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Abstract

Word count : 259

 

Pat ient s wi t h visceral  l eishmaniasis (VL) – human immunodef iciency vi rus (HIV) coinf ect ion exper ience increased drug t oxici t y and

t reat ment  f ai l ure rat es compared t o VL pat ient s,  w i t h more f requent  VL relapse and deat h.  In t he era of  VL el iminat ion

st rat egies,  HIV coinf ect ion is progressively becoming a key chal lenge,  because HIV coinf ect ed pat ient s respond poor ly t o

convent ional  VL t reat ment  and play an impor t ant  role in parasi t e t ransmission.  Wi t h l imi t ed chemot herapeut ic opt ions and a

pauci t y of  novel  ant i -parasi t i c drugs,  new int ervent ions t hat  t arget  host  immuni t y may of f er  an ef f ect ive al t ernat ive.  In t his

review,  we f i rst  summar ize cur rent  views on how VL immunopat hology is signi f i cant l y af f ect ed by HIV coinf ect ion.  We t hen

review cur rent  cl inical  and promising precl inical  immunomodulat ory int ervent ions in t he f ield of  VL and discuss how t hese may

operat e in t he cont ext  of  a concurrent  HIV inf ect ion.  Caveat s are f ormulat ed as t hese int ervent ions may unpredict ably impact  t he

del icat e balance bet ween boost ing of  benef icial  VL-speci f ic responses and delet er ious immune act ivat ion/ hyper inf lammat ion,

act ivat ion of  lat ent  provi rus or  increased HIV-suscept ibi l i t y of  t arget  cel l s.  Evidence is lacking t o pr ior i t ize a t arget  molecule and a

more det ai led account  of  t he immunological  st at us induced by t he coinf ect ion as wel l  as surrogat e markers of  cure and prot ect ion

are st i l l  requi red.  We do however  argue t hat  vi rological l y suppressed VL pat ient s w i t h a recovered immune syst em,  in whom

ef f ect i ve ant i ret rovi ral  t herapy alone is not  able t o rest ore prot ect i ve immuni t y,  can be considered a relevant  t arget  group f or

an immunomodulat ory int ervent ion.  Final l y,  we provide perspect ives on t he t ranslat ion of  novel  t heor ies on synergist ic immune

cel l  cross-t alk int o an ef f ect ive t reat ment  st rat egy f or  VL-HIV coinf ect ed pat ient s.
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Abstract 28 

Patients with visceral leishmaniasis (VL) – human immunodeficiency virus (HIV) coinfection 29 

experience increased drug toxicity and treatment failure rates compared to VL patients, with 30 

more frequent VL relapse and death. In the era of VL elimination strategies, HIV coinfection 31 

is progressively becoming a key challenge, because HIV coinfected patients respond poorly to 32 

conventional VL treatment and play an important role in parasite transmission. With limited 33 

chemotherapeutic options and a paucity of novel anti-parasitic drugs, new interventions that 34 

target host immunity may offer an effective alternative. In this review, we first summarize 35 

current views on how VL immunopathology is significantly affected by HIV coinfection. We 36 

then review current clinical and promising preclinical immunomodulatory interventions in the 37 

field of VL and discuss how these may operate in the context of a concurrent HIV infection. 38 

Caveats are formulated as these interventions may unpredictably impact the delicate balance 39 

between boosting of beneficial VL-specific responses and deleterious immune 40 

activation/hyperinflammation, activation of latent provirus or increased HIV-susceptibility of 41 

target cells. Evidence is lacking to prioritize a target molecule and a more detailed account of 42 

the immunological status induced by the coinfection as well as surrogate markers of cure and 43 

protection are still required. We do, however, argue that virologically suppressed VL patients 44 

with a recovered immune system, in whom effective antiretroviral therapy alone is not able to 45 

restore protective immunity, can be considered a relevant target group for an 46 

immunomodulatory intervention. Finally, we provide perspectives on the translation of novel 47 

theories on synergistic immune cell cross-talk into an effective treatment strategy for VL-HIV 48 

coinfected patients.   49 
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1. Introduction 50 

Visceral leishmaniasis (VL), also called kala-azar, is a vector-borne protozoan infection 51 

caused by species of the Leishmania donovani complex, which mainly targets tissue 52 

macrophages of systemic organs, such as spleen, liver and bone marrow (1). Characteristics of 53 

the disease include chronic fever, hepatosplenomegaly, and pancytopenia (1). Untreated, overt 54 

disease is universally lethal (1). Zoonotic VL, with dogs as the main reservoir, is mainly 55 

prevalent in the Mediterranean basin and in South America, and is caused by Leishmania (L.)  56 

infantum. Anthroponotic VL is prevalent on the Indian subcontinent and in East Africa and is 57 

typically caused by L. donovani (2). According to the recent World Health Organization 58 

(WHO) report, VL is endemic in 75 countries with an estimated 50,000 to 90,000 new cases 59 

occurring each year (3). Ninety percent of the global disease burden occurs in just six 60 

countries: India, Bangladesh, Sudan, South Sudan, Brazil and Ethiopia (3). 61 

 62 

Chemotherapy is currently the sole form of treatment in clinical practice. The pentavalent 63 

antimonial (SbV) compounds (sodium stibogluconate (SSG) commercialized as Pentostam®; 64 

meglumine antimoniate commercialized as Glucantime®) have been the cornerstone of first-65 

line treatment of VL over the last 70 years. However, these compounds, but are far from 66 

optimal due to severe toxicity and the emergence of antimonial resistance on the Indian 67 

subcontinent (1, 4). Newer drugs that are increasingly used include paromomycin, 68 

miltefosine, pentamidine, and conventional and liposomal amphotericin B. All these drugs 69 

have  a number of importantseveral important disadvantages as shown in  (Table 1). While 70 

various combination therapy regimens designed to overcome some of the shortcomings are 71 

highly efficacious in India, disappointing findings on some combination regimens have been 72 

recently reported in East Africa  (5-10). As of Until today, no comparative studies have been 73 

conducted done to explain this geographical difference, but the parasite genetic diversity 74 

diverse parasite species and host immune phenotypesity genotypes are assumed as key 75 

factors. Novel chemotherapeutic drugs are in the initial development pipeline and but are 76 

therefore unlikely to be widely available within the next few years. Nevertheless, over 90% to 77 

95% of immunocompetent patients display a good clinical response to currently 78 

recommended conventional treatment regimens, with treatment unresponsiveness, death or 79 

severe toxicity observedseen in less than 5% to 10% of patients (11). Less than 5% of 80 

immunocompetent individuals who initially cure develop a relapse, most commonly within 6-81 

12 months after treatment (5). Treatment outcomes however vary substantially between 82 

different geographic regions and depend on the drug(s) used, drug exposure, parasite 83 

susceptibility to the drug, severity of disease, host immunity and the presence of coinfections 84 

