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Abstract
Objectives  Systemic sclerosis (SSc) is characterised 
by tissue fibrosis and vasculopathy with defective 
angiogenesis. Transforming growth factor beta 
(TGF-β) plays a major role in tissue fibrosis, including 
downregulation of caveolin-1 (Cav-1); however, its 
role in defective angiogenesis is less clear. Pigment 
epithelium-derived factor (PEDF), a major antiangiogenic 
factor, is abundantly secreted by SSc fibroblasts. Here, 
we investigated the effect of TGF-β and Cav-1 on PEDF 
expression and the role of PEDF in the ability of SSc 
fibroblasts to modulate angiogenesis.
Methods P EDF and Cav-1 expression in fibroblasts 
and endothelial cells were evaluated by means of 
immunohistochemistry on human and mouse skin 
biopsies. PEDF and Cav-1 were silenced in cultured SSc 
and control fibroblasts using lentiviral short-hairpin 
RNAs. Organotypic fibroblast–endothelial cell co-
cultures and matrigel assays were employed to assess 
angiogenesis.
Results P EDF is highly expressed in myofibroblasts 
and reticular fibroblasts with low Cav-1 expression in 
SSc skin biopsies, and it is induced by TGF-β in vitro. 
SSc fibroblasts suppress angiogenesis in an organotypic 
model. This model is reproduced by silencing Cav-1 
in normal dermal fibroblasts. Conversely, silencing 
PEDF in SSc fibroblasts rescues their antiangiogenic 
phenotype. Consistently, transgenic mice with TGF-β 
receptor hyperactivation show lower Cav-1 and higher 
PEDF expression levels in skin biopsies accompanied by 
reduced blood vessel density.
Conclusions O ur data reveal a new pathway by 
which TGF-β suppresses angiogenesis in SSc, through 
decreased fibroblast Cav-1 expression and subsequent 
PEDF secretion. This pathway may present a promising 
target for new therapeutic interventions in SSc.

Introduction
Systemic sclerosis (SSc) or scleroderma is an auto-
immune connective tissue disease characterised by 
accumulation of extracellular matrix (ECM) proteins 
within the affected tissues and a widespread vascu-
lopathy comprising both defective angiogenesis and 
fibroproliferative vasculopathy.1–4 It is well estab-
lished that transforming growth factor beta (TGF-β) 
plays a key role in accumulation of collagen and 
ECM proteins and downregulation of caveolin-1 

(reviewed in Del Galdo et al5and Lafyatis6). Never-
theless, the pathogenesis of sustained microangiop-
athy and defective angiogenesis, and their causal 
links with tissue fibrosis are less clearly understood. 
Recent studies employing a mouse strain with a 
ligand-dependent upregulation of TGF-β signal-
ling in tissue fibroblasts (TBRIIΔk-fib) demon-
strate that increased TGF-β signalling favours the 
onset of fibroproliferative vasculopathy typical 
of SSc following minimal endothelial cell injury,7 
suggesting that TGF-β activation may also play a 
role in the pathogenesis of vasculopathy in SSc. 

Proteomic studies have previously identified 
pigment epithelial-derived factor (PEDF) as one 
of the most abundant secreted proteins by SSc skin 
fibroblasts compared with healthy controls.8 PEDF 
is a 46 kDa secreted glycoprotein that belongs to 
the serpin superfamily but has no protease inhibi-
tory function. Despite the lack of protease activity, 
PEDF exerts diverse physiological functions 
including antiangiogenesis,9 antivasopermeability10 
and neurotrophic activities.11 12 PEDF is expressed 
abundantly in pigmented epithelium of the cornea 
where it plays a crucial role in the suppression of 
angiogenesis.9 13–16 

Previous studies have shown that PEDF is highly 
expressed in idiopathic pulmonary fibrosis and 
is inducible by TGF-β in cultured human lung 
fibroblasts, suggesting a potential link with  the 
pathogenesis of tissue fibrosis.17 Here, we set to 
determine PEDF expression in SSc skin biopsies 
and in TBRIIΔk-fib mice in vivo and to determine 
the role of PEDF expression in the antiangiogenic 
function of fibroblasts in vitro.

