of interesting consequences of this theorem, see [BBDV09, BV06b].
However, in the following section we present applications of Theorem 1 which may well be out
of reach when using Theorem BV1. In § 3 and § 4 we establish necessary preliminaries and some
auxiliary lemmas before presenting the full proof of Theorem 1 in § 5.

2. Some applications of Theorem 1

In this section we highlight merely a few applications of Theorem 1 which we hope give an idea of
the breadth of its consequences. In § 2.1 we show that, using Theorem 1, with relative ease we are
able to remove the last remaining monotonicity condition from a Hausdorff measure analogue of
the classical Khintchine–Groshev theorem. We also show how the same outcome may be achieved,
albeit with a somewhat longer proof, by using Theorem BV1 instead of Theorem 1. In § 2.2 we
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A mass transference principle for systems of linear forms

obtain a Hausdorff measure analogue of the inhomogeneous version of the Khintchine–Groshev
theorem.

In § 2.3 we present Hausdorff measure analogues of some recent results of Dani, Laurent
and Nogueira [DLN15]. They have established Khintchine–Groshev type statements in which
the approximating points (p,q) are subject to certain primitivity conditions. We obtain the
corresponding Hausdorff measure results. On the way to realising some of the results outlined
above, in § 2.2 and § 2.3 we develop several more general statements which reformulate Theorem 1
in terms of transferring Lebesgue measure statements to Hausdorff measure statements for very
general sets of Ψ-approximable points (see Theorems 4, 5 and 6). The recurring theme throughout
this section is that, given more-or-less any Khintchine–Groshev type statement, Theorem 1 can
be used to establish the corresponding Hausdorff measure result.

2.1 The Khintchine–Groshev theorem for Hausdorff measures

Let n > 1 and m > 1 be integers. Denote by I
nm the unit cube [0, 1]nm in R

nm. Throughout this
section we consider Rnm equipped with the norm ‖ · ‖ : Rnm

→ R defined as follows:

‖x‖ =
√
n max

16ℓ6m
|xℓ|2, (3)

where x = (x1, . . . ,xm) with each xℓ representing a column vector in R
n for 1 6 ℓ 6 m, and | · |2

is the usual Euclidean norm on R
n. The role of the norm (3) will become apparent soon, namely

through the proof of Theorem 2 below.
Given a function ψ : N → R

+, let An,m(ψ) denote the set of x ∈ I
nm such that

|qx+ p| < ψ(|q|)

for infinitely many (p,q) ∈ Z
m × Z

n\{0}. Here, | · | denotes the supremum norm, x = (xiℓ) is
regarded as an n×m matrix and q and p are regarded as a row vectors. Thus, qx represents a
point in R

m given by the system

q1x1ℓ + · · ·+ qnxnℓ (1 6 ℓ 6 m)

of m real linear forms in n variables. We will say that the points in An,m(ψ) are ψ-approximable.
That An,m(ψ) satisfies an elegant zero-one law in terms of nm-dimensional Lebesgue measure
when the function ψ is monotonic is the content of the classical Khintchine–Groshev theorem.
We opt to state here a modern version of this result which is best possible (see [BV10]).

In what follows |X| will denote the k-dimensional Lebesgue measure of X ⊂ R
k.

Theorem BV2. Let ψ : N → R
+ be an approximating function and let nm > 1. Then

|An,m(ψ)| =





0 if
∞∑

q=1

qn−1ψ(q)m <∞,

1 if

∞∑

q=1

qn−1ψ(q)m = ∞.

The earliest versions of this theorem were due to Khintchine and Groshev and included
various extra constraints including monotonicity of ψ. A famous counterexample constructed by
Duffin and Schaeffer [DS41] shows that, while Theorem BV2 also holds when m = n = 1 and ψ is
monotonic, the monotonicity condition cannot be removed when m = n = 1 and so it is natural
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D. Allen and V. Beresnevich

to exclude this situation by letting nm > 1. In the latter case, the monotonicity condition has
been removed completely, leaving Theorem BV2. That monotonicity may be removed in the case
n = 1 is due to a result of Gallagher and in the case where n > 2 it is a consequence of a result
due to Schmidt. For further details we refer the reader to [BBDV09] and references therein. The
final unnecessary monotonicity condition to be removed was the n = 2 case. Formally stated as
Conjecture A in [BBDV09], this case was resolved in [BV10].

Regarding the Hausdorff measure theory we shall show the following.

Theorem 2. Let ψ : N → R
+ be any approximating function and let nm > 1. Let f and

g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is monotonic. Then,

Hf (An,m(ψ)) =





0 if

∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
<∞,

Hf (Inm) if
∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
= ∞.

Theorem 2 is not entirely new and was in fact previously obtained in [BBDV09] via
Theorem BV1 subject to ψ being monotonic in the case that n = 2. The deduction there was
relying on a theorem of Sprindžuk rather than Theorem BV2 (which is what we shall use). In
fact, with several additional assumptions imposed on ψ and f , the result was first obtained by
Dickinson and Velani [DV97]. Indeed, the proof of the convergence case of Theorem 2 makes use
of standard covering arguments that, with little adjustment, can be drawn from [DV97].

In what follows we shall give two proofs for the divergence case of Theorem 2, one using
Theorem BV1 and the other using Theorem 1. The reason for this is to show the advantage of
using Theorem 1 on the one hand, and to explicitly exhibit obstacles in using Theorem BV1
in other settings on the other hand. In the proofs we will use the following notation. For
(p,q) ∈ Z

m × Z
n\{0} let

Rp,q := {x ∈ R
nm : qx+ p = 0}.

Note that, throughout the proofs of Theorem 2, (p,q) will play the role of the index j appearing
in Theorem BV1 and Theorem 1. Also note that for δ > 0 we have

∆(Rp,q, δ) = {x ∈ R
nm : dist(x, Rp,q) < δ},

where

dist(x, Rp,q) = inf
z∈Rp,q

‖x− z‖ =

√
n|qx+ p|
|q|2

.

We note that if ψ(r) > 1 for infinitely many r ∈ N, then An,m(ψ) = I
nm and the divergence

case of Theorem 2 is trivial. Hence, without loss of generality we may assume that ψ(r) 6 1 for
all r ∈ N. First we show how

Theorem BV1 and Theorem BV2 imply the divergence case of Theorem 2. (4)

Proof. Recall that
∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
= ∞. (5)

To use Theorem BV1 we have to restrict the approximating integer points q in order to meet
conditions (i) and (ii) of Theorem BV1. We will use the same idea as in [BBDV09]; namely, we will
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impose the requirement that |q| = |qK | for a fixed K ∈ {1, . . . , n}. Sprindžuk’s theorem that is
used in [BBDV09] allows for the introduction of this requirement almost instantly. Unfortunately,
this is not the case when one is using Theorem BV2 and hence we will need a new argument.
For each 1 6 i 6 n define the auxiliary functions Ψi : Z

n\{0} → R
+ by setting

Ψi(q) =

{
ψ(|q|) if |q| = |qi|,
0 otherwise.

In what follows, similarly to An,m(ψ), we consider sets An,m(Ψ) of points x ∈ I
nm such that

|qx+ p| < Ψ(q)

for infinitely many pairs (p,q) ∈ Z
m × Z

n\{0}, where Ψ : Zn\{0} → R
+ is a multivariable

function. Since, by definition, Ψi(q) 6 ψ(|q|) for each 1 6 i 6 n and each q ∈ Z
n\{0}, it follows

that

An,m(Ψi) ⊂ An,m(ψ) for each 1 6 i 6 n. (6)

By (6), to complete the proof of (4), it is sufficient to show that

Hf (An,m(ΨK)) = Hf (Inm) for some 1 6 K 6 n. (7)

Without loss of generality we will assume that K = 1. Define

S := {(p,q) ∈ Z
m × Z

n\{0} : |q| = |q1| and |p| 6M |q|},

where

M := max

{
2n, sup

r∈N

2√
n
g

(
ψ(r)

r

)1/m}
. (8)

Note that, since g is increasing and ψ(r) 6 1, the constant M is finite. Let Υp,q := Ψ1(q)/|q|
for each (p,q) ∈ S. The purpose for introducing this auxiliary set S will become apparent later.
Now, for each (p,q) ∈ S,

∆(Rp,q,Υp,q) ∩ I
nm =

{
x ∈ I

nm :

√
n|qx+ p|
|q|2

<
Ψ1(q)

|q|

}

=

{
x ∈ I

nm : |qx+ p| < |q|2Ψ1(q)√
n|q|

}

⊂ {x ∈ I
nm : |qx+ p| < Ψ1(q)},

since |q|2 6
√
n|q|. It follows that Λ(Υ) ∩ I

nm ⊂ An,m(Ψ1) ⊂ I
nm, where

Λ(Υ) = lim sup
(p,q)∈S

∆(Rp,q,Υp,q)

and, in taking this limit, (p,q) ∈ S can be arranged in any order. Therefore, (7) will follow on
showing that

Hf (Λ(Υ) ∩ I
nm) = Hf (Inm). (9)

Showing (9) will rely on Theorem BV1. First of all observe that conditions (i) and (ii) are met
with the m-dimensional subspace

V := {x = (x1,x2, . . . ,xm) ∈ R
nm : xiℓ = 0 for all ℓ = 1, . . . ,m and i = 2, . . . , n}.
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Indeed, regarding condition (i), we have that Rp,q ∩ V consists of the single element




−p1
q1

−p2
q1

. . . −pm
q1

0 0 . . . 0
...

... · · · ...

0 0 . . . 0



,

and so is non-empty. Regarding condition (ii), for (p,q) ∈ S we have that

V ∩∆(Rp,q, 1) = {x ∈ V : dist(x, Rp,q) < 1}

=

{
x ∈ V :

√
n|qx+ p|
|q|2

< 1

}

=

{
x ∈ R

nm : max
16ℓ6m

√
n|q1x1,ℓ + pℓ|

|q|2
< 1 and xiℓ = 0 for i 6= 1

}

⊂
{
x ∈ R

nm : max
16ℓ6m

∣∣∣∣x1,ℓ +
pℓ
q1

∣∣∣∣ < 1 and xiℓ = 0 for i 6= 1

}

since |q1| = |q| and |q|2 6
√
n|q|. Hence diam(V ∩∆(Rp,q, 1)) 6 2 and we are done.