(11-13). 85 

1.1. Emerging challenge of VL-HIV coinfection 86 

Human immunodeficiency virus (HIV) has been identified as one of the emerging challenges 87 

facing the control of VL (14). The immunological status of HIV-infected patients is 88 

particularly favorable for the multiplication of Leishmania parasites. HIV coinfection 89 

substantially increases the risk of progression from asymptomatic Leishmania infection to 90 

active disease (15, 16). On the other hand, VL accelerates HIV disease progression towards 91 

acquired immunodeficiency syndrome (AIDS) and could induce expression of latent 92 

proviruses (14). HIV has fueled the re-emergence of VL in Southern Europe and Brazil, 93 

where up to 70% of VL cases are associated with HIV infection (7). Tand the problem is 94 

currently particularly severe in areas such as Northern Ethiopia, where up to 430% of all 95 

patients with VL patients are coinfected with HIV (17). Since 2001, 35 countries have 96 

reported between 2 to 30% of VL cases as co-infected with HIV, but thisese percentagess 97 

isare most probably underestimations (14). Because the disease affects the most poor and 98 

most neglected patients within an already neglected disease population, under-reporting in 99 
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most endemic areas is common due to a lack of facilities to diagnose one or both of the 100 

diseases and to poor reporting systems. Importantly, VL-HIV coinfected patients are also 101 

often considered super-spreaders of VL, and thus pose a major threat to current elimination 102 

strategies (18). 103 

 104 

Since 1996, combined antiretroviral treatment (cART), comprising three antiretroviral drugs, 105 

constitutes the cornerstone of HIV treatment. The treatment options continue to expand with 106 

new drugs and co-formulations; by the end of 2016, there were 40 antiretroviral drugs from 107 

six different classes approved by the Food and Drug Administration. In most resource-108 

constrained settings, the standardized WHO guidelines are used for ART, which currently 109 

recommends a combination of tenofovir, lamivudine and efavirenz as first line treatment. 110 

WHO recommended first line regimens have been found highly effective in resource-111 

constrained settings (19). The main aim of cART is sustainabledurable suppression of HIV 112 

replication, and with good adherence, this can generally be achieved, leading to a close to 113 

normal life expectancy (20).  114 

 115 

VL is one of the AIDS-defining conditions, requiring anti-leishmanial treatment and cART 116 

irrespective of CD4+ T cell count (7). Although there are limited in vitro data suggesting that 117 

HIV-1 protease inhibitors and possibly some other antiretroviral drugs might directly exert 118 

inhibitory effects on Leishmania, there is insufficient evidence for their clinical use against 119 

VL, and standard ART regimens are currently recommended in VL-HIV coinfection (5). In 120 

low income countries, this is provided by standardized first and second line regimens in a 121 

public health approach (21, 22).  122 

 123 

Increased toxicity and parasitologically-confirmed treatment failures (up to 30%) were 124 

observed in VL-HIV coinfected patients treated with SbV, with case fatality rates up to 24% 125 

(14, 17, 23). While liposomal amphotericin B was consistently found to have excellent 126 

tolerability, VL cure rates in HIV coinfected individuals have been rather disappointing in 127 

East Africa. For example, at a total dose of 30 mg/kg, around 16% of primary VL and 56% of 128 

VL relapse cases demonstrate parasitological failure in northern Ethiopia (17). WHO now 129 

proposes a total dose of 40 mg/kg (7, 24, 25). Experience with miltefosine in VL-HIV 130 

coinfection is limited, but suggests moderate efficacy and an acceptable toxicity profile (23, 131 

26-29). To date, only one clinical trial in HIV coinfected patients has been conducted with 132 

miltefosine, with 18% of patients displaying initial parasitological treatment failure and 25% 133 

relapsing, although deaths were excluded (23). The role of combination therapy in VL-HIV 134 

coinfection is currently under exploration in clinical trials in India and East-Africa. 135 

 136 

While in Europe widespread use of cART has resulted in a pronounced (i.e. 60 %) reduction 137 

in the incidence of VL-HIV coinfection, relapse in coinfected subjects remains substantial at 138 

up to 60% after one year (14, 30, 31) and secondary prophylaxis has only a partial effect (32). 139 

In a pentamidine secondary prophylaxis trial in Ethiopia, the relapse-free survival rate at two 140 

years was only 58.3% (Diro 2017, CID, in press). Even with access to all current 141 

chemotherapies, the prognosis in VL-HIV coinfection remains dire. Currently, it is believed 142 

that VL can only be effectively treated in HIV patients before profound immune deficiency 143 

has developed.  144 

 145 

VL-HIV coinfection has a number of unique clinical and immunological features. In contrast 146 

to many other HIV-associated opportunistic infections, CD4+ T cell reconstitution is severely 147 

delayed (even if virological suppression is reached) and the immune reconstitution 148 

inflammatory syndrome (IRIS) to a Leishmania infection after initiation of cART appears 149 

relatively rare, indicating a persistent suppression of host immunity (33, 34). Atypical clinical 150 

presentations can occur and amastigotes have been detected in tissues such as the intestine, 151 
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where parasites are mostly undetectable in the immunocompetent host (14, 35). After clinical 152 

remission, parasitemia also appears to persist, at least intermittently (36). A 153 

chronic/intermittent course of VL lasting several years has been described, labelled as “active 154 

chronic visceral leishmaniasis” (36). Consequently, HIV-infected patients will develop 155 

multiple VL relapses and often become progressively more difficult to treat, ultimately 156 

leading to a stage of complete treatment unresponsiveness. Hence, there is an urgent need for 157 

innovative and effective alternative therapies against VL-HIV coinfection. 158 

1.2. Promising role of immunomodulatory therapy 159 

It has become increasingly clear that the host immune response is a critical factor determining 160 

VL treatment response and control, acting in synergy with anti-leishmanial drugs (37). This 161 

implies that in immunosuppressed individuals, targeting parasites alone with conventional 162 

anti-leishmanial drugs but without enhancing the immune response might simply not be 163 

sufficient. This interaction between drugs and the immune system was first suggested in 164 

animal models of VL, where the efficacy of pentavalent antimony (Sbv) was lower after T cell 165 

depletion (38). This was, probably related to the decreased cellular uptake of SbV into 166 

interferon gamma (IFNγ) activated macrophages, where it is normally converted 167 

intracellularly into its active trivalent form (SbIII) (4). While this finding should be 168 

extrapolated with caution, this mechanism may explain the observations that 169 

immunocompromised patients with VL failed to respond to antimonial drugs. 170 

 171 

Immunotherapy is defined as the use of biological molecules or pharmacological compounds 172 

to modulate immune responses directly or in combination with drugs. A combination of 173 

immunomodulatory and direct anti-parasitic drugs could enhance the efficacy of 174 

chemotherapy and even prevent drug resistance (39). On top of its successful use in treating 175 

several non-infectious disorders (e.g. cancer, rheumatoid arthritis, etc.), the use of immune-176 

based combination therapy is increasingly being explored in infectious diseases such as 177 

tuberculosis (40) and leprosy (41)has proven successful in malaria, tuberculosis and leprosy. 178 

Despite several candidates being in the drug development pipeline, there are no 179 

immunotherapeutic agents or vaccines against VL currently registered for human use in 180 

routine clinical practice due to multiple reasons (e.g. high costs of clinical trials, limited and 181 

remote patient populations, ineffectiveness, safety concerns, etc.) (42). Experimental immune-182 

based approaches are also being explored in the domain of HIV, where many have reached 183 

Phase I and some Phase II clinical trials but as of until today have failed to provide enough 184 

immune restoration, potent effectiveness, sustainable benefits, delay of clinical progression or 185 

good safety profiles  (40, 43-46). However, VL-HIV coinfected patients are often excluded or 186 

neglected in such studies, although both individual patients as well as public health 187 

approaches in general could benefit from these interventions. 188 

 189 

Here, we first summarize current views on how host immunity against VL is affected during 190 

HIV coinfection, and then discuss the potential of current immunomodulatory therapies 191 

against VL in the context of concurrent HIV infection (both human studies and promising 192 

experimental approaches, excluding prophylactic studies). In particular, key targets and 193 

potential caveats are emphasized to guide future research on immunomodulatory therapies 194 

against VL and support the inclusion of HIV coinfected patients in clinical research. 195 