Materials and methods
Patient samples and patient skin biopsies
Skin biopsies from nine patients with early diffuse 
cutaneous systemic sclerosis (dcSSc)18 and nine 
healthy controls were obtained at the SSc clinic 
within the Leeds Institute of Rheumatic and Muscu-
loskeletal Medicine (UK) and the Rheumatology 
Unit in L’Aquila (Italy). Biopsies were taken with 
full informed consent as approved by National 
Research Ethics Service (NRES) Committee (REC 
10/H1306/88) and the local ethical committee in 
University of L’Aquila, and processed as described 
in detail in online supplementary methods.
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Cell culture
Dermal fibroblasts (FBs) from patients with dcSSc and controls 
were isolated as previously described19 and detailed in online 
supplementary methods. Human dermal microvascular endo-
thelial cells (MVECs) were purchased from PromoCell, UK, 
cultured in Endothelial Cell Growth Medium BulletKit (Lonza, 
Slough, UK) and used at passages 2–4. Human umbilical vein 
endothelial cells (HUVECs) were obtained from TCS Cellworks, 
cultured in fully supplemented human large vessel endothelial 
cell medium (TCS Cellworks, UK) and used at passages 3–4. 
Human epidermal melanocytes (HEMs) were purchased from 
ScienceCell, cultured in melanocyte medium supplemented with 
melanocyte growth supplement (TCS Cellworks) and used at 
passages 3–4. All cells were kept at 37°C in a humidified atmo-
sphere of 5% CO2.

hTERT immortalisation and transduction with lentiviral short-
hairpin RNA
For immortalisation of primary FBs, pBabe human telomerase 
reverse transcriptase (hTERT) puromycin retrovirus was 
employed following standard protocols (described in detail in 
online supplementary methods). Cav-1 and PEDF expression 
were silenced by transduction with shRNAmir GIPZ lentivi-
ruses (Open Biosystems, Surrey, UK) following manufacturer’s 
instructions (online supplementary methods).

Culture treatments
To evaluate the effect of TGF-β on PEDF and COLA1, cells were 
grown to confluence in six-well culture plates in dulbecco modi-
fied eagle medium (DMEM) 10% fetal calf serum (FCS), serum 
starved in DMEM 0.5% FCS for 24 hours and stimulated in the 
presence of 10 ng/mL recombinant human (rh) TGF-β1 (Sigma, 
USA) for 48 hours. Ascorbic acid (40 µg/mL) was used to opti-
mise collagen production.20 

RNA isolation and RT-PCR analysis
Total RNA was isolated using the RNeasy Mini Kit (Qiagen, 
USA) according to the manufacturer’s instructions. 
One microgram of  total RNA from each sample was retro-
transcribed to first-strand cDNA using the SuperScript III One 
Step RT-PCR system (Invitrogen, UK). Quantitative RT-PCR 
was performed in triplicates using SYBR Green RT-PCR 
Master Mix Kit and the ABI PRISM 7500 Fast Real Time PCR 
System (Applied Biosystems) with the following primers: 
PEDF 5′-​TGTCTCCAACTTCGGCTATG-3′   (forward) 
and 5′-​AGTAGAGAGCCCGGTGAATG-3′ (reverse), Cav-1 
5′-​​CGA​CCCT​AAAC​ACCT​CAACGA-3′ (forward) and 
5′-TCCCTTCTGGTTCTGTCA-3′ (reverse). Quantification 
was performed using the comparative CT (cycle-threshold) 
method employing ribosomal 18S as a housekeeping gene.

Protein quantification and immunodepletion
Secreted PEDF and Collagen I were detected by immuno-
blotting in cultured cells and supernatants and by ELISA in 
patient sera as described in online supplementary methods. 
Immunodepletion for PEDF was conducted using mono-
clonal mouse anti-PEDF (Chemicon-Millipore, Clone 
10F12.2). Full experimental procedures are described in 
detail in online supplementary methods.

Angiogenesis assays
The organotypic co-culture assay21–23 was performed 
with MVECs or HUVEC and either primary or hTERT 

immortalised fibroblasts stably infected with lentivirus 
coding for either non-silencing control, Cav-1 or PEDF 
short-hairpin (sh) RNAs as described in detail in online 
supplementary methods. Number of tubules and total tubule 
length were analysed using the Angiosys software (TCS 
Cellworks).