Now let θ : N → R
+ be given by

θ(r) =
r√
n
g

(
ψ(r)

r

)1/m

and, for each 1 6 i 6 n, let Θi : Z
n\{0} → R

+ be given by

Θi(q) =
|q|√
n
g

(
Ψi(q)

|q|

)1/m

=

{
θ(|q|) if |q| = |qi|,
0 otherwise.

Similarly to (6), we have that An,m(Θi) ⊂ An,m(θ) for each 1 6 i 6 n. Furthermore,

An,m(θ) =
n⋃

i=1

An,m(Θi). (10)

Indeed, the ‘⊃’ inclusion follows from the above. To show the converse, note that for any x ∈
An,m(θ) the inequality |qx + p| < θ(|q|) is satisfied for infinitely many (p,q) ∈ Z

m × Z
n\{0}.

Clearly, for each q ∈ Z
n\{0} we have that θ(|q|) = Θi(q) for some 1 6 i 6 n. Therefore, there

is a fixed i ∈ {1, . . . , n} such that |qx + p| < θ(|q|) = Θi(q) is satisfied for infinitely many
(p,q) ∈ Z

m × Z
n\{0}. This means that x ∈ An,m(Θi) for some i, thus verifying (10).

Next, observe that, by (5), the sum

∞∑

q=1

qn−1θ(q)m =

∞∑

q=1

qn+m−1

√
n
m g

(
ψ(q)

q

)
=

1√
n
m

∞∑

q=1

qn+m−1g

(
ψ(q)

q

)

diverges. Therefore, by Theorem BV2, we have that |An,m(θ)| = 1. Hence, by (10), there exists
some 1 6 K 6 n such that |An,m(ΘK)| > 0. By the zero-one law of [BV08, Theorem 1], we know
that |An,m(ΘK)| ∈ {0, 1}. Hence,

|An,m(ΘK)| = 1.

Without loss of generality we will suppose that K = 1, the same as in (7).
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Now, using the fact that |q| 6 |q|2, for (p,q) ∈ S we have that

∆(Rp,q, g(Υp,q)
1/m) ∩ I

nm =

{
x ∈ I

nm :

√
n|qx+ p|
|q|2

< g

(
Ψ1(q)

|q|

)1/m}

=

{
x ∈ I

nm : |qx+ p| < |q|2√
n
g

(
Ψ1(q)

|q|

)1/m}

⊃
{
x ∈ I

nm : |qx+ p| < |q|√
n
g

(
Ψ1(q)

|q|

)1/m}

= {x ∈ I
nm : |qx+ p| < Θ1(q)}.

Furthermore, observe that if {x ∈ I
nm : |qx+p| < Θ1(q)} 6= ∅, then |p| 6M |q| and so (p,q) ∈ S.

Therefore,
An,m(Θ1) ⊂ Λ(g(Υ)1/m) ∩ I

nm ⊂ I
nm.

In particular, |Λ(g(Υ)1/m)∩ I
nm| = 1 and so for any ball B ⊂ I

nm we have that Hnm(Λ(g(Υ)1/m)
∩ B) = Hnm(B). Hence, we may apply Theorem BV1 with k = nm, l = m(n − 1) and m to
conclude that, for any ball B ⊂ I

nm, we have Hf (B ∩ Λ(Υ)) = Hf (B). In particular, Hf (Λ(Υ)
∩ I

nm) = Hf (Inm) and the proof is thus complete. ✷

We now show how

Theorem 1 and Theorem BV2 imply the divergence case of Theorem 2. (11)

Proof. As before, we are given the divergence condition (5). For each pair (p,q) ∈ Z
m×Z

n\{0}
with |p| 6M |q|, where M is given by (8), let

Rp,q := {x ∈ R
nm : qx+ p = 0} and Υp,q :=

ψ(|q|)
|q| .

For such pairs (p,q) we have that

∆(Rp,q,Υp,q) ∩ I
nm =

{
x ∈ I

nm :

√
n|qx+ p|
|q|2

<
ψ(|q|)
|q|

}

⊂ {x ∈ I
nm : |qx+ p| < ψ(|q|)}

since |q|2 6
√
n|q|. Therefore

Λ(Υ) ∩ I
nm ⊂ An,m(ψ) ⊂ I

nm,

where the lim sup is taken over (p,q) ∈ Z
m × Z

n\{0} with |p| 6M |q|.
Consequently, if we could show that Hf (Λ(Υ) ∩ I

nm) = Hf (Inm) the divergence part of
Theorem 2 would follow.

Define θ : N → R
+ by

θ(r) =
r√
n
g

(
ψ(r)

r

)1/m

and note that

∆(Rp,q, g(Υp,q)
1/m) ∩ I

nm =

{
x ∈ I

nm :

√
n|qx+ p|
|q|2

< g

(
ψ(|q|)
|q|

)1/m}

=

{
x ∈ I

nm : |qx+ p| < |q|2√
n
g

(
ψ(|q|)
|q|

)1/m}
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⊃
{
x ∈ I

nm : |qx+ p| < |q|√
n
g

(
ψ(|q|)
|q|

)1/m}

= {x ∈ I
nm : |qx+ p| < θ(|q|)},

where this penultimate inclusion follows since |q| 6 |q|2.
Observe that if {x ∈ I

nm : |qx+ p| < θ(|q|)} 6= ∅, then |p| 6M |q|. It follows that

An,m(θ) ⊂ Λ(g(Υ)1/m) ∩ I
nm.

Now, by Theorem BV2 and the divergence condition (5), we know that |An,m(θ)| = 1 since

∞∑

q=1

qn−1θ(q)m =
∞∑

q=1

qn+m−1

√
n
m g

(
ψ(q)

q

)
= ∞.

Hence, |Λ(g(Υ)1/m) ∩ I
nm| = 1 and so we may apply Theorem 1 with k = nm, l = m(n − 1)

and m to conclude that, for any ball B ⊂ I
nm, we have Hf (B ∩ Λ(Υ)) = Hf (B). In particular,

Hf (Λ(Υ) ∩ I
nm) = Hf (Inm) and so the proof is complete. ✷

Remark 1. Note that the proof of (11) is not only shorter and simpler than that of (4) but it
also does not rely on the zero-one law [BV08, Theorem 1]. This seemingly minor point becomes
a substantial obstacle in trying to use the same line of argument as for (4) in other settings,
for example, in inhomogeneous problems. The point is that, as of now, we do not have an
inhomogeneous zero-one law similar to [BV08, Theorem 1], see [Ram17] for partial results and
further comments. The approach based on using Theorem 1, on the other hand, works with ease
in the inhomogeneous and other settings.

2.2 Inhomogeneous systems of linear forms

In this section we will be concerned with the inhomogeneous version of the Khintchine–Groshev
theorem presented in the previous subsection. Given an approximating function Ψ : Zn\{0}
→ R

+ and a fixed y ∈ I
m, we denote by Ay

n,m(Ψ) the set of x ∈ I
nm for which

|qx+ p− y| < Ψ(q)

holds for infinitely many (p,q) ∈ Z
m×Z

n\{0}. In the case that Ψ(q) = ψ(|q|) for some function
ψ : N → R

+ we write Ay
n,m(ψ) for Ay

n,m(Ψ).
Regarding inhomogeneous Diophantine approximation, we have the following statement

which can be deduced as a corollary of [Spr79, ch. 1, Theorem 15]. In the case that ψ is monotonic
this statement also follows as a consequence of the ubiquity technique, see [BDV06, § 12.1].

Inhomogeneous Khintchine–Groshev theorem. Let m,n > 1 be integers and let y ∈ I
m.

If ψ : N → R
+ is an approximating function which is assumed to be monotonic if n = 1 or n = 2,

then

|Ay
n,m(ψ)| =





0 if
∞∑

q=1

qn−1ψ(q)m <∞,

1 if
∞∑

q=1

qn−1ψ(q)m = ∞.

The following is the Hausdorff measure version of the above statement.
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Theorem 3. Let m,n > 1 be integers, let y ∈ I
m, and let ψ : N → R

+ be an approximating
function. Let f and g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is
monotonic. In the case that n = 1 or n = 2 suppose also that rg(ψ(r)/r)1/m is monotonic. Then,

Hf (Ay
n,m(ψ)) =





0 if
∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
<∞,

Hf (Inm) if
∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
= ∞.

Remark 2. Although the condition that rg(ψ(r)/r)1/m being monotonic when n = 1 or n = 2
is the one that we naturally arrive at upon combining Theorem 1 with the inhomogeneous
Khintchine–Groshev theorem, it is worth noting here that this condition may be relaxed. In
the case when n = 2, by appealing to the more general theorem of Sprindžuk [Spr79, ch. 1,
Theorem 15] (from which the inhomogeneous Khintchine–Groshev theorem stated above can be
deduced for n > 2), it is possible to replace monotonicity of rg(ψ(r)/r)1/m in the statement of
Theorem 3 with the more aesthetically pleasing assumption that ψ is monotonically decreasing.
When n = 1 it should be possible to make the same assumption replacement by using ideas from
ubiquity (see [BDV06, § 12.1] and references within).

The proof of the convergence case of Theorem 3 once again makes use of standard covering
arguments. The divergence case is a consequence of the inhomogeneous Khintchine–Groshev
theorem and Theorem 1. The proof of the divergence case is almost identical to that of (11) and
we therefore leave the details out. Furthermore, exploiting this same argument a little further,
we can use Theorem 1 to prove the following two more general statements from which both
Theorems 2 and 3 follow as corollaries. In some sense Theorems 4 and 5 below are reformulations
of Theorem 1 in terms of sets of Ψ-approximable (and ψ-approximable) points.

Theorem 4. Let Ψ : Zn\{0} → R
+ be an approximating function and let y ∈ I

m. Let f and
g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is monotonic. Let

Θ : Zn\{0} → R
+ be defined by Θ(q) = |q|g

(
Ψ(q)

|q|

)1/m

.

Then

|Ay
n,m(Θ)| = 1 implies Hf (Ay

n,m(Ψ)) = Hf (Inm).

The following statement is a special case of Theorem 4 with Ψ(q) := ψ(|q|).

Theorem 5. Let ψ : N → R
+ be an approximating function, let y ∈ I

m and let f and g : r →

g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is monotonic. Let

θ : N → R
+ be defined by θ(r) = rg

(
ψ(r)

r

)1/m

.