2. Immunopathogenesis of VL-HIV coinfection 196 

Macrophages represent an important common reservoir for HIV and Leishmania and serve as 197 

vehicles that disseminate both virus and parasite throughout the host. In addition, both 198 

pathogens may interact with each other to exacerbate immune suppression (Figure 1). In fact, 199 

both pathogens severely alter the antigen processing and presentation capacities of dendritic 200 
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cells and macrophages, and synergistically escape immune surveillance using an array of 201 

strategies yet to be fully understood (47). 202 

 203 

The control of VL in experimental models has been robustly associated with a strong T helper 204 

1 (Th1) immune response, with large amounts of IL-2 and IFNγ (48) (Figure 1). In addition, a 205 

M2 polarization of macrophages has been associated with suppression of cell-mediated 206 

immunity, that confers susceptibility to intracellular infection. However, the immune 207 

mechanisms modulating VL in murine models or humans differs significantly. Human studies 208 

have shown a Th1/Th17 protective pattern with a somewhat different T cell functionality 209 

compared to experimental models, but lack comprehensive longitudinal data (49, 50). CD8+ T 210 

cells have also been shown to produce IFNγ that can contribute to VL control (51). The 211 

immunosuppressive effects of IL-10, and the regulatory role of other cytokines such as IL-27, 212 

have been implicated in the development of the different clinical pictures (50). Impaired 213 

neutrophil effector function has also been suggested to play a key role in the pathogenesis of 214 

VL (52). Partly due to the lack of good animal or in vitro models, it is currently unknown 215 

whether and how these protective and immunosuppressive patterns of VL are modulated by 216 

HIV and ART and how they define the pertinent clinical outcomes of VL-HIV patients. 217 

 218 

HIV-1 causes a general profound impairment of cell-mediated immunity with low levels of 219 

CD4+ Th1 cells, the main protective cells in VL (Figure 1). HIV also skews the host immunity 220 

towards a Th2 response that only becomes affected at the later stages of the viral infection, 221 

potentially provoking parasite replication. Th17 cells are also associated with protection in 222 

The o VL, andbut are  protection-associated T-helper subset of Th17 cells are is highly 223 

permissive to HIV infection., Tand t and their frequency is significantly and preferentially 224 

reduced in the gastrointestinal tract, even in patients with undetectable plasma viral load 225 

under ART (53). DTheir depletion of Th17 cells from the gut- associated lymphoid tissue 226 

together with a series of immunopathological events occurring at the gastrointestinal tract 227 

mucosa leads to microbial translocation and consequently higher non-specific immune 228 

activation and hyper-inflammation (54). This microbial translocation has been postulated as 229 

one of the factors causing non-specific early T cell exhaustion and senescence (55), which 230 

may further weaken protective immunity towards VL. Likewise, VL was reported as an 231 

independent cause of increased non-specific immune activation, T cell senescence and the 232 

lack of immune recovery in virologically-suppressed coinfected HIV patients (56, 57). In line 233 

with T cell exhaustion, chronic immune activation was recently associated with recurrent 234 

relapse of VL in HIV patients (58). Recent research in VL-HIV patients also suggested that 235 

weak antigen-specific functional responses or proliferation of T cells after in vitro stimulation 236 

was an important predictor of relapse (59). Despite the pivotal role of CD8+ T cells in viral 237 

and parasite clearance, their contribution in VL-HIV control and level of exhaustion remains 238 

unknown. Likewise, it is still unclear as to what impact Leishmania infection could have on 239 

the capacity of resting memory CD4+ T cells to act as a stable reservoir of latent HIV 240 

infection,. WVor vice versa, it remains unknown what impact a spike in viral replication may 241 

have on anti-leishmanial immunity (e.g. by bystander activation of Leishmania specific 242 

memory cells) also remains unknown (60, 61). 243 

 244 

The consequences of infection by two immune suppressive pathogens could therefore be a 245 

symbiotic and persistent incapacitation of the host’s immune system, favoring a state of 246 

immunological anergy, ultimately being fatal to the patient. A better understanding of the 247 

immune response against Leishmania infection in HIV coinfected patients is crucial to 248 

establish a rational approach for immunomodulatory therapy. 249 

3. Status of immunotherapeutic interventions in human VL and their application in 250 

HIV patients 251 
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Due to the lack of a protective role of anti-Leishmania antibodies in early studies, passive 252 

immunization was not further explored, while active immunization with immunomodulators 253 

and vaccine therapy was investigated (62). Early studies by Murray et al. (38, 63, 64)showed 254 

the therapeutic utility of interleukin-2 (IL-2), IL-12, interferon-gamma (IFNγ) and 255 

granulocyte-monocyte colony stimulating factor (GM-CSF) in murine VL models (38, 63, 256 

64). Although the Th1/Th2 dichotomy of immunity to VL is not fully upheld in humans, 257 

clinical immunotherapeutic studies on VL patients have been skewed towards Th1-associated 258 

cytokine adjuvanted therapy and are discussed below (see Table 2). For VL-HIV coinfection, 259 

only five published case reports using recombinant IFNγ, IL-2 and GM-CSF combined 260 

chemotherapy were found in literature (see Table 2).  261 

3.1. Interferon-γy (IFNγy) 262 

There has been limited success in small-scale clinical trials with combined therapy of IFNγ 263 

and SbV for treating VL. This combination therapy displayed stronger parasitological and 264 

clinical cure rates in VL patients (mainly children) from Brazil, Kenya and India compared 265 

with the drug alone, but these studies had several limitations (see Table 2 for details). In a 266 

subsequent larger randomized controlled trial (RCT) in India, these improved treatment 267 

outcomes could not be confirmed (65). Importantly, treatment response in this particular study 268 

was generally poor as drug resistance was emerging in that region.  269 

 270 

There are a few case reports, mostly from the pre-ART eraarea, providing information on 271 

whether IFNγ can be safely administered in VL-HIV patients (see Table 2), which is of 272 

relevance since IFNγ also has a vital but ambiguous role in the pathogenesis of HIV (66). 273 

IFNγ appeared to be fairly well tolerated but showed inconclusive results (67-69). In one old 274 

case report of a patient with VL-HIV coinfection, acceleration of Kaposi’s sarcoma has been 275 

reported (70). The therapeutic potential of IFNγ to treat HIV coinfections, was supported by 276 

two Phase II trials, evaluating adjunctive IFNγ to improve treatment response to antifungals in 277 

HIV patients with cryptococcal meningitis (71, 72). However, in the early 1990s, a 278 

multicenter clinical trial of SSG plus IFNγ for VL in HIV coinfected patients in Spain was 279 

suspended following an interim analysis indicating that there was an excess of severe 280 

secondary effects and no benefit over drug alone (69). The findings itself have never been 281 

published but  suggested  a limited value of IFNγ therapy for VL-HIV coinfection.  282 

3.2. Granulocyte macrophage colony stimulating factor (GM-CSF)  283 

GM-CSF can inhibit the intracellular replication of protozoa such as Leishmania. The 284 

justification to explore GM-CSF as immunotherapeutic agent stems from documented effects 285 

such as monocyte mobilization, macrophage activation, the production of pro-inflammatory 286 

cytokines and amelioration of neutropenia (63). GM-CSF combined with SbV was 287 

successfully explored in 20 neutropenic VL patients in Brazil. All responded well to VL 288 

treatment, neutropenia rapidly improved and secondary infections decreased (73) (Table 2). 289 