Reduced growth factor matrigel (VWR, UK) was used to 
perform angiogenesis matrigel assays in HUVEC employing 
supernatants from cultured FBs (online supplementary 
methods).

FACS analysis and proliferation assay
For PEDF detection using FACS analysis, fibroblasts were 
incubated in the  presence of a protein transport inhibitor 
GolgiPlug (BD Biosciences) for 12 hours according to manu-
facturer’s instructions. The cells were then stained on ice 
with rabbit polyclonal anti-PEDF-PECy5.5 (Bioss) following 
fixation and permeabilisation, and analysed against the corre-
sponding isotype control using BD FACSDiva software V.6.0 
BDTM LSR II flow cytometer.

For determination of HUVEC proliferation, cells were 
labelled with the carbocyfluorescein succinimidyl ester dye 
analogue, CellTrace Violet (Invitrogen). Prior to co-culture 
experiments, in order to track cell division following co-cul-
ture and for accurate gating, CD90-PEvio770 and CD31-APC 
(Miltenyi biotec) were used to exclude potential contamina-
tion of HUVEC with co-cultured fibroblasts; 7-aminoactino-
mycin D was used as a viability marker. Cell division frequency 
and proliferation indices from list mode data were determined 
using proliferation wizard of ModFit software V.3.2 (Verity 
Software House, Topsham, ME, USA).

Immunohistochemistry
Immunohistochemistry  (IHC) analysis of human skin biopsies 
was performed on 3 µm paraffin sections using mouse mono-
clonal anti-PEDF (Clone 10F12.2; Millipore, UK), rabbit poly-
clonal anti-CD31, rabbit polyclonal anti-α-smooth muscle actin 
(SMA) (Abcam, UK) and a rabbit polyclonal anti-Cav-1 antibody 
(Santa Cruz, UK). Detailed procedure of the two-step staining 
is described in the online supplementary methods. The number 
of positive cells was counted by two pathologists, blinded to 
tissue source and expressed as the mean of two observations for 
each sample. For mouse skin biopsies, we employed rabbit poly-
clonal anti-PEDF (Aviva Systems Biology; Insight Biotech, UK), 
rabbit polyclonal anti-CD31 (Santa Cruz) and rabbit polyclonal 
anti-Cav-1 (Santa Cruz) antibodies. All sections were imaged 
using an Axioplan Zeiss light microscope equipped with an 
AxioCam digital camera.

TβRIIΔk-fib animal model
TβRIIΔk-fib transgenic mice were provided by Professor C. 
Denton of UCL Medical School Centre for Rheumatology and 
Connective Tissue Diseases, London, UK. The generation of 
TβRIIΔk-fib transgenic (TG) mice has been described previ-
ously.7 Mice were genotyped by PCR using LacZ primers and 
an internal control. Experiments were performed on three 
transgenic mice aged 6 weeks and compared with sex-matched 
littermate controls. Animals were housed in a conventional clean 
facility, with access to food and water ad libitum. Strict adher-
ence to institutional guidelines was practised, under full local 
ethics committee and Home Office approval.
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Results
PEDF expression is increased in SSc patient biopsies 
compared with healthy donors
In healthy skin, PEDF is expressed mainly in the germinal layer 
of the epidermis (figure 1A). In contrast, in early diffuse SSc, we 

observed a strong staining for PEDF within the lower reticular 
dermis, both in fibroblasts and around blood vessels (figure 1A). 
Double IHC studies revealed that strong positivity of PEDF 
correlated with strong positivity of α-SMA (figure 1A and online 
supplementary figure 1A, B), indicating increased number of 