Then

|Ay
n,m(θ)| = 1 implies Hf (Ay

n,m(ψ)) = Hf (Inm).
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The proof of Theorem 4 is similar to that of (11). We shall explicitly deduce it from the even
more general result of § 2.3, where the approximating function will be allowed to depend on p as
well as q. Theorem 3 now trivially follows on combining the inhomogeneous Khintchine–Groshev
theorem with Theorem 5. Furthermore, any progress in removing the monotonicity constraint
on ψ from the inhomogeneous Khintchine–Groshev theorem can be instantly transferred into
a Hausdorff measure statement upon applying Theorem 5. Indeed, we suspect that a full
inhomogeneous analogue of Theorem BV2 must be true. Recall that it is open only in the
case when n = 1 or n = 2.

2.3 Approximation by primitive points and more

The key goal of this section is to present Hausdorff measure analogues of some recent results
obtained by Dani, Laurent and Nogueira in [DLN15]. The setup they consider assumes certain
coprimality conditions on the (m+n)-tuple (q1, . . . , qn, p1, . . . , pm) of approximating integers. To
achieve our goal we will first prove a very general statement which further extends Theorems 4
and 5 and is of independent interest. In particular, we will allow for the approximating function to
depend on (p,q) and will also introduce a ‘distortion’ parameter Φ that allows certain flexibility
within our framework. This allows us, for example, to incorporate the so-called ‘absolute value
theory’ [Dic93, HK13, HL13].

Within this section Ψ : Zm × Z
n\{0} → R

+ will be a function of (p,q), y ∈ I
m will be a

fixed point and Φ ∈ I
mm will be a fixed m ×m square matrix. Further, define My,Φ

n,m(Ψ) to be
the set of x ∈ I

nm such that
|qx+ pΦ− y| < Ψ(p,q)

holds for (p,q) ∈ Z
m × Z

n\{0} with arbitrarily large |q|. Based upon Theorem 1, we now state
and prove the following generalisation of Theorems 4 and 5.

Theorem 6. Let Ψ : Zm × Z
n\{0} → R

+ be such that

lim
|q|→∞

sup
p∈Zm

Ψ(p,q)

|q| = 0, (12)

and let y ∈ I
m and Φ ∈ I

mm be fixed. Let f and g : r → g(r) := r−m(n−1)f(r) be dimension
functions such that r−nmf(r) is monotonic. Let

Θ : Zm × Z
n\{0} → R

+ be defined by Θ(p,q) = |q|g
(
Ψ(p,q)

|q|

)1/m

.

Then
|My,Φ

n,m(Θ)| = 1 implies Hf (My,Φ
n,m(Ψ)) = Hf (Inm).

Proof. Let

M := max

{
3n, sup

(p,q)∈Zm×Zn\{0}

3Θ(p,q)√
n|q|

}
.

By the monotonicity of g and condition (12), we have that M is finite. Let

S := {(p,q) ∈ Z
m × Z

n\{0} : |pΦ| 6M |q|}

and let SΦ be any fixed subset of S such that for each (p′,q) ∈ S there exists (p,q) ∈ SΦ such
that

pΦ = p′Φ and Θ(p′,q) 6 2Θ(p,q). (13)
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Furthermore, let SΦ be such that for all (p,q), (r, s) ∈ SΦ we have

(pΦ,q) 6= (rΦ, s) if (p,q) 6= (r, s).

The existence of SΦ is easily seen. For each (p,q) ∈ SΦ, let

Rp,q := {x ∈ R
nm : qx+ pΦ− y = 0} and Υp,q :=

Ψ(p,q)

|q| .

For (p,q) ∈ SΦ we have that

∆(Rp,q,Υp,q) ∩ I
nm =

{
x ∈ I

nm :

√
n|qx+ pΦ− y|

|q|2
<

Ψ(p,q)

|q|

}

⊂ {x ∈ I
nm : |qx+ pΦ− y| < Ψ(p,q)}

since |q|2 6
√
n|q|. Also note that for each q ∈ Z

n\{0} there are only finitely many p ∈ Z
m such

that (p,q) ∈ SΦ. Therefore

Λ(Υ) ∩ I
nm ⊂ My,Φ

n,m(Ψ) ⊂ I
nm, (14)

where, when defining Λ(Υ), the lim sup is taken over (p,q) ∈ SΦ. Hence, by (14), it would suffice
for us to show that

Hf (Λ(Υ) ∩ I
nm) = Hf (Inm).

Consider Λ(g(Υ)1/m), where the lim sup is again taken over (p,q) ∈ SΦ. Take any (p′,q) ∈ S
and let (p,q) ∈ SΦ satisfy (13). Then, since |q| 6 |q|2, we have that

∆(Rp,q, g(Υp,q)
1/m) ∩ I

nm =

{
x ∈ I

nm :

√
n|qx+ pΦ− y|

|q|2
< g

(
Ψ(p,q)

|q|

)1/m}

=

{
x ∈ I

nm : |qx+ pΦ− y| < |q|2√
n
g

(
Ψ(p,q)

|q|

)1/m}

⊃
{
x ∈ I

nm : |qx+ pΦ− y| < |q|√
n
g

(
Ψ(p,q)

|q|

)1/m}

=

{
x ∈ I

nm : |qx+ pΦ− y| < 1√
n
Θ(p,q)

}

⊃
{
x ∈ I

nm : |qx+ p′Φ− y| < 1

2
√
n
Θ(p′,q)

}
.

Also observe that if {
x ∈ I

nm : |qx+ p′Φ− y| < 1

2
√
n
Θ(p′,q)

}
6= ∅,

then |p′Φ| 6M |q|. It follows that

My,Φ
n,m

(
1

2
√
n
Θ

)
⊂ Λ(g(Υ)1/m) ⊂ I

nm. (15)

Recall that |My,Φ
n,m(Θ)| = 1. Furthermore, in view of [BV08, Lemma 4], we have that

∣∣∣∣M
y,Φ
n,m

(
1

2
√
n
Θ

)∣∣∣∣ = 1.

Together with (15) this implies that |Λ(g(Υ)1/m)∩Inm| = 1. Further, note that, by (12), Υp,q → 0
as |q| → ∞. Therefore, Theorem 1 is applicable with k = nm, l =m(n−1) andm and we conclude
that for any ball B ⊂ I

nm we have that Hf (B ∩ Λ(Υ)) = Hf (B). In particular, this means that
Hf (Inm ∩ Λ(Υ)) = Hf (Inm), as required. ✷
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Proof of Theorem 4. Let Ψ be as in Theorem 4. First observe that if Ψ(q) > 1 for infinitely
many q ∈ Z

n, then Ay
n,m(Ψ) = I

nm and there is nothing to prove. Otherwise we obviously have
that Ψ(q)/|q| → 0 as |q| → ∞. In this case, extending Ψ and Θ to be functions of (p,q) so that
Ψ(p,q) := Ψ(q) and Θ(p,q) := Θ(q), we immediately recover Theorem 4 from Theorem 6. ✷

Theorem 6 can be applied in various situations beyond what has already been discussed
above. For example, divergence results of [DH13] can be obtained by using Theorem 6 with

Φ :=

(
Iu 0

0 0

)
,

where Iu is the identity matrix. In what follows we shall give applications of Theorem 6 in which
the dependence of Ψ on both p and q becomes particularly useful. Namely, we shall extend the
results of Dani, Laurent and Nogueira [DLN15] to Hausdorff measures.

First we establish some notation. For any d > 2 let P (Zd) be the set of points v = (v1, . . . , vd)
∈ Z

d such that gcd(v1, . . . , vd) = 1. For any subset σ = {i1, . . . , iν} of {1, . . . , d} with ν > 2, let
P (σ) be the set of points v ∈ Z

d such that gcd(vi1 , . . . , viν ) = 1. Next, given a partition π of
{1, . . . , d} into disjoint subsets πℓ of at least two elements, let P (π) be the set of points v ∈ Z

d

such that v ∈ P (πℓ) for all components πℓ of π.
Given an approximating function ψ : N → R

+ and fixed Φ ∈ I
mm and y ∈ I

m, let My,Φ
n,m(ψ)

be the set of x ∈ I
nm such that

|qx+ pΦ− y| < ψ(|q|) (16)

holds for (p,q) ∈ Z
m × Z

n\{0} with arbitrarily large |q|. Also, given a partition π of {1, . . . ,
m+n}, letMπ,y,Φ

n,m (ψ) denote the set of x ∈ I
nm for which (16) is satisfied for (p,q) ∈ Z

m×Z
n\{0}

with arbitrarily large |q| and with (q1, . . . , qn, p1, . . . , pm) ∈ P (π). Now specialising Theorem 6
for the approximating function

Ψ(p,q) :=

{
ψ(|q|) if (q1, . . . , qn, p1, . . . , pm) ∈ P (π),

0 otherwise,

gives the following.

Theorem 7. Let ψ : N → R
+ be an approximating function such that ψ(q)/q → 0 as q → ∞.

Let π be any partition of {1, . . . ,m + n} and let Φ ∈ I
mm and y ∈ I

m be fixed. Let f and
g : r → g(r) := r−m(n−1)f(r) be dimension functions such that r−nmf(r) is monotonic and let
θ : N → R

+ be defined by θ(q) = qg(ψ(q)/q)1/m. Then

|Mπ,y,Φ
n,m (θ)| = 1 implies Hf (Mπ,y,Φ

n,m (ψ)) = Hf (Inm).

Now, let us turn our attention to the results of Dani, Laurent and Nogueira from [DLN15].
For the moment, we will return to the homogeneous setting. Given a partition π of {1, . . . ,m+n}
and an approximating function ψ : N → R

+ we will denote by Aπ
n,m(ψ) the set of x ∈ I

nm such
that

|qx+ p| < ψ(|q|)
holds for (p,q) ∈ Z

m × Z
n\{0} with arbitrarily large |q| and (q1, . . . , qn, p1, . . . , pm) ∈ P (π).