The authors did however not include a control arm, however, making it unclear whether the 290 

effect of GM-CSF, if any, could be due to the reversal of neutropenia (and might hence not 291 

apply in those without neutropenia) or whether other mechanisms were involved. On the other 292 

hand, in vitro studies have recently suggested that GM-CSF could contradictory promote 293 

Leishmania growth by inducing monocyte proliferation and induction of intracellular dNTP 294 

production (74), but whether this would also occur in humans remains unknown.  295 

 296 

In terms of safety, several older clinical trials of GM-CSF administration in HIV patients 297 

indicated that it might accelerate HIV replication (75). In contrast, more recent RCTs have 298 

demonstrated benefits of using GM-CSF in virologically suppressed patients as an adjunct to 299 

conventional ART or therapeutic HIV vaccination (75, 76). This would argue against using 300 
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GM-CSF in pre-ART patients, but might suggest it to be safe in those stable on ART. With 301 

regard to coinfections, some case reports were published on successful GM-CSF therapy of 302 

resistant-to-standard-therapy mycobacterial infection and pulmonary aspergillosis in HIV 303 

patients (77, 78). There is a single successful case report on immunotherapy targeting primary 304 

VL in an Italian AIDS patient, whereby human GM-CSF was combined with liposomal 305 

amphotericin B (Table 2) (79). Presently the evidence for beneficial effects of GM-CSF on 306 

HIV disease is limited, but GM-GSF adjuvanted therapy could provide a potential value for 307 

treatment of neutropenic VL in stable ART patients. 308 

3.3. Interleukin-2 (IL-2) 309 

IL-2 induces clonal expansion of specific T cells, promotes natural killer (NK) and CD8+ T 310 

cell cytotoxicity, cytokine secretion by Th1, Th2, and Th17 cells, and modulates programmed 311 

cell death (42). Hence, IL-2 is necessary for the protection against Leishmania in 312 

immunodeficient mice, in which IL-2 restores the activity of SbV (38, 80). The impairment in 313 

IL-2 production is also one of the first functional defects described in untreated HIV-positive 314 

patients and its administration to boost the quantitative and/or qualitative CD4+ T cell 315 

restoration in HIV-infected patients has been evaluated in Phase I, II and III trials (42). These 316 

early results provided evidence that IL-2 therapy combined with existing cART has the 317 

potential to enhance quantitative and qualitative immune restoration, without triggering HIV 318 

replication, even when ART alone had failed to do so. However, restoring CD4+ T cell counts 319 

with IL-2 failed to show long-term clinical benefits in two large Phase III clinical trials, 320 

ESPRIT and SILCAAT (81). IL-2 recipients in the STALWART trial even experienced more 321 

opportunistic infections, death or grade 4 adverse events (AEs) during IL-2 administration, 322 

than those not receiving IL-2 (82).  323 

 324 

To date, no clinical trial for rIL-2 administration in VL patients has been reported. There has 325 

been one case report on the use of rIL-2 in a VL-HIV coinfected patient failing to respond to 326 

anti-leishmanial and HIV treatment with low CD4 counts and incomplete HIV suppression 327 

despite ART use (83). This report indicated no benefit. Importantly, increased Leishmania 328 

parasitemia was observed at each rIL-2 cycle, which might have favored the progression of 329 

HIV infection and possibly explains the reported progressive decline in CD4 T cell count 330 

(83). In a BALB/c mouse model, IL-2 seemed to have a short protective effect against VL 331 

only at the priming phase, without any lasting benefit (84). Such a phase-specific effect could 332 

explain the lack of long-term clinical benefits. In general, the small therapeutic window, 333 

critical dosage with potential high toxicity and challenging treatment conditions suggest IL-2 334 

is an unlikely candidate for boosting immunity in VL-HIV coinfected patients. 335 

3.4. Therapeutic vaccines 336 

Historically, leishmanization (inoculation with live parasites) was shown to have benefit for 337 

protection against re-infection with cutaneous leishmaniasis (CL) and this evidence has driven 338 

the search for an effective vaccine against VL (85).  Besides prophylactic vaccine 339 

development, various approaches employing therapeutic vaccines have been tested 340 

experimentally and clinically; and currently resulted in three licensed vaccines for canine VL 341 

but none for human VL (86). Therapeutic immunization with a first generation vaccine of 342 

aluminum hydroxide precipitated autoclaved L. major (Alum-ALM) + Bacille Calmette-343 

Guérin (BCG) was found clinically effective in CL, mucocutaneous leishmaniasis and 344 

persistent post-kala-azar dermal leishmaniasis (PKDL) cases, with studies progressing to  345 

Phase III clinical trials (87-93), but application to VL has not been reported (62). Similarly, 346 

LeishF1/F2 vaccine (alternatively called Leish-111f) a promising second generation (i.e. 347 

recombinant protein) vaccine for CL, showed insufficient protection against VL in dogs (94). 348 

A modified version of these second generation vaccines, called LeishF3, which 349 
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accommodated changes to enhance its efficacy against VL has been shown to be safe and 350 

immunogenic in a Phase I trial in healthy human volunteers, but therapeutic trials in patients 351 

have not been reported (Table 2) (95). A third generation (i.e. DNA-based), adenovirus 352 

vaccine (ChAd63-KH) was designed to induce Leishmania-specific CD8+ T cells and aimed 353 

at therapeutic use in VL/PKDL patients. It was shown to be safe and immunogenic in healthy 354 

volunteers (96) and is currently in Phase II trial in persistent PKDL patients in Sudan. 355 

 356 

A careful risk-benefit assessment needs to be made when considering therapeutic vaccination 357 

against VL in HIV patients, with depressed immunity. Safety concerns surely exist, but 358 

should not be overstated and should not impede evaluation of therapeutic VL vaccination 359 

studies in virally-suppressed HIV patients as potential benefits can outweigh existing 360 

theoretical risks. In essence, these patients have a higher risk of developing VL and are most 361 

in need of an enhanced immune response upon VL development. Post-marketing trends 362 

suggest that routinely used inactivated (non-VL) vaccines have similar safety profiles among 363 

HIV-uninfected and HIV-infected persons on stable ART (97). Although data are still limited, 364 

HIV-infected individuals who are on ART with well-controlled HIV RNA levels and CD4+ T 365 

cell counts of >200 cells/µL (or ≥15%) may even receive indicated live-virus vaccines (97). 366 

In addition, modern post cART era studies did not indicate that vaccines are important 367 

triggers of HIV replication or disease progression (98). With regard to efficacy, a highly 368 

immunogenic vaccine will be needed, as well as detailed studies to define the optimal timing 369 

and dosing for vaccination among those with advanced disease. Despite the concerns of 370 

depressed immunity and sparse efficacy data for other types of vaccines, studies have clearly 371 

demonstrated the protective benefit of influenza and Streptococcus pneumoniae vaccinations 372 

even among advanced HIV patients. In summary, these data merit a concurrent evaluation of 373 

therapeutic VL vaccines in coinfected patients who are virologically suppressed at the time of 374 

VL presentation. 375 

4. Promising pipeline immunomodulatory molecules/interventions 376 

While both the pharmacokinetics and pharmacodynamics of a drug, but also the nature of 377 

drug-immune interactions in animals and humans may differ considerably, animal models 378 

may still provide new clues to potential approaches. Here, we selected the most promising 379 

molecules or interventions for their potential in an immunosuppressive environment of the 380 

coinfected individual and refer to recent review papers for a more extensive list (39, 44, 45, 381 