Figure 1  Pigment epithelium-derived factor (PEDF) expression is increased in systemic sclerosis (SSc) skin in vivo and it is inducible by transforming 
growth factor beta (TGF-β) in vitro. (A) Images depict representative forearm skin biopsies from healthy controls (HC) and patients with SSc (SSc) 
double stained for PEDF and α-smooth muscle actin (SMA), or PEDF and CD31 as indicated. Arrowheads point to spindle-shaped PEDF and SMA-
positive cells within the dermis. For a larger field of stained skin section, see online supplementary figure 1A, B. Scale bars, 100 µm. (B) Dot blots show 
counts of PEDF-positive fibroblasts in HC and SSc samples; bars represent mean values±SEM (n=25 microscopic fields per biopsy from five different 
biopsies). (C) Dot blots show blood vessel counts in HC and SSc samples; bars represent average values±SEM (n=25 microscopic fields per biopsy 
from five different biopsies). Data on additional patient samples are shown in online supplementary table 1. (D) Histogram shows PEDF mRNA levels 
by RT-PCR in isolated HC fibroblasts (HC-FBs) and SSc fibroblasts (SSc-FBs); bars represent mean values±SEM (n=9 samples from each HC and SSc). 
Where indicated, cells were treated with 10 ng/mL TGF-β for 24 hours; HEM, human epithelial melanocytes positive control. *P<0.05, **P<0.01 by 
unpaired t-test. (E) Western blot shows PEDF in supernatants (SUP) collected from HC-FBs and SSc-FBs cultured in the presence or absence of TGF-β 
(10 ng/mL for 48 hours).
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myofibroblasts positive for PEDF in SSc biopsies. Interestingly, 
we also observed positivity for PEDF in vascular endothelial 
cells identified by CD31 staining as well as in perivascular cells 
(figure 1A). Quantification of PEDF-positive dermal fibroblasts 
within the reticular connective tissue showed significantly higher 
PEDF positivity in SSc fibroblasts compared with healthy control 
fibroblasts (figure  1B). This was accompanied by the already 
described decreased abundance of blood vessels in the SSc 

biopsies compared with healthy controls (figure 1C). Consistent 
with these findings, SSc skin biopsies showed 5.5-fold increase 
in PEDF mRNA expression as assessed by qRT-PCR (P<0.01, 
n=5, online supplementary figure 1D). Following this observa-
tion, we have measured PEDF concentration in 38 patients with 
dcSSc and 34 healthy  controls from our observational cohort 
but found no statistically significant difference in serum levels of 
PEDF (P=0.87).

Figure 2  Suppression of angiogenesis in an organotypic co-culture assay by systemic sclerosis (SSc) fibroblasts is reversed by pigment epithelium-
derived factor (PEDF) knockdown. (A, C) Images show representative microscopic fields from co-culture assays of human dermal microvascular 
endothelial cells (MVECs) (A) or human umbilical vein endothelial cells (HUVECs) (C) seeded onto confluent fibroblasts (FBs), healthy control (HC-
FBs) or SSc (SSc-FBs), stained for the endothelial marker CD31 (fibroblasts are seen unstained in the background). Note that HUVECs reproduce the 
behaviour of MVECs in the organotypic assays. (B, D) Histograms show the number of tubules and total tubule length quantified using Angiosys 
software, represented as mean±SEM (n=12 microscopic fields at ×4 magnification from triplicate wells). (E) Representative western blot showing 
intracellular PEDF levels in SSc fibroblasts treated with GolgiPlug, non-silencing control (NS) or with PEDF depletion (shPEDF) by means of lentiviral 
short-hairpin RNA (sh). (F) Images show representative microscopic fields from co-culture assays of HUVECs seeded onto confluent SSc fibroblasts 
(SSc-FBs), non-silencing control (NS) or with PEDF depletion (shPEDF). (G) Quantification of the number of tubules and total tubule length represented 
as mean±SEM (n=12 microscopic fields at ×4 magnification from triplicate wells). **P<0.01, ***P<0.001 by unpaired t-test. Scale bars, 100 µm.
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PEDF expression in SSc and healthy fibroblasts is induced by 
TGF-β
To determine whether the increase in PEDF expression resulted 
from upregulation in gene expression, we quantified PEDF 
mRNA levels by RT-PCR analysis in primary dermal FBs. FBs 
from patients with SSc expressed approximately 5-fold higher 
PEDF mRNA levels compared with HC-FBs (figure  1D). 
Concordantly, there was over 2-fold higher levels of intracellular 
PEDF protein in SSc-FBs compared with HC-FBs, as assessed 
by FACS mean fluorescence intensity for PEDF (online supple-
mentary figure 1C). In order to establish whether the upregu-
lation of PEDF expression in SSc-FBs resulted from increased 
TGF-β signalling, we performed RT-PCR on healthy control and 
patient isolated fibroblasts following 48 hours  of stimulation 
with hrTGF-β. hrTGF-β induced PEDF expression in HC-FBs 
by 9-fold compared with 1.6-fold increase in SSc fibroblasts 
(figure  1D). The levels of PEDF mRNA expression following 
TGF-β stimulation were comparable in HC and SSc fibroblasts. 
Concordantly, mean fluorescent intensity by FACS for intracel-
lular PEDF was also increased by 2.4-fold following TGF-β stim-
ulation (online supplementary figure 1C). Western blot analysis 