We note that in this case the inequality holds for (p,q) ∈ Z
m × Z

n\{0} with arbitrarily large
|q| if and only if the inequality holds for infinitely many (p,q) ∈ Z

m × Z
n\{0}. The notation

An,m(ψ) will be used as defined in § 2.1. The following statement is a consequence of [DLN15,
Theorem 1.2].
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Theorem DLN1. Let n,m ∈ N and let π be a partition of {1, . . . ,m + n} such that every
component of π has at least m + 1 elements. Let ψ : N → R

+ be a function such that the
mapping x → xn−1ψ(x)m is non-increasing. Then,

|Aπ
n,m(ψ)| =





0 if
∞∑

q=1

qn−1ψ(q)m <∞,

1 if
∞∑

q=1

qn−1ψ(q)m = ∞.

The following Hausdorff measure analogue of Theorem DLN1 follows from Theorem 7.

Theorem 8. Let n,m ∈ N and let π be a partition of {1, . . . ,m+n} such that every component
of π has at least m+ 1 elements. Let ψ : N → R

+ be an approximating function. Let f and g :
r → g(r) := r−m(n−1)f(r) be dimension functions such that the function r−nmf(r) is monotonic
and qn+m−1g(ψ(q)/q) is non-increasing. Then,

Hf (Aπ
n,m(ψ)) =





0 if
∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
<∞,

Hf (Inm) if
∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
= ∞.

Proof. First note that in light of the fact that qn+m−1g(ψ(q)/q) is non-increasing we may assume
without loss of generality that ψ(q)/q → 0 as q → ∞. To see this, suppose that ψ(q)/q 9 0.
Therefore, there must exist some ε > 0 such that ψ(q)/q > ε infinitely often. In turn, since g is a
dimension function, and hence non-decreasing, this means that qn+m−1g(ψ(q)/q) > qn+m−1g(ε)
infinitely often. However, since this expression is non-increasing, we must have that g(ε) = 0. In
particular, this means that g(r) = 0 and, hence, also f(r) = 0 for all r 6 ε. Thus Hf (X) = 0 for
any X ⊂ I

nm and so the result is trivially true.
In view of the conditions imposed on π, we must have that nm > 1. Furthermore,

since Aπ
n,m(ψ) ⊂ An,m(ψ), it follows from Theorem 2 that Hf (Aπ

n,m(ψ)) = 0 when∑∞
q=1 q

n+m−1g(ψ(q)/q) <∞. Alternatively, one can use a standard covering argument to obtain
a direct proof of the convergence part of Theorem 8.

Regarding the divergence case, observe that Aπ
n,m(ψ) = Mπ,0,Im

n,m (ψ), where Im represents

the m × m identity matrix. Therefore, if |Mπ,0,Im
n,m (θ)| = |Aπ

n,m(θ)| = 1 where θ : N → R
+ is

defined by θ(q) = qg(ψ(q)/q)1/m, then it would follow from Theorem 7 that Hf (Aπ
n,m(ψ)) =

Hf (Mπ,0,Im
n,m (ψ)) = Hf (Inm).

Now, by Theorem DLN1, |Aπ
n,m(θ)| = 1 if q → qn−1θ(q)m is non-increasing and∑∞

q=1 q
n−1θ(q)m = ∞. We have that qn−1θ(q)m = qn+m−1g(ψ(q)/q) which is non-increasing

by assumption. By our hypotheses, we also have

∞∑

q=1

qn−1θ(q)m =

∞∑

q=1

qn+m−1g

(
ψ(q)

q

)
= ∞.

Hence the proof is complete. ✷
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If ψ(q) := q−τ for some τ > 0 let us write Aπ
n,m(τ) := Aπ

n,m(ψ). The following result regarding
the Hausdorff dimension of Aπ

n,m(τ) is a corollary of Theorem 8.

Corollary 1. Let n,m ∈ N and let π be a partition of {1, . . . ,m+n} such that every component
of π has at least m+ 1 elements. Then

dimH(Aπ
n,m(τ)) =





m(n− 1) +
m+ n

τ + 1
when τ >

n

m
,

nm when τ <
n

m
.

Proof. For τ > n/m the result follows on applying Theorem 8 with

fδ(r) := rs0+δ where s0 = m(n− 1) +
m+ n

τ + 1
.

Indeed, with δ sufficiently small, all the conditions of Theorem 8 are met and furthermore, as is
easily seen, we have from Theorem 8 that

Hfδ(Aπ
n,m(τ)) =

{
0 if δ > 0,

Hfδ(Inm) if δ 6 0.

This means that Hs0+δ(Aπ
n,m(τ)) = 0 for δ > 0 and Hs0+δ(Aπ

n,m(τ)) = Hs0+δ(Inm) for δ 6 0.

Therefore, if s0 6 nm then dimH(Aπ
n,m(τ)) = s0 since, in this case, Hs0+δ(Inm) = ∞ whenever

δ < 0. Finally, note that s0 6 nm if and only if τ > n/m.
In the case where τ < n/m observe that Aπ

n,m(τ) ⊃ Aπ
n,m(n/m) so

dimH(Aπ
n,m(τ)) > dimH

(
Aπ

n,m

(
n

m

))
= nm.

Combining this with the trivial upper bound gives dimH(Aπ
n,m(τ)) = nm when τ < n/m, as

required. ✷

Next we consider two results of Dani, Laurent and Nogueira regarding inhomogeneous
approximation. As before, for a fixed y ∈ I

m we let Ay
n,m(ψ) denote the set of points x ∈ I

nm for
which

|qx+ p− y| < ψ(|q|) (17)

holds for infinitely many (p,q) ∈ Z
m×Z

n\{0}. Given a partition π of {1, . . . ,m+n}, let Aπ,y
n,m(ψ)

be the set of points x ∈ I
nm for which (17) holds for infinitely many (p,q) ∈ Z

m × Z
n\{0} with

(q1, . . . , qn, p1, . . . , pm) ∈ P (π).
Rephrasing it in a way which is more suitable for our current purposes, a consequence of

[DLN15, Theorem 1.1] reads as follows.

Theorem DLN2. Let n,m ∈ N and let π be a partition of {1, . . . ,m + n} such that every
component of π has at least m + 1 elements. Let ψ : N → R

+ be a function such that the
mapping x → xn−1ψ(x)m is non-increasing. Then,

(i) if
∑∞

q=1 q
n−1ψ(q)m = ∞ then for almost every y ∈ I

m we have |Aπ,y
n,m(ψ)| = 1;

(ii) if
∑∞

q=1 q
n−1ψ(q)m <∞ then for any y ∈ I

m we have |Ay
n,m(ψ)| = 0.
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The corresponding Hausdorff measure statement we obtain in this case is as follows.

Theorem 9. Let n,m ∈ N and let π be a partition of {1, . . . ,m+n} such that every component
of π has at least m+ 1 elements. Let ψ : N → R

+ be an approximating function. Let f and g :
r → g(r) := r−m(n−1)f(r) be dimension functions such that the function r−nmf(r) is monotonic
and qn+m−1g(ψ(q)/q) is non-increasing. Then,

(i) if
∑∞

q=1 q
n+m−1g(ψ(q)/q) = ∞ then for Lebesgue almost every y ∈ I

m we have

Hf (Aπ,y
n,m(ψ)) = Hf (Inm);

(ii) if
∑∞

q=1 q
n+m−1g(ψ(q)/q) <∞ then for any y ∈ I

m we have Hf (Ay
n,m(ψ)) = 0.

Proof. This is similar to the proof of Theorem 8 with the only difference being the introduction
of y. ✷

Finally, let us reintroduce the parameter Φ ∈ I
mm. In this case, considering the setsMπ,y,Φ

n,m (ψ)
(as defined on p. 13), it follows from [DLN15, Theorem 1.3] that we have:

Theorem DLN3. Let n,m ∈ N and let π be a partition of {1, . . . ,m + n} such that every
component of π has at least m + 1 elements. Let ψ : N → R

+ be a function such that the
mapping x → xn−1ψ(x)m is non-increasing. Then, for any y ∈ I

m,

(i) if
∑∞

q=1 q
n−1ψ(q)m = ∞ then for almost every Φ ∈ I

mm we have that |Mπ,y,Φ
n,m (ψ)| = 1;

(ii) if
∑∞

q=1 q
n−1ψ(q)m <∞ then for any Φ ∈ I

mm we have |My,Φ
n,m(ψ)| = 0.

Combining this with Theorem 7 we obtain the following Hausdorff measure statement.

Theorem 10. Let n,m ∈ N and let π be a partition of {1, . . . ,m+n} such that every component
of π has at least m+ 1 elements. Let ψ : N → R

+ be an approximating function. Let f and g :
r → g(r) := r−m(n−1)f(r) be dimension functions such that the function r−nmf(r) is monotonic
and qn+m−1g(ψ(q)/q) is non-increasing. Then, for any y ∈ I

m,

(i) if
∑∞

q=1 q
n+m−1g(ψ(q)/q) = ∞ then for Lebesgue almost every Φ ∈ I

mm we have that

Hf (Mπ,y,Φ
n,m (ψ)) = Hf (Inm);

(ii) if
∑∞

q=1 q
n+m−1g(ψ(q)/q) <∞ then, for any Φ ∈ I

mm, we have that Hf (My,Φ
n,m(ψ)) = 0.

Proof. Once again the proof is similar to that of Theorem 8. ✷

3. Preliminaries to the Proof of Theorem 1

3.1 Hausdorff measures

In this section we give a brief account of Hausdorff measures and dimension. Throughout, by a
dimension function f : R+

→ R
+ we shall mean a left continuous, non-decreasing function such

that f(r) → 0 as r → 0. Given a ball B := B(x, r) in R
k, we define

V f (B) := f(r)

and refer to V f (B) as the f -volume of B. Note that if m is k-dimensional Lebesgue measure
and f(x) = m(B(0, 1))xk, then V f is simply the volume of B in the usual geometric sense; i.e.
V f (B) = m(B). In the case when f(x) = xs for some s > 0, we write V s for V f .
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The Hausdorff f -measure with respect to the dimension function f will be denoted
throughout by Hf and is defined as follows. Suppose F is a subset of Rk. For ρ > 0, a countable
collection {Bi} of balls in R

k with radii r(Bi) 6 ρ for each i such that F ⊂
⋃

iBi is called a
ρ-cover for F . Clearly such a cover exists for every ρ > 0. For a dimension function f define

Hf
ρ(F ) := inf

{∑

i

V f (Bi) : {Bi} is a ρ-cover for F

}
.

The Hausdorff f -measure, Hf (F ), of F with respect to the dimension function f is defined by

Hf (F ) := lim
ρ→0

Hf
ρ(F ) = sup

ρ>0
Hf

ρ(F ).