86, 99). The formats discussed below are limited to active immunotherapy attempts including 382 

non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral 383 

replication; antibodies that block negative regulatory pathways; and indirect 384 

immunomodulation (Figure 2). Antigen-specific strategies such as therapeutic vaccination and 385 

adoptive strategies such as cell therapy are also briefly discussed. Whether the se below listed 386 

molecules listed below could serve as putative targets for human immunotherapy remains to 387 

be demonstrated. 388 

4.1. Non-antigen-specific strategies 389 

The above listed clinical trials with cytokine-adjuvant chemotherapy were based on limited 390 

data from experimental models of VL conducted in the 1990’s. Our knowledge of immune 391 

mechanisms has substantially expanded since thenis time. For instance, IL-12, a pluripotent 392 

cytokine that plays a central role in the initiation/maintenance of Th1 responses and 393 

potentiates T cell IFNγ production, was shown to have similar effects as IFNγ in both CL and 394 

VL when injected in mice (64, 100) as well as dogs (101) and human PBMC from treated 395 

Sudanese VL patients (102). Likewise, IL-12 preconditioning of monkeys during acute SIV 396 

infection markedly delayed disease progression (103). While rhIL-12 administration was 397 

well-tolerated and safe, no evidence of improvement in HIV antigen-specific immune 398 
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response could be observed in a Phase I RCT (104). While this suggests that IL-12 therapy is 399 

unlikely to provide major benefits in the chronic phase of an HIV infection, it might still be 400 

valuable in the context of opportunistic infections that are best met with Th1-like effector 401 

immune responses. In line with this, rIL-12 adjuvanted chemotherapy was successfully 402 

evaluated for patients with Kaposi’s sarcoma (105). In addition, it has been tested as part of a 403 

combination therapy for cryptosporidiosis in two AIDS patients that demonstrated signs of a 404 

brisk immune response and consequently symptomatic improvement, but with severe side 405 

effects that outweighed the clinical benefits (106). Data on the role of IL-12 as an 406 

immunotherapeutic agent or vaccine adjuvant for HIV coinfections could be promising and 407 

merits further research, although potential broad side effects due to its pluripotent role should 408 

be limited (e.g. tissue-targeted delivery, well-timed short boosting approach, etc.). 409 

Unfortunately, the incorporation of IL-12 into larger vaccine trials has lagged, in large 410 

partlargely due to the early setback in a renal carcinoma Phase II trial. However, , even 411 

though the mechanisms underlying the severe acute toxicities that led to two deaths and 12 412 

hospitalizations have been ascribed to an inappropriate dose and administration schedule 413 

(107). 414 

 415 

Like IL-12, many chemokines or cytokines contributing to protection / pathogenesis of VL 416 

are regulated during HIV coinfection. For instance, Th17 cells are highly depleted from the 417 

gut in HIV-infected patients. Recent work in humans has, however, demonstrated the 418 

importance of IL-17 and IL-22 in protection against VL progression from asymptomatic 419 

infection to disease (49). Interestingly, eIn addition, elevated serum IL-27 concentrations 420 

were linked to severity of VL. IL-27 seems to regulate the Th1/Th17 profiles in a L. infantum 421 

mouse model of VL by suppressing the IL-17-induced neutrophil response (108). The IL-27-422 

Th17-IL-17 axis thus seems to be strongly involved in resistance against VL and merits 423 

further therapeutic exploration, especially in HIV coinfected patients with a Th-17-depleted 424 

immune response. 425 

 426 

Despite the central role of IL-7 cytokine therapy in HIV patients in the past, this molecule has 427 

not been evaluated in VL-HIV coinfected patients and remains under-investigated in 428 

experimental models of VL (109). IL-7, like IL-2, has a critical role in peripheral T cell 429 

homeostasis. IL-7 has, however, a more pleiotropic role and was shown to drive CD4+ T cell 430 

restoration in HIV patients, even when HIV replication is controlled. It is also able to promote 431 

Th1 responses, enhance memory T cell expansion (on top of naive T cell response) and 432 

increase CD8+ T cell counts and cytotoxicity in HIV patients (42). Moreover, damage to 433 

hepatocytes during full-blown VL may impair IL-7 production, as IL-7 is also produced by 434 

liver cells in response to inflammation (110). Recombinant IL-7 administration thus has the 435 

potential to safeguard the long-term survival of effector CD4+ T cells in response to persisting 436 

parasites in a VL-HIV coinfection. However, in the ERAMUNE 01 RCT, rIL-7 and dual ART 437 

intensification induced an amplification of the HIV reservoir in well-controlled HIV patients 438 

(111). The authors reasoned that this was the result of the expansion of central memory CD4+ 439 

T cells, carrying HIV DNA, thus limiting this IL-7 based strategy. In the context of VL-HIV 440 

coinfection, this strategy should only be considered if a pronounced clinical benefit to VL 441 

treatment outweighs its potential negative effects. 442 

 443 

Blocking the action of immune-suppressive factors could prove more efficient as it might 444 

allow restoration of protective immunity in a more controlled manner. IL-10 correlates very 445 

well with the parasite load during VL infection. Moreover, in animals, IL-10 blockade (by 446 

means of anti-IL-10R or anti-IL-10 monoclonal antibody) has been proven successful in 447 

lowering parasite burden when combined with conventional treatment in multiple studies in 448 

mice (112, 113). These effects were confirmed in cultures of splenocytes or PBMCs from 449 

Indian and Sudanese VL patients (102, 114). However, in immunodeficient mice treated with 450 
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anti-IL-10R monoclonal antibody, Murray et al. were not only able to show an acceleration of 451 

SbV-associated killing, but alsothey reported a >10-fold SbV dose-sparing effect (115). 452 

Despite the clinical and experimental data suggesting IL-10 as a key target in the 453 

immunopathogenesis of VL, a clinical trial using a monoclonal antibody against IL-10 failed 454 

to start following the decision of the company to stop its production (NCT01437020, 455 

clinicaltrials.gov). 456 

 457 

Increased serum IL-10 concentrations are also observed in HIV-infected patients with disease 458 

progression, in contrast to non-progressing patients where levels were stable (116). In 459 

addition, ART has a clear down-regulating effect on IL-10. On the other hand, increasing 460 

evidence suggests that IL-10 impacts many aspects of HIV pathogenesis, including the 461 

regulation of HIV-specific CD4+ and CD8+ T cell functions, as well as modulation of HIV 462 

replication in PBMC subsets. Genetic polymorphisms in the IL-10 gene promoter that lead to 463 

decreased IL-10 expression have been associated with more rapid disease progression in late 464 

stages of HIV infection, suggesting that the anti-inflammatory effects of IL-10 may be solely 465 

protective in the setting of chronic immune activation and blocking IL-10 function would 466 

only make sense in an acute setting (117). When considering VL-HIV coinfection, these data 467 

would advocate the blocking of excessive IL-10 levels during the acute stage of VL in HIV 468 

patients (in particular pre-ART patients) to allow a beneficial acute response which should 469 

however be time limited to retain the beneficial role of IL-10 in controlling side damage of 470 

chronic HIV and parasitic infections. To reduce the unwanted side effects due to blockage of 471 

normal, and beneficial, biological activities, novel IL-10 signaling inhibitors with for instance 472 

shorter half-lives are first needed (118).  473 

 474 

The concept of immune exhaustion and senescence as a stepwise and progressive loss of T 475 

cell function and proliferative potential, respectively, and evolving to complete T cell 476 

unresponsiveness has been robustly discussed in the context of HIV infection (119). The 477 

driving force is believed to be chronic antigen exposure and consequently extensive non-478 

specific immune activation. Increased immune activation in patients on long-term suppressive 479 

cART has been associated with increased mortality, the occurrence of non-AIDS-defining 480 

conditions, and a poorer recovery in CD4+ T cell count (120, 121). Similarly, increased levels 481 

of Programmed death-ligand 1 (PD-L1) expression on monocytes, B cells and T cells from 482 

untreated HIV patients correlated directly with plasma viral load and inversely with CD4+ T 483 

cell count (122). This mechanism could partly explain the disappointing long-term effects of 484 