of supernatants from fibroblast cultures confirmed that rhTGF-β 
treatment increased the levels of secreted PEDF, and this was 
associated with an increased secretion of collagen 1 (figure 1E) 
as shown previously.24 

SSc fibroblasts suppress angiogenesis in a PEDF-dependent 
manner
To determine whether the observed increased expression of 
PEDF by dermal fibroblasts in SSc skin biopsies could contribute 
to defective angiogenesis, we performed endothelial-fibroblast 
organotypic angiogenesis in vitro assays in which endothelial 
cells form tubules highly reminiscent of capillaries formed during 
angiogenesis in vivo, embedded in natural matrix produced by 
the fibroblasts.21–23 Use of rhPEDF in this assay confirmed in 
vitro the known antiangiogenic effect of PEDF (online supple-
mentary figure 2). In the same model, co-culture of MVECs 
with SSc-FBS showed a 60% decrease in the number of tubules 
and 90% decrease in total tubule length compared with HC-FBs 
(figure  2A,  B). Similar results were obtained when HUVECs 
were co-cultured with HC-FBs or SSc-FBs (figure 2C, D), hence 

Figure 3  Decreased caveolin-1 tissue expression in systemic sclerosis (SSc) is conserved in vitro and correlates with high pigment epithelium-
derived factor (PEDF) expression. (A) Images show representative forearm skin biopsies from healthy controls (HC) and patients with SSc double 
stained for PEDF and caveolin-1 (Cav-1). Arrowheads point to Cav-1-positive cells; note that Cav-1-positive cells show no PEDF positivity. Scale bars, 
50 µm. (B) Dot plots show quantification of PEDF-positive and Cav-1-negative fibroblasts (FBs) from HC and patients with SSc. (C) Dot plots show 
quantification of Cav-1-positive FBs in HC and patients with SSc. Data on additional patient samples are shown in online supplementary table 1. (D) 
Western blots of five HC and SSc FB cultures for Cav-1 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Dermal fibroblasts were subcultured 
from the same biopsies analysed by immunohistochemistry and loaded in the same order as shown in panels (B) and (C) and summarised in online 
supplementary table 1.
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Figure 4  Caveolin-1 (Cav-1) knockdown stimulates pigment epithelium-derived factor (PEDF) expression in dermal fibroblasts and suppresses 
tubulogenesis without affecting endothelial cell proliferation. (A–C) Cav-1 knockdown stimulates PEDF expression. (A) Histogram depicts caveolin-1 
knockdown (shCav-1) in dermal fibroblasts by means of lentiviral short-hairpin RNA (sh), as percentage non-silencing control (NS) by RT-PCR. Bars 
represent mean values±SD (n=3 independent experiments carried out in triplicates). ***P<0.001 by unpaired t-test. (B) Histogram depicts PEDF 
mRNA by RT-PCR with caveolin-1 knockdown (shCav-1) compared with non-silencing control (NS). Bars represent mean values±SD (n=3 independent 
experiments carried out in triplicates). **P<0.01 by unpaired t-test. (C) Representative western blot shows levels of PEDF in supernatants (SUP) from 
fibroblasts with shCav-1 compared with NS control. (D) Images show representative microscopic fields from co-culture assays of human umbilical vein 
endothelial cells (HUVECs) seeded onto confluent systemic sclerosis fibroblasts (SSc-FBs), non-silencing control (NS) or with PEDF depletion (shPEDF) 
stained by CD31. Scale bars, 100 µm. Note the decreased tubule formation with caveolin-1 knockdown in fibroblasts. (E) Histograms show number 
of tubules and total tubule length in (D) quantified using Angiosys software, represented as mean±SEM (n=12 microscopic fields from three different 
experiments). (F) Representative images from HUVEC matrigel assays with cultures treated with supernatants from dermal fibroblasts, non-silencing 
control (NS) or with caveolin-1 knockdown (shCav-1). Note the HUVEC monolayer organisation and reduced number of loops in shCav-1 supernatant-
treated cultures compared with control. (G) Quantification of number of loops in (F) represented as mean±SD  (n=12 HPF  from three different 
experiments). (H) Histograms show cell generation of HUVEC preloaded with CellTrace Violet co-cultured with caveolin-1 knockdown (shCav-1) 
fibroblasts or non-silencing control fibroblasts (NS); PI, relative proliferation indexes. Dye dilution analysis performed using Modfit proliferation 
algorithm. (I) Column chart showing quantification of HUVEC generations while in co-culture with caveolin-1 knockdown (shCav-1) fibroblasts, 
or non-silencing control fibroblasts (NS); chart indicates some increase in proliferation at G5/G6 in caveolin-1 knockdown fibroblast co-cultures 
(shCav-1) compared with non-silencing control fibroblasts (NS). **P<0.01; ***P<0.001 by unpaired t-test. HPF, high power fields. 
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HUVECs were employed in subsequent assays. Knockdown 
of PEDF in SSc-FBs by means of lentiviral shRNA (figure 2E), 
followed by co-culture with ECs, rescued the number of 
tubules and total tubule length by 1.9-fold and 2.5-fold, respec-
tively, compared with SScFBs infected with control lentivirus 
harbouring non-silencing shRNA (figure 2F, G).