A simple consequence of the definition of Hf is the following useful fact (see, for example,
[Fal03]).

Lemma 1. If f and g are two dimension functions such that the ratio f(r)/g(r) → 0 as r → 0,
then Hf (F ) = 0 whenever Hg(F ) <∞.

In the case that f(r) = rs (s > 0), the measure Hf is the usual s-dimensional Hausdorff
measure Hs and the Hausdorff dimension, dimH F , of a set F is defined by

dimH F := inf{s > 0 : Hs(F ) = 0}.
For subsets of Rk, Hk is comparable to the k-dimensional Lebesgue measure. Actually, Hk is

a constant multiple of the k-dimensional Lebesgue measure (but we shall not need this stronger
statement).

Furthermore, for any ball B in R
k we have that V k(B) is comparable to |B|. Thus there are

constants 0 < c1 < 1 < c2 <∞ such that for any ball B in R
k we have

c1V
k(B) 6 Hk(B) 6 c2V

k(B). (18)

A general and classical method for obtaining a lower bound for the Hausdorff f -measure of
an arbitrary set F is the following mass distribution principle. This will play a central role in
our proof of Theorem 1 in § 5.
Lemma 2 (Mass distribution principle). Let µ be a probability measure supported on a subset
F of Rk. Suppose there are positive constants c and ro such that

µ(B) 6 cV f (B)

for any ball B with radius r 6 ro. If E is a subset of F with µ(E) = λ > 0 then Hf (E) > λ/c.

The above lemma is stated as it appears in [BV06a] since this version is most useful for our
current purposes. For further information in general regarding Hausdorff measures and dimension
we refer the reader to [Fal03, Mat95].

3.2 The 5r-covering lemma

Let B := B(x, r) be a ball in R
k. For any λ > 0, we denote by λB the ball B scaled by a factor

λ; i.e. λB := B(x, λr).
We conclude this section by stating a basic, but extremely useful, covering lemma which we

will use throughout [Mat95].

Lemma 3 (The 5r-covering lemma). Every family F of balls of uniformly bounded diameter in
R
k contains a disjoint subfamily G such that

⋃

B∈F

B ⊂
⋃

B∈G

5B.
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4. The KG,B covering lemma

Our strategy for proving Theorem 1 is similar to that used for proving the mass transference
principle for balls in [BV06a]. There are however various technical differences that account for the
different shape of approximating sets. First of all we will require a covering lemma analogous to
the KG,B-lemma established in [BV06a, § 4]. This appears as Lemma 4 below. The balls obtained
from Lemma 4 correspond to planes in the lim sup set Λ(g(Υ)1/m). Furthermore, for the proof
of Theorem 1 it is necessary for us to obtain from each of these ‘larger’ balls a collection of balls
which correspond to the ‘shrunk’ lim sup set Λ(Υ). The desired properties of this collection and
the existence of such a collection are the contents of Lemma 5 of this section.

To save on notation, throughout let Υ̃j := g(Υj)
1/m. For an arbitrary ball B ∈ R

k and for
each j ∈ N define

Φj(B) := {B(x, Υ̃j) ⊂ B : x ∈ Rj}.

Analogously to [BV06a, Lemma 5] we will require the following covering lemma.

Lemma 4. Let R, Υ, g and Ω be as in Theorem 1 and assume that (2) is satisfied. Then for any
ball B in Ω and any G ∈ N, there exists a finite collection

KG,B ⊂ {(A; j) : j > G,A ∈ Φj(B)}

satisfying the following properties:

(i) if (A; j) ∈ KG,B then 3A ⊂ B;

(ii) if (A; j), (A′; j′) ∈ KG,B are distinct then 3A ∩ 3A′ = ∅; and

(iii) Hk

( ⋃

(A;j)∈KG,B

A

)
>

1

4× 15k
Hk(B).

Remark 3. Essentially, KG,B is a collection of balls drawn from the families Φj(B). We write
(A; j) for a generic ball from KG,B to ‘remember’ the index j of the family Φj(B) that the
ball A comes from. However, when we are referring only to the ball A (as opposed to the pair
(A; j)) we will just write A. Keeping track of the associated j will be absolutely necessary in
order to be able to choose the ‘right’ collection of balls within A that at the same time lie in
an Υj-neighbourhood of the relevant Rj . Indeed, for j 6= j′ we could have A = A′ for some
A ∈ Φj(B) and A′ ∈ Φj′(B).

Proof of Lemma 4. For each j ∈ N, consider the collection of balls

Φ3
j (B) := {B(x, 3Υ̃j) ⊂ B : x ∈ Rj}.

By (2), for any G > 1 we have that

Hk

(⋃

j>G

(∆(Rj , 3Υ̃j) ∩B)

)
= Hk(B).

Observe that ⋃

L∈Φ3

j (B)

L ⊂ ∆(Rj , 3Υ̃j) ∩B
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and that the difference of the two sets lies within 3Υ̃j of the boundary of B. Then, since Υj → 0,
and consequently Υ̃j → 0, as j → ∞, we have that

Hk

(⋃

j>G

⋃

L∈Φ3

j (B)

L

)
∼ Hk

(⋃

j>G

(∆(Rj , 3Υ̃j) ∩B)

)
= Hk(B) as G → ∞.

In particular, there exists a sufficiently large G′ ∈ N such that for any G > G′ we have

Hk

(⋃

j>G

⋃

L∈Φ3

j (B)

L

)
>

1

2
Hk(B).

However, for any G < G′ we also have
⋃

j>G

⋃

L∈Φ3

j (B)

L ⊃
⋃

j>G′

⋃

L∈Φ3

j (B)

L.

Thus, for any G ∈ N we must have

Hk

(⋃

j>G

⋃

L∈Φ3

j (B)

L

)
>

1

2
Hk(B). (19)

In fact, using the same argument as above it is possible to show that for any G ∈ N we
have Hk(

⋃
j>G

⋃
L∈Φ3

j (B) L) > (1 − ε)Hk(B) for any 0 < ε < 1 and hence that we must have

Hk(
⋃

j>G

⋃
L∈Φ3

j (B) L) = Hk(B). However, (19) is sufficient for our purposes here.

By Lemma 3, there exists a disjoint subcollection G ⊂ {(L; j) : j > G,L ∈ Φ3
j (B)} such that

◦⋃

(L;j)∈G

L ⊂
⋃

j>G

⋃

L∈Φ3

j (B)

L ⊂
⋃

(L;j)∈G

5L.

Now, let G′ consist of all the balls from G but shrunk by a factor of 3; so the balls in G′ will
still be disjoint when scaled by a factor of 3. Formally,

G′ := {(13L; j) : (L; j) ∈ G}.

Then, we have that

◦⋃

(A;j)∈G′

A ⊂
⋃

j>G

⋃

L∈Φ3

j (B)

L ⊂
⋃

(A;j)∈G′

15A. (20)

From (19) and (20) we have that

Hk

( ⋃

(A;j)∈G′

A

)
=

∑

(A;j)∈G′

Hk(A)

=
∑

(A;j)∈G′

1

15k
Hk(15A)

>
1

15k
Hk

( ⋃

(A;j)∈G′

15A

)
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>
1

15k
Hk

(⋃

j>G

⋃

L∈Φ3

j (B)

L

)

>
1

2× 15k
Hk(B).

Next note that, since the balls in G′ are disjoint and contained in B and Υ̃j → 0 as j → ∞, we
have that

Hk

( ⋃

(A;j)∈G′

j>N

A

)
→ 0 as N → ∞.

Therefore, there exists a sufficiently large N0 ∈ N such that

Hk

( ⋃

(A;j)∈G′

j>N0

A

)
<

1

4× 15k
Hk(B).

Thus, taking KG,B to be the subcollection of (A; j) ∈ G′ with G 6 j < N0 ensures that KG,B is
a finite collection of balls while still satisfying the required properties (i)–(iii). ✷

Lemma 5. Let R, Υ, g, Ω and B be as in Lemma 4 and assume that (2) is satisfied. Furthermore,
assume that r−kf(r) → ∞ as r → 0. Let KG,B be as in Lemma 4. Then, provided that G is
sufficiently large, for any (A; j) ∈ KG,B there exists a collection C(A; j) of balls satisfying the
following properties:

(i) each ball in C(A; j) is of radius Υj and is centred on Rj ;

(ii) if L ∈ C(A; j) then 3L ⊂ A;

(iii) if L,M ∈ C(A; j) are distinct then 3L ∩ 3M = ∅;

(iv) 7−kHk(∆(Rj ,Υj) ∩ 1
2A) 6 Hk(

⋃
L∈C(A;j) L) 6 Hk(∆(Rj ,Υj) ∩A); and

(v) there exist some constants d1, d2 > 0, independent of G and j, such that

d1 ×
(
g(Υj)

1/m

Υj

)l

6 #C(A; j) 6 d2 ×
(
g(Υj)

1/m

Υj

)l

. (21)

Proof. First of all note that, by the assumption that r−kf(r) → ∞ as r → 0, we have that

Υj

Υ̃j

→ 0 as j → ∞.

In particular we can assume that G is sufficiently large so that

6Υj < Υ̃j for any j > G. (22)

Let x1, . . . ,xt ∈ Rj ∩ 1
2A be any collection of points such that

‖xi − xi′‖ > 6Υj if i 6= i′ (23)

and t is maximal possible. The existence of such a collection follows immediately from the fact
that Rj ∩ 1

2A is bounded and, by (23), the collection is discrete. Let

C(A; j) := {B(x1,Υj), . . . , B(xt,Υj)}.
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Thus, property (i) is trivially satisfied for this collection C(A; j). Recall that, by construction,
A ∈ Φj(B), which means that the radius of 1

2A is 1
2Υ̃j . If L ∈ C(A; j), say L := B(xi,Υj), and A is

centred at x0, then for any y ∈ 3L we have that ‖y−xi‖< 3Υj while ‖xi−x0‖6 1
2Υ̃j . Then, using

(22) and the triangle inequality, we get that ‖y−x0‖ 6 ‖y−xi‖+ ‖xi−x0‖ 6 3Υj +
1
2Υ̃j < Υ̃j .

Hence 3L ⊂ A whence property (ii) follows. Further, property (iii) follows immediately from
condition (23).