IL-2 therapy in HIV patients, as IL-2 was recently shown to upregulate the PD1-PD-L1/L2 485 

pathway (123). While the causative factors of immune exhaustion or senescence are not 486 

completely understood, chronic immune activation, residual HIV-replication and coinfections 487 

are likely main drivers of this process. Recent studies have also focused on the role of this 488 

process in the context of VL and other parasitic infections, showing an accelerated T cell 489 

senescence during VL infection (124). Likewise, a parasite-induced T cell anergy has been 490 

proposed (124). Hence, a modulatory approach to reverse this process or temporarily breaking 491 

the regulatory feedback loop using antibody therapies targeting PD-1, CTLA-4 or its ligands 492 

could prove efficient in coinfected individuals with a potential double-driven T cell 493 

unresponsiveness. Such an approach to reverse the reported T cell unresponsiveness has 494 

proved very effective in experimental VL (57, 125-127).  In SIV-infected rhesus macaques, 495 

anti-PD-1 (in the absence of ART) was shown to enhance virus-specific CD8+ T cell activity, 496 

to reduce viral load and to prolong survival (46). Similarly, anti-PD-L1 antibody therapy 497 

showed promising in a recent Phase I RCT on 6 ART patients, arguing in favor of its potential 498 

use in virologically-suppressed VL-HIV patients (128). Recently, the major HIV cell reservoir 499 

was shown to be composed of PD-1+ CD4+ memory T cells, suggesting an additional positive 500 

effect of anti-PD-1 therapy to combat the concomitant HIV infection (129). 501 
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4.2. Antigen-specific and adoptive strategies 502 

There are multiple studies in which diverse antigens and adjuvants showed promising results 503 

as immunoprophylactic or therapeutic tools in animal models of VL, recently summarized in a 504 

review by Jain and Jain (86). Apart from the current clinically explored strategies and the 505 

safety/efficacy concerns in HIV patients (see above), a promising approach would be to 506 

vaccinate with a non-pathogenic L. tarentolae strain, genetically modified to improve its 507 

immunogenic potential as a live vaccine (130). Likewise, a novel third generation T cell 508 

epitope-enriched DNA vaccine (LEISHDNAVAX) showed significant efficacy when co-509 

administered with a single dose of AmBisome in L donovani-infected mice (131). The 510 

vaccine is based on minimalistic immunogenically defined gene expression (MIDGE) vectors 511 

encoding five conserved antigens developed for efficient induction of Th1 immune responses. 512 

This candidate vaccine has yet to enter clinical Phase I trials.  513 

 514 

Another cutting-edge approach to induce antigen-specific T cell immunity is dendritic cell-515 

based immunotherapy (99, 132). While macrophages are one destination of Leishmania 516 

parasites in the human host, dendritic cells can also harbor parasites, but in addition present 517 

antigen and regulate immune mechanism governing control or progression of infection. 518 

Adoptive transfer of dendritic cells primed with different kinds of Leishmania antigens has 519 

been shown very effective in murine VL, improving both cellular and humoral immunity 520 

(132). Compared to the modest efficacy of immune therapy and therapeutic vaccines against 521 

HIV infection, ex vivo generated dendritic cell therapeutic vaccines aimed at inducing 522 

effective HIV-specific immune responses have yielded the best results in this field (133). The 523 

outcomes of monocyte-derived dendritic cell based therapeutic vaccines still needs 524 

optimization as functional cure was not reached and most patients needed to restart ART, but 525 

this method could provide a strong immunogenic window for concomitant VL-targeted 526 

therapy of coinfected individuals. Due to high costs and required state-of-the-art equipment, 527 

adoptive cell transfer therapy may prove difficult to implement in low-resource settings of 528 

disease endemic countries. 529 

4.3. Indirect strategies 530 

An alternative approach is to indirectly stimulate host immunity to optimize protection against 531 

infection. Such indirect immunomodulators can be obtained by many different types of 532 

substances, including natural products that have immunomodulatory activity. Such  533 

immunomodulators, however, carry the risk of inducing excessive immunopathology and side 534 

effects. Many compounds have been evaluated in VL animal studies over the years, including 535 

CpG oligodeoxynucleotides, acetyl salicylic acid (ASA) and L-arginine (99). Most of these 536 

molecules increase T cell activation through enhanced antigen presentation by costimulation-537 

based therapy or acting on Toll-like receptors (TLRs) (e.g. TLR4/GP29 or MPL; TLR2/Ara-538 

LAM or Pam3Cys). This could be particularly beneficial in HIV coinfected patients, as TLR-539 

agonists such as TLR7 or TLR9 agonists have shown reduction of viral DNA or the viral 540 

reservoir and enhancement of HIV-specific CD8+ T cell immunity in experimental and human 541 

HIV (134, 135). Whether such a multi-TLR targeting approach would benefit human VL-HIV 542 

patients remains unclear and merits further research.  543 

 544 

In a similar manner, it has been suggested that TLR4 and TLR9, two TLRs contributing to the 545 

immune response against Leishmania infection, play a role in the anti-leishmanial mechanism 546 

of miltefosine (136). An alternative strategy, could thus be to concurrently capitalize on the 547 

indirect immunological effects of the combined anti-leishmanial drug in a immuno-548 

chemotherapeutic approach. The relevance and impact of these immunomodulatory actions of 549 

current anti-leishmanials in HIV coinfected VL patients remains to be determined. Besides a 550 

direct mechanism of action, anti-leishmanials can increase nitric oxide and reactive oxygen 551 
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species production due to activation of infected macrophages, leading to elimination of the 552 

parasite. This indirect activation of macrophages has been shown for amphotericin B (137), 553 

miltefosine (138), antimonials (139), and paromomycin (140). Induction of macrophage-554 

derived cytokine release promoting a Th1 response (IL-2, IL-12, IFNγ) has been noted for all 555 

conventional anti-leishmanials such as amphotericin B (137, 141), miltefosine (138, 141), 556 

paromomycin (141), and sodium stibogluconate (139, 141), even though contradictory results 557 

have been reported, e.g. for miltefosine (142). Related to this, miltefosine restored IFNγ 558 

responsiveness in Leishmania-infected macrophages (138). Another immunostimulatory 559 

property contributing to anti-leishmanial activity is a drug-induced increase in macrophage 560 

membrane fluidity, ameliorating defects in antigen-presentation and enhancing T cell 561 

stimulation. This has been shown after exposure of infected host cells to higher concentrations 562 

of miltefosine, paromomycin and sodium stibogluconate (141). For both antimonials (143) 563 

and miltefosine (144), it has been shown that they increase the phagocytic capacity of 564 

monocytes and macrophages. There are currently no data available whether all these effects 565 

are clinically relevant in terms of short-term treatment response, relapse, final cure, and the 566 

risk of development of PKDL. Despite the current lack of data on clinical relevance, these 567 

background effects should be taken into consideration in future combined 568 

immunochemotherapeutic strategies to incite an effective synergistic effect. The general lack 569 

of response to anti-leishmanial treatment in HIV coinfected patients and the relevance of 570 

concomitant cART for the efficacy of current anti-leishmanials possibly indicate that these 571 

indirect effects are not negligible for a therapeutic response. 572 

5. Concluding Pperspectives 573 

Despite the growing research in immunotherapy against VL (partly reviewed above), no 574 

immunotherapeutic approach has yet been licensed for use in human VL. HIV coinfected 575 

patient groups, in particular, are often excluded from the above described clinical intervention 576 

studies due to the presumed hazards and challenging logistics. Although a vulnerable 577 

population, we would argue that VL-HIV patients should be considered as a relevant target 578 

group for an immunomodulatory approach against VL due to an intensified defect in T cell 579 

immunity, dependence of current anti-leishmanial drugs on the latter, inadequate treatment 580 

outcomes and higher chronicity of the parasitic infection with frequent relapse. In addition, 581 

