

This is a repository copy of Detection of oxygen sub-lattice ordering in A-site deficient perovskites through monochromated core-loss EELS mapping.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/125469/

Version: Accepted Version

Article:

Kepaptsoglou, Demie orcid.org/0000-0003-0499-0470, Azough, Feridoon, Hernandez-Maldonado, David et al. (2 more authors) (2016) Detection of oxygen sub-lattice ordering in A-site deficient perovskites through monochromated core-loss EELS mapping. Microscopy and Microanalysis. pp. 262-263. ISSN: 1431-9276

https://doi.org/10.1017/S1431927616002166

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Detection of oxygen sub-lattice ordering in A-site deficient perovskites through monochromated core-loss EELS mapping

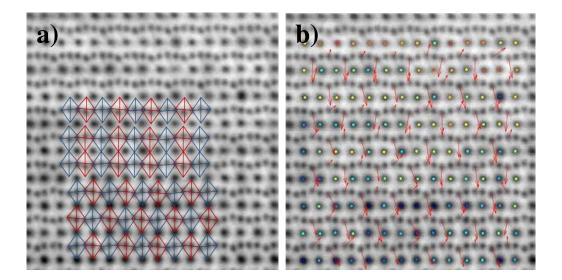
Demie Kepaptsoglou¹, Feridoon Azough², David Hernandez-Maldonado¹, Robert Freer² and Quentin Ramasse¹

^{1.} SuperSTEM Laboratory, Daresbury United Kingdom

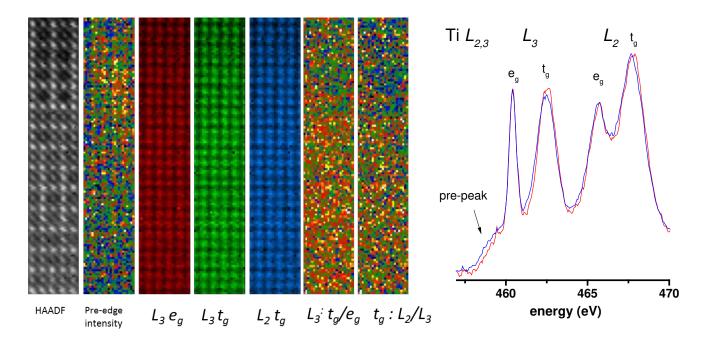
Perovskite oxides are widely studied for a variety of applications, from theromoelectrics to fuel cells. Part of the attraction lies in the fact that perovskite ceramics are relatively easy to dope chemically over a wide range of compositions, resulting in various degrees of structural ordering [1]. As a consequence, the properties and functionalities of such materials can be readily tailored [2]. For instance in systems proposed for thermoelectric applications, the presence of superlattices, or domain boundaries vacancies can suppress the thermal conductivity due to increased phonon scattering [3,4]. Understanding therefore the mechanisms behind the formation of such types of ordering in ceramic systems is crucial for their implementation in engineering applications.

Here, we report on an A-site deficient perovskite system based on the $Nd_{2/3x}TiO_3$ double perovskite. This system, a candidate for thermoelectric applications[5,6], has attracted significant attention due to the presence of a peculiar superstructure [7,8] originating in part in A-site cation vacancy ordering [9].

Using aberration corrected Scanning Transmission Electron Microscopy we investigate a series of $Nd_{2/3x}TiO_3$ ceramics engineered to possess different degrees of A-site cation-vacancy ordering and as a result vastly different thermoelectric properties. Annular Bright Field Imaging (Figure 1a) of the [110] orientation, preformed in the Nion UltraSTEM 100^{TM} reveals the presence of tilting domains in the TiO_6 sub lattice, dependent on the A-site occupancy. Furthermore, advanced image analysis of the electron micrographs was used to measure local distortions in the TiO_6 lattice (Figure 1b).


The presence of these octahedral distortions was further investigated by employing atomically resolved monochromated core loss Electron Energy Loss measurements, acquired with an energy resolution better than $0.100 \, \text{eV}$, using the Nion UltraSTEM $100 \, \text{MC}^{TM}$ instrument. With this approach it is not only possible to map individual components of the Ti L_{2,3} near edge fine structure, but also fine local changes in the ELNES (Figure 2); subtle changes Ti L_{2,3} pre-peak intensity – usually not discernible in conventional EELS measurements as well as changes in the Ti L₃ e_g/t_g and t_g L₃/L₂ intensity ratios all indicative of local TiO₆ distortions [10].

References:


- [1] D.M. Smyth, Annu. Rev. Mater. Sci. 15 (1985) p.329.
- [2] J.B. Goodenough, Reports Prog. Phys. **67** (2004) p.1915.
- [3] K. Koumoto, et al, Annu. Rev. Mater. Res. 40 (2010) p.363.
- [4] D.J. Voneshen, et a, l Nat Mater 12 (2013) p.1028.
- [5] S. Jackson, et al, J. Electron. Mater. 43 (2014) p.2331.
- [6] Y. Ba et al, J. Alloys Compd. **664** (2016) p.487.
- [7] A.M. Abakumov, et al Chem. Mater. **25** (2013) p. 2670.
- [8] Y. Zhu, et al Nat Mater 14 (2015) p. 1142.
- [9] F. Azough, et al, Chem. Mater 27 (2015) p.497.

^{2.} School of Materials, University of Manchester, Manchester, United Kingdom

[11] SuperSTEM is the U.K's national facility for Aberration Corrected STEM funded by EPSRC.

Figure 1. a) Annular Bright Field Image of a Nd_{2/3x}TiO₃ ceramic acquired along the [110] zone axis, showing change in the TiO₆ octahedral ordering and b) the same image showing relative displacements of the O sub lattice positions.

Figure 2. Monochromated core loss EELS maps of individual components of the Ti $L_{2,3}$ ELNES and relative intensity changes indicating local distortions of the TiO₆ sublattice