By the maximality of the collection x1, . . . ,xt, for any x ∈ Rj ∩ 1
2A there exists an xi from

this collection such that ‖x− xi‖ 6 6Υj . Hence,

∆(Rj ,Υj) ∩
1

2
A ⊂

⋃

L∈C(A;j)

7L.

Thus

Hk

(
∆(Rj ,Υj) ∩

1

2
A

)
6

∑

L∈C(A;j)

Hk(7L)

6
∑

L∈C(A;j)

7kHk(L)

= 7kHk

( ◦⋃

L∈C(A;j)

L

)
.

On the other hand, by property (ii), we have that

◦⋃

L∈C(A;j)

L ⊂ ∆(Rj ,Υj) ∩A,

which together with the previous inequality establishes property (iv).
Finally, property (v) is an immediate consequence of property (iv) upon noting that

Hk(∆(Rj ,Υj) ∩ 1
2A) ≍ Hk(∆(Rj ,Υj) ∩A) ≍ Υm

j Υ̃l
j

and

Hk

( ⋃

L∈C(A;j)

L

)
= #C(A; j)Hk(L) ≍ #C(A; j)Υk

j ,

where l is the dimension of Rj , m = k − l and L is any ball from C(A; j). ✷

Remark. Throughout we use the Vinogradov notation, writing A≪B if A6 cB for some positive
constant c and A≫ B if A > c′B for some positive constant c′. If A≪ B and A≫ B we write
A ≍ B.

5. Proof of Theorem 1

As with the proof of the mass transference principle given in [BV06a] and the proof of
Theorem BV1 given in [BV06b], we begin by noting that we may assume that r−kf(r) → ∞ as
r → 0. To see this we first observe that, by Lemma 1, if r−kf(r) → 0 as r → 0 we have that
Hf (B) = 0 for any ball B in R

k. Furthermore, since B ∩ Λ(Υ) ⊂ B, the result follows trivially.
Now suppose that r−kf(r) → λ as r → 0 for some 0 < λ <∞. In this case, Hf is comparable

to Hk and so it would be sufficient to show that Hk(B ∩ Λ(Υ)) = Hk(B). Since r−kf(r) → λ
as r → 0 we have that the ratio f(r)/rk is bounded between positive constants for sufficiently
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small r. In turn, this implies that, in this case, the ratio of the values g(Υj)
1/m and Υj is

uniformly bounded between positive constants. It then follows from [BV08, Lemma 4] that

Hk(B ∩ Λ(g(Υ)1/m)) = Hk(B ∩ Λ(Υ)).

This together with (2) then implies the required result in this case.
Thus, for the rest of the proof we may assume without loss of generality that r−kf(r) → ∞

as r → 0. With this assumption it is a consequence of Lemma 1 that Hf (B0) = ∞ for any ball
B0 in Ω, which we fix from now on. Therefore, our goal for the rest of the proof is to show that

Hf (B0 ∩ Λ(Υ)) = ∞.

To this end, for each η > 1, we will construct a Cantor subset Kη of B0∩Λ(Υ) and a probability
measure µ supported on Kη satisfying the condition that for any arbitrary ball D of sufficiently
small radius r(D) we have

µ(D) ≪ V f (D)

η
, (24)

where the implied constant does not depend on D or η. By the mass distribution principle
(Lemma 2) and the fact that Kη ⊂ B0 ∩ Λ(Υ), we would then have that Hf (B0 ∩ Λ(Υ)) >

Hf (Kη) ≫ η and the proof is finished by taking η to be arbitrarily large.

5.1 The desired properties of Kη

We will construct the Cantor set Kη :=
⋂∞

n=1K(n) so that each level K(n) is a finite union of
disjoint closed balls and the levels are nested, that is K(n) ⊃ K(n+1) for n > 1. We will denote
the collection of balls constituting level n by K(n). As with the Cantor set in [BV06a], the
construction of Kη is inductive and each level K(n) will consist of local levels and sub-levels. So,
suppose that the (n− 1)th level K(n− 1) has been constructed. Then, for every B ∈ K(n− 1)
we construct the (n,B)-local level, K(n,B), which will consist of balls contained in B. The
collection of balls K(n) will take the form

K(n) :=
⋃

B∈K(n−1)

K(n,B).

Looking even more closely at the construction, each (n,B)-local level will consist of local sub-levels
and will be of the form

K(n,B) :=

lB⋃

i=1

K(n,B, i). (25)

Here, K(n,B, i) denotes the ith local sub-level and lB is the number of local sub-levels. For n > 2
each local sub-level will be defined as the union

K(n,B, i) :=
⋃

B′∈G(n,B,i)

⋃

(A;j)∈KG′,B′

C(A; j), (26)

where B′ will lie in a suitably chosen collection of balls G(n,B, i) within B, KG′,B′ will arise
from Lemma 4 and C(A; j) will arise from Lemma 5. It will be apparent from the construction
that the parameter G′ becomes arbitrarily large as we construct levels. The set of all pairs (A; j)
that contribute to (26) will be denoted by K̃(n,B, i). Thus,

K̃(n,B, i) :=
⋃

B′∈G(n,B,i)

KG′,B′ and K(n,B, i) =
⋃

(A;j)∈K̃(n,B,i)

C(A; j).
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If additionally we start with K(1) := B0 then, in view of the definition of the sets C(A; j), the
inclusion Kη ⊂ B0 ∩ Λ(Υ) is straightforward. Hence the only real part of the proof will be to
show the validity of (24) for some suitable measure supported on Kη. This will require several
additional properties which are now stated.

The properties of levels and sub-levels of Kη

(P0) K(1) consists of one ball, namely B0.

(P1) For any n > 2 and any B ∈ K(n− 1) the balls

{3L : L ∈ K(n,B)}
are disjoint and contained in B.

(P2) For any n > 2, any B ∈ K(n− 1) and any i ∈ {1, . . . , lB} the local sub-level K(n,B, i) is
a finite union of some collections C(A; j) of balls satisfying properties (i)–(v) of Lemma 5,
where the balls 3A are disjoint and contained in B.

(P3) For any n > 2, B ∈ K(n− 1) and i ∈ {1, . . . , lB} we have
∑

(A;j)∈K̃(n,B,i)

V k(A) > c3V
k(B)

where

c3 :=
1

2k+3 × 5k × 15k

(
c1
c2

)2

with c1 and c2 as defined in (18).

(P4) For any n > 2, B ∈K(n−1), any i ∈ {1, . . . , lB−1} and any L ∈K(n,B, i) andM ∈K(n,
B, i+ 1) we have

f(r(M)) 6 1
2f(r(L)) and g(r(M)) 6 1

2g(r(L)).

(P5) The number of local sub-levels is defined by

lB :=





[
c2η

c3Hk(B)

]
+ 1 if B = B0 := K(1),

[
V f (B)

c3V k(B)

]
+ 1 if B ∈ K(n) with n > 2,

and satisfies lB > 2 for B ∈ K(n) with n > 2.

Properties (P1) and (P2) are imposed to make sure that the balls in the Cantor construction
are sufficiently well separated. On the other hand, Properties (P3) and (P5) make sure that there
are ‘enough’ balls in each level of the construction of the Cantor set. Property (P4) essentially
ensures that all balls involved in the construction of a level of the Cantor set are sufficiently
small compared with balls involved in the construction of the previous level. All of the Properties
(P1)–(P5) will play a crucial role in the measure estimates we obtain in § 5.4 and § 5.5.

5.2 The existence of Kη

In this section we show that it is possible to construct a Cantor set with the properties outlined
in § 5.1. In what follows we will use the following notation:

Kl(n,B) :=
l⋃

i=1

K(n,B, i) and K̃l(n,B) :=
l⋃

i=1

K̃(n,B, i).
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A mass transference principle for systems of linear forms

Level 1. The first level is defined by taking the arbitrary ball B0. Thus, K(1) := B0 and Property

(P0) is trivially satisfied. We proceed by induction. Assume that the first (n − 1) levels K(1),

K(2), . . . , K(n− 1) have been constructed. We now construct the nth level K(n).

Level n. To construct the nth level we will define local levels K(n,B) for each B ∈ K(n − 1).
Therefore, from now on we fix some ball B ∈ K(n − 1) and a sufficiently small constant ε :=
ε(B) > 0 which will be determined later. Recall that each local level K(n,B) will consist of local
sub-levels K(n,B, i) where 1 6 i 6 lB and lB is given by Property (P5). Let G ∈ N be sufficiently
large so that Lemmas 4 and 5 are applicable. Furthermore, suppose that G is large enough so
that

3Υj < g(Υj)
1/m whenever j > G, (27)

Υk
j

f(Υj)
< ε

r(B)k

f(r(B))
whenever j > G, (28)

and [
f(Υj)

c3Υk
j

]
> 1 whenever j > G, (29)

where c3 is the constant appearing in Property (P3) above. Note that the existence of G satisfying

(27)–(29) follows from the assumptions that r−kf(r) → ∞ as r → 0 and Υj → 0 as j → ∞.

Sub-level 1.With B and G as above, letKG,B denote the collection of balls arising from Lemma 4.

Define the first sub-level of K(n,B) to be

K(n,B, 1) :=
⋃

(A;j)∈KG,B

C(A; j),

thus

K̃(n,B, 1) = KG,B and G(n,B, 1) = {B}.

By the properties of C(A; j) (Lemma 5), it follows that (P1) is satisfied within this sub-level.

From the properties of KG,B (Lemma 4) and Lemma 5 it follows that (P2) and (P3) are satisfied

for i = 1.

Higher sub-levels. To construct higher sub-levels we argue by induction. For l < lB, assume that

the sub-levels K(n,B, 1), . . . ,K(n,B, l) satisfying Properties (P1)–(P4) with lB replaced by l

have already been defined. We now construct the next sub-level K(n,B, l + 1).

As every sub-level of the construction has to be well separated from the previous ones, we

first verify that there is enough ‘space’ left over in B once we have removed the sub-levels

K(n,B, 1), . . . ,K(n,B, l) from B. More precisely, let

A(l) :=
1

2
B

∖ ⋃

L∈Kl(n,B)

4L.