HIV-targeted immunomodulatory approaches, despite their drawbacks to achieve long-term 582 

functional cure in HIV patients, might find a temporarily window of opportunity in 583 

opportunistic coinfections such as VL, where cART alone is not able to restore protective 584 

immunity. The challenge, however, of immunomodulatory therapy in VL-HIV coinfected 585 

patients is boosting effective VL-specific T cell responses while avoiding activation of latent 586 

provirus and inappropriate immune activation (in virologically-suppressed ART patients) or 587 

HIV recrudescence and increased HIV-susceptibility of target cells (in unstable HIV/AIDS 588 

patients). Clinical studies trials are a necessity to study treatment effects, due to the lack of 589 

good animal or in vitro models mimicking VL-HIV coinfection. 590 

 591 

In Figure 2, we summarized the discussed interventions against VL and highlighted those that 592 

have also been clinically evaluated in the context of HIV. Evidence is lacking to prioritize a 593 

target molecule, but attempts at immunotherapy in VL-HIV patients should best be performed 594 

in ART patients with a recovered immune system. Appropriate adjuvants can be included to 595 

enhance the efficacy of the response, but caution should be taken to avoid excessive and 596 

broad immune activation. The following perspectives are best taken into consideration when 597 

designing or evaluating an immunomodulatory approach in VL-HIV coinfected patients: 598 

 599 

COMBINATION STRATEGIES - As current anti-leishmanial drugs are highly dependent 600 

on host immunity, it is recommended to potentiate chemotherapeutic agents with various 601 

immunomodulators in HIV coinfected patients. While the increment in immunocompetent 602 
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patients could be potentially low, HIV coinfected patients are probably in more need of a 603 

boost in effective T cell immunity against VL to decrease the high mortality and treatment 604 

failure rates typically observedseen in coinfected patients.  605 

 606 

The current clinically explored techniques of single cytokine-adjuvanted therapy in VL have 607 

the inherent danger of a very pluripotent effect in HIV coinfected patients, due to the 608 

intricacies of cytokine networks, and may unpredictably impact the delicate balance between 609 

beneficial VL-specific responses and deleterious immune activation. Future therapeutic use of 610 

broad immunomodulators will most likely lead to unwanted side effects in coinfected patients 611 

until a system-level understanding of their mode of action is available and thus a more 612 

selective and well timed approach can be performed  (145). However, they could potentially 613 

prove valuable as a well-timed adjuvant in a more targeted immunomodulatory approach. 614 

 615 

The other clinically explored strategy in VL is therapeutic vaccination. However, as T cell 616 

senescence and exhaustion could have occurred by persistent HIV replication, further 617 

stimulating effector-memory T cells could be futile or even harmful in VL-HIV patients. 618 

Perhaps a concurrent strategy to reverse this T cell exhaustion (e.g. anti-PD-1 therapy) could 619 

increase vaccine efficacy. It remains to be seen whether VL-based therapeutic vaccines 620 

deployed in HIV coinfected patients are safe and whether a strong enough response can be 621 

induced against VL. In severely CD4+ depleted patients in particular, a concurrent need may 622 

be to first encourage immune reconstitution before vaccination. Combination strategies of 623 

diverse immunomodulators and drugs will thus be crucial in these patients to reach an 624 

effective treatment, perhaps with a more individualized approach. 625 

 626 

STRATIFICATION – Among patients with tuberculous meningitis, different inflammatory 627 

patterns governed by host genetics are recognized, converging on dysregulated levels of TNF. 628 

At one end of the extreme, a hyper inflammatory phenotype was shown to benefit from 629 

steroid administration; at the other end, where inflammation is inadequate, other immuno-630 

modulatory interventions would be required (146).  In a similar manner, subgroup analyses in 631 

HIV-associated cryptococcal meningitis suggested that the greatest benefit of a short-course 632 

IFNγ adjuvant therapy was gained among patients with a lack of Cryptococcus-specific 633 

IFNγ/TNF CD4+ T cell responses (147). In most settings, VL-HIV coinfected individuals will 634 

also be (severely) malnourished upon VL diagnosis, and micro- and macro-nutrient deficiency 635 

can have profound immunological effects. These alterations could critically affect the efficacy 636 

of any immunomodulatory interventions, yet may also provide opportunities for 637 

complementary interventions. We therefore argue that there is a need to assess immune risk 638 

profiles based on functional T cell assays, RNA signatures and other parameters that identify 639 

patients that are more likely to benefit from immune adjuvanted therapy, across the 640 

heterogeneous group of VL-HIV patients.  641 

 642 

TIMING – VL-HIV coinfection is a dynamic process with diverse stages of infection and 643 

regardless of choice of immunomodulatory intervention, timing will be critical to success. For 644 

instance, high IL-17 levels appeared protective for early VL progression, but its role is still 645 

debatable in chronic infection.  The optimal timing of immunotherapy among HIV coinfected 646 

adults in regard to HIV stage and receipt of antiretroviral therapy also remain important 647 

unanswered questions. Most benefit is probably to be gained in early stages of HIV infection 648 

as well as in under-therapy suppressed patients, who are able to effectively respond to 649 

immunomodulators. Therefore, we would argue for a primary evaluation of novel approaches 650 

in stable ART patients that have a somewhat reconstituted CD4+ T cell immunity and 651 

suppressed viral load, including frequent monitoring of blips in viral load and CD4+ T cell  652 

count. It remains to be investigated whether HIV patients with a severe suppression in T cell 653 
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immunity are also able to respond to immune stimulators or whether virological suppression 654 

first has to be prioritized to enable T cell responsiveness. 655 

 656 

TARGETED STRATEGIES – The delivery system is also an important part of an immune 657 

based strategy and implementation of various novel approaches based on liposomes, 658 

electroporation, dendrimers, carbon nanotubes etc. can boost efficacy (86). For instance, as an 659 

alternative for broad cytokine adjuvants, more effective and tolerable approaches are being 660 

explored like encapsulation in micro or nanoparticles, restricting the delivery to APCs and/or 661 

the co-delivery with another immunomodulatory molecule via transducing vectors. Similar 662 

techniques such as microRNA or small interference RNA based therapy could be explored, 663 

but these novel drugs will be most likely unaffordable in most countries where the disease is 664 

endemic. 665 

 666 

ACCESIBILITY – The target population is largely living in very rural and/or poor areas, 667 

where a highly controlled clinical trial setting can be challenging and costly to implement. It 668 

will be imperative to strengthen human and infrastructural capacity in disease endemic areas 669 

to ensure a sustainable base for immunotherapeutic research and to assess safety and efficacy 670 

of novel interventions. Moreover, designed therapeutics should become affordable and 671 

accessible to the patient population, suggesting innovative low-resource-demanding methods 672 

ideally without the need of a cold chain. 673 

 674 

 675 

CONCLUSION - To advance the development of immunomodulatory approaches for VL-676 