Downregulation of caveolin-1 induces PEDF expression in 
dermal fibroblasts
TGF-β downregulates caveolin-1 expression in vitro, both at 
the RNA and protein level,25 26 and this has been associated 
with myofibroblasts’ profibrotic activation.27 28 Double IHC 
studies showed an abundance of caveolin-1-positive cells largely 
negative for PEDF in HC skin, whereas in SSc skin biopsies, 
the majority of fibroblasts were PEDF positive and caveolin-1 

negative (figure 3A, B). Moreover, there was an overall reduc-
tion of caveolin-1 positivity in SSc skin biopsies (figure 3A–C) as 
previously shown.18 These results suggested an inverse correla-
tion between PEDF and caveolin-1 expression. The increased 
secretion of PEDF and reduced expression of caveolin-1 was 
conserved in vitro. SSc fibroblasts showed increased PEDF 
protein levels (online supplementary figure 1) and decreased 
expression of caveolin-1 (figure  3D). Interestingly, the rela-
tive expression of caveolin-1 in subcultured fibroblasts (SSc 
1–5) followed the same trend observed by IHC in patients 1–5 
(online supplementary table 1). Stable silencing of caveolin-1 by 
lentiviral delivery of caveolin-1 shRNA showed 85% caveolin-1 
knockdown compared with control (figure  4A). Fibroblasts 
with caveolin-1 knockdown displayed over 2-fold upregula-
tion of PEDF expression compared with controls (figure  4B). 

Figure 5  Skin immunohistochemistry of transgenic mice (TβRIIΔk-fib) and wild-type (WT) mice. Images show representative mouse skin biopsies 
stained for caveolin-1 (Cav-1) (A), pigment epithelium-derived factor (PEDF) (B) or CD31 (C) from transgenic TβRIIΔk-fib mice and wild-type 
littermate controls. Note the decreased expression of caveolin-1 and increased expression of PEDF in TβRIIΔk-fib biopsies. Scale bar, 50 µm, original 
magnification ×20. Plots show quantification of caveolin-1-positive (A) and PEDF-positive (B) fibroblasts (FBs), and blood vessel counts (C). Bars 
represent average values±SD (n=9 biopsies from three mice per genotype). *P<0.05; **P<0.01; ***P<0.001 by unpaired t-test.  on 20 A
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Accordingly, we observed an  increased secretion of PEDF in 
the supernatants harvested from fibroblasts with caveolin-1 
knockdown compared with control (figure  4C). These results 
show that decreased caveolin-1 expression in dermal fibroblasts 
induces the expression and secretion of PEDF in vitro and that 
the inverse correlation of expression is observable in vivo.