We will show that

Hk(A(l)) > 1
2H

k(12B). (30)
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D. Allen and V. Beresnevich

First, observe that

Hk

( ⋃

L∈Kl(n,B)

4L

)
6

∑

L∈Kl(n,B)

Hk(4L)

(18)

6 4kc2
∑

L∈Kl(n,B)

V k(L)

= 4kc2

l∑

i=1

∑

L∈K(n,B,i)

V k(L)

= 4kc2

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

#C(A; j)×Υk
j

(21)

6 4kc2d2

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

(
g(Υj)

1/m

Υj

)l

Υk
j

= 4kc2d2

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

g(Υj)
l/mΥm

j

= 4kc2d2

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

g(Υj)
k/m

Υm
j

g(Υj)

= 4kc2d2

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

g(Υj)
k/m

Υk
j

f(Υj)
.

Hence, by (28), we get that

Hk

( ⋃

L∈Kl(n,B)

4L

)
6 4kc2d2ε

r(B)k

f(r(B))

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

g(Υj)
k/m

= 4kc2d2ε
r(B)k

f(r(B))

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

V k(A)

(18)

6 4k
c2
c1
d2ε

r(B)k

f(r(B))

l∑

i=1

∑

(A;j)∈K̃(n,B,i)

Hk(A)

(P2)

6 4k
c2
c1
d2ε

r(B)k

f(r(B))
lHk(B)

6 4k
c2
c1
d2ε

r(B)k

f(r(B))
(lB − 1)Hk(B). (31)

If B = B0, set

ε = ε(B0) :=
1

2d2

(
c1
c2

)2 c3
2k4k

f(r(B0))

η
.

Otherwise, if B 6= B0, set

ε = ε(B) := ε(B0)×
η

f(r(B0))
=

1

2d2

(
c1
c2

)2 c3
2k4k

.
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A mass transference principle for systems of linear forms

Then, it follows from (31) combined with (P5) that

Hk

( ⋃

L∈Kl(n,B)

4L

)
6

1

2
Hk

(
1

2
B

)
,

thus verifying (30).
By construction, Kl(n,B) is a finite collection of balls. Therefore, the quantity

dmin := min{r(L) : L ∈ Kl(n,B)}

is well defined and positive. LetA(n,B, l) be the collection of all the balls of diameter dmin centred
at a point in A(l). By the 5r-covering lemma (Lemma 3), there exists a disjoint subcollection
G(n,B, l + 1) of A(n,B, l) such that

A(l) ⊂
⋃

B′∈A(n,B,l)

B′ ⊂
⋃

B′∈G(n,B,l+1)

5B′.

The collection G(n,B, l + 1) is clearly contained within B and, since the balls in this collection
are disjoint and of the same size, it is finite. Moreover, by construction

B′ ∩
⋃

L∈Kl(n,B)

3L = ∅ for any B′ ∈ G(n,B, l + 1); (32)

i.e. the balls in G(n,B, l + 1) do not intersect any of the 3L balls from the previous sub-levels.
It follows that

Hk

( ⋃

B′∈G(n,B,l+1)

5B′

)
> Hk(A(l))

(30)

>
1

2
Hk

(
1

2
B

)
.

On the other hand, since G(n,B, l + 1) is a disjoint collection of balls we have that

Hk

( ⋃

B′∈G(n,B,l+1)

5B′

)
6

∑

B′∈G(n,B,l+1)

Hk(5B′)

(18)

6 5k
c2
c1

∑

B′∈G(n,B,l+1)

Hk(B′)

= 5k
c2
c1
Hk

( ◦⋃

B′∈G(n,B,l+1)

B′

)
.

Hence,

Hk

( ◦⋃

B′∈G(n,B,l+1)

B′

)
>

c1
2c25k

Hk

(
1

2
B

)
. (33)

Now we are ready to construct the (l + 1)th sub-level K(n,B, l + 1). Let G′ > G + 1 be
sufficiently large so that Lemmas 4 and 5 are applicable to every ball B′ ∈ G(n,B, l+1) with G′

in place of G. Furthermore, ensure that G′ is sufficiently large so that for every i > G′,

f(Υi) 6
1
2 min
L∈Kl(n,B)

f(r(L)) and g(Υi) 6
1
2 min
L∈Kl(n,B)

g(r(L)). (34)

Imposing the above assumptions on G′ is possible since there are only finitely many balls in
Kl(n,B), Υj → 0 as j → ∞, and f and g are dimension functions.
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Now, to each ball B′ ∈ G(n,B, l+1) we apply Lemma 4 to obtain a collection of balls KG′,B′

and define

K(n,B, l + 1) :=
⋃

B′∈G(n,B,l+1)

⋃

(A;j)∈KG′,B′

C(A; j).

Consequently,

K̃(n,B, l + 1) =
⋃

B′∈G(n,B,l+1)

KG′,B′ .

Since G′ > G, properties (27)–(29) remain valid. We now verify Properties (P1)–(P5) for this
sub-level.

Regarding (P1), we first observe that it is satisfied for balls in
⋃

(A;j)∈KG′,B′

⋃
L∈C(A;j) L by

the properties of C(A; j) and the fact that the balls in KG′,B′ are disjoint. Next, since any balls
in KG′,B′ are contained in B′ and the balls B′ ∈ G(n,B, l + 1) are disjoint, it follows that (P1)
is satisfied for balls L in K(n,B, l + 1). Finally, combining this with (32), we see that (P1) is
satisfied for balls L in Kl+1(n,B). That (P2) is satisfied for this sub-level is a consequence of
Lemma 4(i) and (ii) and the fact that the balls B′ ∈ G(n,B, l + 1) are disjoint.

To establish (P3) for i = l + 1 note that

∑

(A;j)∈K̃(n,B,l+1)

V k(A) =
∑

B′∈G(n,B,l+1)

∑

(A;j)∈KG′,B′

V k(A)

(18)

>
1

c2

∑

B′∈G(n,B,l+1)

∑

(A;j)∈KG′,B′

Hk(A).

Then, by Lemma 4 and the disjointness of the balls in G(n,B, l + 1), we have that

∑

(A;j)∈K̃(n,B,l+1)

V k(A) >
1

c2

∑

B′∈G(n,B,l+1)

1

4× 15k
Hk(B′)

=
1

c2 × 4× 15k
Hk

( ⋃

B′∈G(n,B,l+1)

B′

)

(33)

>
1

c2 × 4× 15k
c1

2× c2 × 5k
Hk

(
1

2
B

)

(18)

>
1

2k+3 × 5k × 15k

(
c1
c2

)2

V k(B)

= c3V
k(B).

Finally, (P4) is trivially satisfied as a consequence of the imposed condition (34) and (P5), that
lL > 2 for any ball L in K(n,B, l + 1), follows from (29).

Hence, Properties (P1)–(P5) are satisfied up to the local sub-level K(n,B, l + 1) thus
establishing the existence of the local level K(n,B) = KlB (n,B) for each B ∈ K(n − 1). In
turn, this establishes the existence of the nth level K(n) (and also K(n)).

5.3 The measure µ on Kη

In this section, we define a probability measure µ supported on Kη. We will eventually show that
the measure satisfies (24). For any ball L ∈ K(n), we attach a weight µ(L) defined recursively
as follows.
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A mass transference principle for systems of linear forms

For n = 1, we have that L = B0 := K(1) and we set µ(L) := 1. For subsequent levels the
measure is defined inductively.

Let n > 2 and suppose that µ(B) is defined for every B ∈ K(n− 1). In particular, we have
that ∑

B∈K(n−1)

µ(B) = 1.

Let L be a ball in K(n). By construction, there is a unique ball B ∈ K(n− 1) such that L ⊂ B.
Recall, by (25) and (26), that

K(n,B) :=
⋃

(A;j)∈K̃lB
(n,B)

C(A; j)

and so L is an element of one of the collections C(A′; j′) appearing in the right-hand side of the
above. We therefore define

µ(L) :=
1

#C(A′; j′)
× g(Υj′)

k/m

∑
(A;j)∈K̃lB

(n,B)
g(Υj)k/m

× µ(B).

Thus µ is inductively defined on any ball appearing in the construction of Kη. Furthermore, µ
can be uniquely extended in a standard way to all Borel subsets F of Rk to give a probability
measure µ supported on Kη. Indeed, for any Borel subset F of Rk,

µ(F ) := µ(F ∩Kη) = inf
∑

L∈C(F )

µ(L),

where the infimum is taken over all covers C(F ) of F ∩Kη by balls L ∈
⋃

n∈NK(n). See [Fal03,
Proposition 1.7] for further details.

We end this section by observing that

µ(L) 6
1

d1(g(Υj′)1/m/Υj′)l
× g(Υj′)

k/m

∑
(A;j)∈K̃lB

(n,B)
g(Υj)k/m

× µ(B)

=
f(Υj′)

d1
∑

(A;j)∈K̃lB
(n,B)

g(Υj)k/m
× µ(B). (35)

This is a consequence of (21) and the relationship between f and g. In fact, the above inequality
can be reversed if d1 is replaced by d2.

5.4 The measure of a ball in the Cantor set construction

The goal of this section is to prove that

µ(L) ≪ V f (L)

η
(36)

for any ball L in K(n) with n > 2. We will begin with the level n = 2. Fix any ball L ∈
K(2) = K(2, B0). Further, let (A′; j′) ∈ K̃lB0

(2, B0) be such that L ∈ C(A′; j′). Then, by (35),
the definition of µ and the fact that µ(B0) = 1, we have that

µ(L) 6
f(Υj′)

d1
∑

(A;j)∈K̃lB0

(2,B0)
g(Υj)k/m

. (37)
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Next, by Properties (P3) and (P5) of the Cantor set construction, we get that
∑

(A;j)∈K̃lB0

(2,B0)

g(Υj)
k/m =

∑

(A;j)∈K̃lB0

(2,B0)

V k(A)

=

lB0∑

i=1

∑

(A;j)∈K̃(2,B0,i)

V k(A)

(P3)

>

lB0∑

i=1

c3V
k(B0)

= lB0
c3V

k(B0)
(18)

> lB0

c3
c2
Hk(B0)

(P5)

>
c2η

c3Hk(B0)

c3
c2
Hk(B0) = η. (38)

Combining (37) and (38) gives (36) as required since f(Υj′) = f(r(L)) = V f (L).
Now let n > 2 and assume that (36) holds for balls in K(n− 1). Consider an arbitrary ball

L in K(n). Then there exists a unique ball B ∈ K(n − 1) such that L ∈ K(n,B). Further, let
(A′; j′) ∈ K̃lB (n,B) be such that L ∈ C(A′; j′). Then it follows from (35) and our induction
hypothesis that

µ(L) ≪ f(Υj′)

d1
∑

(A;j)∈K̃lB
(n,B)

g(Υj)k/m
× V f (B)

η
. (39)

Now, we have that

∑

(A;j)∈K̃lB
(n,B)

g(Υj)
k/m =

lB∑

i=1

∑

(A;j)∈K̃(n,B,i)

V k(A)

(P3)

>

lB∑

i=1

c3V
k(B)

= lBc3V
k(B)

(P5)

>
V f (B)

c3V k(B)
c3V

k(B)

= V f (B). (40)

Since V f (L) = f(Υj′), combining (39) and (40) gives (36) and thus completes the proof of this
section.