Caveolin-1 downregulation in fibroblasts inhibits 
angiogenesis without affecting endothelial viability and 
proliferation
Fibroblasts with lentiviral shRNA driven caveolin-1 knock-
down suppressed tubule formation in the organotypic angio-
genesis assay, with a  62.5% decrease in tubule length and 
58.2% decrease in total number of tubules (P<0.001 for both) 
(figure 4D) compared with controls. Accordingly, matrigel assays 
using supernatants harvested from the same cells showed nearly 
50% reduction in tube formation (P<0.01) (figure  4F, G). 
Therefore, the inhibitory effect on tubulogenesis of caveolin-1 
knockdown in fibroblasts is transferable by tissue culture super-
natants, supporting the notion that it is mediated via secreted 
factors such as PEDF. Consistently, immunodepletion of PEDF 
from fibroblast supernatants, through treatment with a blocking 
antibody (online supplementary figure 3A), rescued tubule 
morphogenesis significantly in the matrigel assay (online supple-
mentary figure 3B, C).

Viability of endothelial cells (CD31pos/CD90neg) in the organo-
typic angiogenesis assay was comparable between the two exper-
imental conditions (online supplementary figure 3D). Similarly, 
the proliferation index by the dye dilution method of endothelial 
cells was comparable in the two conditions (figure 4H, I). These 
data indicate that the impairment in angiogenesis, mediated by 

fibroblasts with caveolin-1 knockdown, does not result from 
decreased endothelial cell viability or proliferation.

TGF-β signalling suppresses caveolin-1 expression and 
stimulates PEDF expression in vivo
To investigate whether the findings from the patient sample anal-
ysis and culture systems hold in an in vivo model of overactivation 
of TGF-β signalling, we employed mice with controlled overex-
pression of TGF-β receptors in fibroblasts driven by the col1a1 
promoter (TβRIIΔk-fib). Analysis of sections from mouse skin 
biopsies showed reduced caveolin-1 expression in TβRIIΔk-fib 
transgenic mice compared with wild-type littermate controls 
(figure 5A). Conversely, expression of PEDF was increased in the 
skin of the transgenic mice (figure 5B). Importantly, increased 
PEDF and reduced caveolin-1 expression in TβRIIΔk-fib trans-
genic mice was associated with a reduction in the number of 
capillaries as assessed by IHC for CD31 (figure 5C).

Discussion
Here, we demonstrate for the first time that dermal fibroblasts 
in SSc play a direct role in the impairment of angiogenesis via 
secretion of PEDF. The increased PEDF expression in dcSSc 
skin biopsies validates the proteomics data of dcSSc fibroblast 
secretome,8 and it is consistent with the increased PEDF expres-
sion observed in IPF by Cosgrove et al.17 The PEDF-positive 
cells were both tissue fibroblasts (for their classic spindle-shape 
morphology) and myofibroblasts (SMA positive). In addition, we 
observed high PEDF expression in cells with perivascular locali-
sation, suggesting that in vivo, multiple cell types may contribute 
to aberrant secretion of PEDF in SSc. Nevertheless, we did not 
find an increased PEDF serum concentration in patients with 
dcSSc versus healthy controls, consistent with the known para-
crine mode of action of PEDF.

Interestingly, PEDF was found significantly more abundant in 
the lower dermis of patients with dcSSc, suggesting that retic-
ular fibroblasts may play an important role in the initiation and 
progression of impaired angiogenesis.

Here, we show for the first time that TGF-β signalling in 
fibroblasts suppresses angiogenesis through secretion of PEDF, 
and that this pathway remains active in fibroblasts explanted 
from SSc skin. This is consistent with a wealth of data in the 
literature indicating that SSc fibroblasts maintain in vitro hall-
marks of TGF-β signalling activation with passaging, including 
increased collagen production, phosphorylation of SMAD, Jnk 
and ERK as well as increased expression of α-SMA.

Another big set of evidence indicates that PEDF mediates its 
antiangiogenic effects through multiple mechanisms including 
suppression of migration via p38 signalling, induction of apop-
tosis through MEK5/Erk5 signalling to peroxisome prolifera-
tor-activated receptor gamma and NF-κB,9 29 30 and antagonism 
of vascular endothelial growth factor (VEGF) signalling via 
γ-secretase cleavage of VEGF receptors.13 31 

Therefore, our data link two widely demonstrated molecular 
pathways and suggest an explanation of TGF-β-induced vascu-
lopathy in SSc.

Intriguingly, PEDF has been found to have an antifibrotic 
effect in a chemically induced model of liver fibrosis.32 33 
Although we cannot exclude that the TGF-β-induced expres-
sion of PEDF observed both in SSc8 34 and idiopathic pulmonary 
fibrosis17 could represent an attempt to negatively feedback the 
fibrotic process, here we show that PEDF expression can ulti-
mately contribute to the defective angiogenesis in a paracrine 
manner during SSc.

Figure 6  Mechanistic model depicting the relationship between 
caveolin-1 (Cav-1) and pigment epithelium-derived factor (PEDF). 
Transforming growth factor beta (TGF-β) signalling strength is 
autoregulated by Cav-1-dependent TGF-β receptor internalisation.40 
Caveolin-1 downregulation and potentiation of TGF-β signalling 
promotes PEDF transcription, expression and secretion by dermal 
fibroblasts, suppressing angiogenesis in systemic sclerosis (SSc). 
Exposure to high levels of TGF-β and receptor overactivation in SSc 
sustains caveolin-1 downregulation at the transcriptional level,27 thus 
promoting further PEDF expression and impairment of angiogenesis.
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Previously, we and others reported that SSc skin and lung 
biopsies show a decreased expression of caveolin-1 when 
compared with healthy controls, which is associated with tissue 
fibrosis.18 25–28 

Caveolin-1 plays a bidirectional role in endothelial cells 
during angiogenesis (reviewed in Sowa35) by promoting36 37 or 
inhibiting38 blood vessel formation; however, the indirect effects 
on angiogenesis of low caveolin-1 levels in tissue fibroblasts 
were never studied before. The current study shows that similar 
to previous data on α-SMA and collagen, also PEDF increased 
expression in vivo is conserved in subcultured dermal fibroblasts 
consistent with the known sustained TGF-β  signalling of SSc 
fibroblasts in vitro. Most importantly, we show that the inverse 
correlation in the expression of caveolin-1 and PEDF is associ-
ated with the decreased number of capillaries observed in SSc. 
Further, we show a causative link between caveolin-1 decreased 
expression and PEDF secretion, which in turn suppresses angio-
genesis in vitro, without affecting cell viability or proliferation. 
Altogether, the rescue experiments we have performed using 
PEDF knockdown in SSc fibroblasts and PEDF blocking anti-
body in SSc supernatants (figure 2F, G and online supplementary 
figure 3) clearly show the importance of PEDF in the antiangio-
genic phenotype of these cells.

Further, here we show that the inverse relationship between 
caveolin-1 and PEDF expression observed in the patient samples 
is recapitulated in the TβRIIΔk-fib transgenic mice with over-
activation of TGF-β signalling in tissue fibroblasts.7 Consistent 
with this observation and the antiangiogenic function of PEDF, 
we also noted a reduced capillary density in the TβRIIΔk-fib 
mouse skin biopsies. Functional experiments will be necessary 
to determine whether this transgenic line can be used as preclin-
ical model of TGF-β-induced vasculopathy and targeting of this 
signalling axis in SSc.

Overall, the findings in this study strongly support the notion 
that TGF-β is involved in the pathogenesis of vasculopathy in 
SSc, and establish a causative link between caveolin-1 down-
regulation in tissue fibroblasts, PEDF expression and defective 
angiogenesis (figure  6). While this study focuses on dcSSc, in 
follow-up studies it would be interesting to investigate the rela-
tionship between PEDF, caveolin-1 and angiogenesis in limited 
cutaneous SSc (lcSSc). It is worth noting that lcSSc skin biopsies 
do not show the hallmarks of TGF-β activation seen in dcSSc,39 
and therefore it would be very interesting to investigate whether 
the vasculopathy observed in lcSSc is driven by a non-TGF-β-re-
lated pathway. 
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