5.5 The measure of an arbitrary ball

Set r0 := min{r(B) : B ∈ K(2)}. Take an arbitrary ball D such that r(D) < r0. We wish to
establish (24) for D, i.e. we wish to show that

µ(D) ≪ V f (D)

η
,

where the implied constant is independent of D and η. In accomplishing this goal the following
lemma from [BV06a] will be useful.
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Lemma 6. Let A := B(xA, rA) and M := B(xM , rM ) be arbitrary balls such that A ∩M 6= ∅

and A\(cM) 6= ∅ for some c > 3. Then rM 6 rA and cM ⊂ 5A.

A good part of the subsequent argument will follow the same reasoning as given in [BV06a,
§ 5.5]. However, there will also be obvious alterations to the proofs that arise from the different
construction of a Cantor set used here. Recall that the measure µ is supported on Kη. Without
loss of generality, we will make the following two assumptions:

(i) D ∩Kη 6= ∅;

(ii) for every n large enough D intersects at least two balls in K(n).

If the first of these were false then we would have µ(D) = 0 as µ is supported on Kη and so
(24) would trivially follow. If the second assumption were false then D would have to intersect
exactly one ball, say Lni

, from levels Kni
with arbitrarily large ni. Then, by (36), we would have

µ(D) 6 µ(Lni
) → 0 as i → ∞ and so, again, (24) would be trivially true.

By the above two assumptions, we have that there exists a maximum integer n such that

D intersects at least 2 balls from K(n) (41)

and

D intersects only one ball B from K(n− 1).

By our choice of r0, we have that n > 2. If B is the only ball from K(n − 1) which has
non-empty intersection with D, we may also assume that r(D) < r(B). To see this, suppose to
the contrary that r(B) 6 r(D). Then, since D ∩Kη ⊂ B and f is increasing, upon recalling (36)
we would have

µ(D) 6 µ(B) ≪ V f (B)

η
=
f(r(B))

η
6
f(r(D))

η
=
V f (D)

η
,

and so we would be done.
Now, since K(n,B) is a cover for D ∩Kη, we have

µ(D) 6

lB∑

i=1

∑

L∈K(n,B,i):L∩D 6=∅

µ(L)

=

lB∑

i=1

∑

(A;j)∈K̃(n,B,i)

∑

L∈C(A;j)
L∩D 6=∅

µ(L)

(36)
≪

lB∑

i=1

∑

(A;j)∈K̃(n,B,i)

∑

L∈C(A;j)
L∩D 6=∅

V f (L)

η
. (42)

To estimate the right-hand side of (42) we consider the following types of sub-levels.

Case 1 : Sub-levels K(n,B, i) for which

#{L ∈ K(n,B, i) : L ∩D 6= ∅} = 1.

Case 2 : Sub-levels K(n,B, i) for which

#{L ∈ K(n,B, i) : L ∩D 6= ∅} > 2

and

#{(A; j) ∈ K̃(n,B, i) with D ∩ L 6= ∅ for some L ∈ C(A; j)} > 2.
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Case 3 : Sub-levels K(n,B, i) for which

#{L ∈ K(n,B, i) : L ∩D 6= ∅} > 2

and

#{(A; j) ∈ K̃(n,B, i) with D ∩ L 6= ∅ for some L ∈ C(A; j)} = 1.

Strictly speaking we also need to consider the sub-levels K(n,B, i) for which #{L ∈ K(n,
B, i) : L ∩D 6= ∅} = 0. However, these sub-levels do not contribute anything to the sum on the
right-hand side of (42).

Dealing with Case 1. LetK(n,B, i∗) denote the first sub-level within Case 1 which has non-empty
intersection with D. Then there exists a unique ball L∗ in K(n,B, i∗) such that L∗ ∩D 6= ∅. By
(41) there is another ball M ∈ K(n,B) such that M ∩D 6= ∅. By Property (P1), 3L∗ and 3M
are disjoint. It follows that D\3L∗ 6= ∅. Therefore, by Lemma 6, we have that r(L∗) 6 r(D) and
so, since f is increasing,

V f (L∗) 6 V f (D). (43)

By Property (P4) we have, for any i ∈ {i∗ + 1, . . . , lB} and any L ∈ K(n,B, i), that

V f (L) = f(r(L)) 6 2−(i−i∗)f(r(L∗)) = 2−(i−i∗)V f (L∗).

Using these inequalities and (43) we see that the contribution to the right-hand side of (42) from
Case 1 is:

∑

i∈Case 1

∑

L∈K(n,B,i)
L∩D 6=∅

V f (L)

η
6

∑

i>i∗

2−(i−i∗)V
f (L∗)

η
6 2

V f (L∗)

η
6 2

V f (D)

η
. (44)

Dealing with Case 2. Let K(n,B, i) be any sub-level subject to the conditions of Case 2. Then
there exist distinct balls (A; j) and (A′; j′) in K̃(n,B, i) and balls L ∈ C(A; j) and L′ ∈ C(A′; j′)
such that L ∩ D 6= ∅ and L′ ∩ D 6= ∅. Since L ∩ D 6= ∅ and L ⊂ A we have that A ∩ D 6= ∅.
Similarly, A′ ∩ D 6= ∅. Furthermore, by Property (P2), the balls 3A and 3A′ are disjoint and
contained in B. Hence, D\3A 6= ∅. Therefore, by Lemma 6, r(A) 6 r(D) and A ⊂ 3A ⊂ 5D.
Similarly, A′ ⊂ 3A′ ⊂ 5D. Hence, on using (21) we get that the contribution to the right-hand
side of (42) from Case 2 is estimated as follows

∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)

∑

L∈C(A;j)
L∩D 6=∅

V f (L)

η
6

∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)
A⊂5D

#C(A; j)f(Υj)

η

(21)
≪

∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)
A⊂5D

(
g(Υj)

1/m

Υj

)l f(Υj)

η

=
∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)
A⊂5D

g(Υj)
l/mΥ−l

j Υl
jg(Υj)

η

=
∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)
A⊂5D

g(Υj)
l/m+1

η
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=
∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)
A⊂5D

g(Υj)
k/m

η

=
∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)
A⊂5D

V k(A)

η
.

Combining this with Properties (P2) and (P5) we get

∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)

∑

L∈C(A;j)
L∩D 6=∅

V f (L)

η

(18)
≪ 1

c1η

∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)
A⊂5D

Hk(A)

(P2)
=

1

c1η

∑

i∈Case 2

Hk

( ⋃

(A;j)∈K̃(n,B,i)
A⊂5D

A

)

6
1

c1η

∑

i∈Case 2

Hk(5D)

6
1

c1η
5klBHk(D)

(18)

6
c2
c1η

5klBV
k(D)

(P5)

6
c2
c1η

5k
(

2V f (B)

c3V k(B)

)
V k(D).

Recalling our assumption that r(D) < r(B) and the fact that r−kf(r) is decreasing, we obtain
that

∑

i∈Case 2

∑

(A;j)∈K̃(n,B,i)

∑

L∈C(A;j)
L∩D 6=∅

V f (L)

η
≪ c2

c1η
5k

2

c3

V f (D)

V k(D)
V k(D)

=
2c25

k

c1c3

V f (D)

η

≪ V f (D)

η
. (45)

Dealing with Case 3. First of all note that for each level i of Case 3 there exists a unique
(Ai; ji) ∈ K̃(n,B, i) such that D has a non-empty intersection with balls in C(Ai; ji). Let
K(n,B, i∗∗) denote the first sub-level within Case 3. Then there exists a ball L∗∗ in K(n,B, i∗∗)
such that L∗∗ ∩ D 6= ∅. By (41) there is another ball M ∈ K(n,B) such that M ∩ D 6= ∅. By
Property (P1), 3L∗∗ and 3M are disjoint. It follows that D\3L∗∗ 6= ∅ and therefore, by Lemma 6,
we have that r(L∗∗) 6 r(D) and so, since g is increasing, we have that

g(r(L∗∗)) 6 g(r(D)). (46)

Furthermore, by Property (P4), for any i ∈ {i∗∗+1, . . . , lB} and any L ∈K(n,B, i) we have that

g(r(L)) 6 2−(i−i∗∗)g(r(L∗∗)).
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D. Allen and V. Beresnevich

Then, the contribution to the sum (42) from Case 3 is estimated as follows

∑

i∈Case 3

∑

(A;j)∈K̃(n,B,i)

∑

L∈C(A;j)
L∩D 6=∅

V f (L)

η
6

∑

i∈Case 3

∑

L∈C(Ai;ji)
L∩D 6=∅

V f (L)

η

=
∑

i∈Case 3

∑

L∈C(Ai;ji)
L∩D 6=∅

f(Υji)

η

≪
∑

i∈Case 3

(
r(D)

Υji

)l f(Υji)

η

=
∑

i∈Case 3

r(D)l
g(Υji)

η

≪ r(D)l

η

∑

i∈Case 3

g(Υji∗∗ )

2i−i∗∗

6 2
r(D)l

η
g(Υji∗∗ ).

Noting that Υji∗∗ = r(L∗∗) and recalling (46) we see that

∑

i∈Case 3

∑

(A;j)∈K̃(n,B,i)

∑

L∈C(A;j)
L∩D 6=∅

V f (L)

η
≪ 2

r(D)l

η
g(r(D)) = 2

f(r(D))

η
≪ V f (D)

η
. (47)

Finally, combining (44), (45) and (47) together with (42) gives µ(D) ≪ V f (D)/η and thus
completes the proof of Theorem 1.
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