HIV coinfection, a more detailed account of the immunological status induced by the 677 

coinfection and surrogate markers of cure and protection are still required, as a forerunner to 678 

inclusion of such patients in clinical intervention studies. The main limitation for 679 

comprehensive immunological research is, however, the need for human samples of 680 

longitudinal studies and trials in (often very remote) low-resource settings. With more 681 

research aimed at discovering key synergistic pathways of immune cell cross-talk and 682 

renewed efforts to translate these findings into effective treatment modalities that target 683 

Leishmania without promoting HIV replication, the goal of improved patient outcome and 684 

clinical management of this neglected population may be achievable. 685 

  686 
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Figures and Tables 

Table 1. The main drugs currently used for treatment of visceral leishmaniasis, adapted from 

(5) 

Drug Toxicity Main limitations 

Pentavalent 

Antimonials (SbV) 

Frequent, potentially 

severe 

Toxicity (high mortality in HIV 

      coinfected African patients) 

- Pancreatitis Painful injection (im) 

- Cardiotoxicity Length of treatment 

- Nephrotoxicity Resistance in India 

- Hepatotoxicity  

Conventional 

Amphotericin B 

deoxycholate 

Frequent infusion-related     

reactions 

Lengthy hospitalization (in-patient care) 

- Nephrotoxicity Slow iv infusion 

- hypokalemia Nephrotoxicity 

Liposomal 

Amphotericin B 

(AmBisome) 

Uncommon and mild High price 

- Nephrotoxicity 

(limited) 

Slow iv infusion 

Heat instability (<25° C) 

 Accessibility 

 Single dose not effective in East Africa 

Miltefosine Common, usually mild 

and transient  

Relatively limited efficacy data in East  

     Africa 

 - Gastro-intestinal Possibly teratogenic 

 - Hepatotoxicity Potential for resistanceb 

  Patient compliance (oral drug) 

  High price 

Paromomycin 

Sulphate 

(aminosidine) 

Common Toxicity (Oto- and nephrotoxicity) 

- Ototoxicity Resistance readily obtained in lab  

      isolates - Nephrotoxicity 

- Hepatotoxicity Efficacy variable between and within  

      regions (less in Sudan) 

Pentamidine Common Low efficacy 

- Gastro-intestinal Toxicity (diabetes, renal failure) 

- Cardiotoxicity Length of treatment 

- Pancreatitis  

- (iIr)reversible 

diabetes mellitus 

 

b Due to long half-life + low genetic barrier (resistance readily obtained in lab isolates) 

iv: intravenous injection; im: intramuscular injection 
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Table 2. Published clinical reports on the use of immuno(chemo)therapy against VL and VL-HIV 
Ref Country; 

year; 

design 

Patient characteristics Chemo agent Immuno agent Outcome (EOT) Comments 

 VISCERAL LEISHMANIASIS MONO-INFECTION  

(148

) 

Brazil; 

1990; 

case series 

[1] SSG-unresponsive VL (n=8);  

<18 years (8/8);  

Mean age: 6.5 years 

SSG 20 mg/kg  IFNγ  

(100-400 µg/m2 

for 10-40 days) 

6/8 cured EOT (75%) 

No relapse during study 

period 

Higher cure rates in both groups 

compared  to historical controls 

Tolerability acceptable (fever) 

   

[2] Severely ill primary VL 

(n=9) 

<18 years (8/9)  

Mean age: 9.8 years 

 

SSG 20 mg/kg 

 

IFNγ  

(100-400 µg/m2 

for 10-40 days) 

 

8/9 cured EOT (89%) 

No relapse during study 

period 

(149

) 

Brazil, 

1993;  

case series 

[1] Primary VL (n=8) 

Predominantly children  

Median age: 5 years 

 

 

[2] SSG-unresponsive refractory 

VL (n=14)  

Median age: 4 years 

SSG 20 mg/kg  

 

 

 

 

SSG 20 mg/kg 

 

IFNγ 

(100-400 µg/m2 

for 10-40 days) 

 

8/8 cured EOT 

Cure 12M: 8/8 (100%) 

1/8 relapsed 

12/14 cured 

 

Cure 12M: 9/14 (64%) 

6/12 relapsed 

Both groups: more severe cases than in 

1990 

   

IFNγ  

(100-400 µg/m2 

for 10-40 days) 

 

(150

) 

Kenya; 

1993; 

RCT 

[1] Primary VL (n=10) 

<18 years: 7/10 

 

 

 

 

[2] Primary VL (n=14) 

<18 years: 11/14 

SSG 20 mg/kg  

 

 

 

 

 

SSG 20mg/kg 

IFNγ  

(100 µg/m2  every 

two days - 30 

days) 

 

 

 

/ 

24/24 cured EOT 

Week 1: 50% cured 

Week 2: 75% cured 

Week 4: 100% cured 

 

Week 1: 22% cured 

Week 2: 58% cured 

Week 4: 88% cured 

Control  group included 

 

no relapse cases 

 

a non-significant accelerated response 

with SSG + IFNy 

(73) Brazil; 

1994;  

RCT 

[1] 10 neutropenic primary VL 

 

 

[2] 10 neutropenic primary VL 

SSG 10-20 mg/kg for 

10 days 

 

SSG 10-20 mg/kg for 

10 days 

GM-CSF 

(5mg/kg for 10 

days) 

 

Placebo 

Cure M3: 100% 

 

 

Cure M3: 100% 

Study focused on hematological 

evaluation and secondary infections 

 

Secondary infections occurred in 3 

GM-CSF and in 8 placebo recipients 
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(151

) 

India; 

1995;  

RCT 

[1] Primary VL (n=16) 

Mean age 21 years (range 6-52) 

 

SSG 20 mg/kg for 20-

30 days 

IFNγ  

(100 µg/m2) 

Cure D10: 10/15 (63%) 

Cure D20: 14/15 (93%) 

Cure D30: 15/15 (100%) 

Cure M6: 13/15 (87%) 

 

D10 and D20 difference statistically 

significant 

 

No relapse up to M24 

  [2] Primary VL (n=15) 

Mean age 27 years (range 5-58) 

SSG 20 mg/kg for 20-

30 days 

/ Cure D10: 1/15 (7%) 

Cure D20: 6/15 (40%) 

Cure D30: 11/15 (73%) 

Cure M6: 9/15 (60%) 

Treatment was discontinued early in 

the 14 IFNγ treated responders after 

D20 

 

(65) India,  

1997 

 [1] Primary VL (n=52) 

Mean age 20 years; 60% male 

 

 

[2] Primary VL (n=52) 

Mean age 18 years; 58% male 

 

 

[3] Primary VL (n=52) 

Mean age 20 years; 69% male 

SSG 20 mg/kg for 30 

days 

 

 

SSG 20 mg/kg for 30 

days 

 

 

SSG 20 mg/kg for 30 

days 

IFNγ  

(100 µg/m2 for 30 

days) 

 

 

IFNγ  

(100 µg/m2 for 15 

days) 

 

 

/ 

Cure (EOT): 25/47 

Relapse: 1 

6M cure: 24/49 (49%) 

 

Cure (EOT): 22/50 

Relapse: 1 

6M: 21/50 (42%) 

 

Cure (EOT): 20/48 

Relapse: 2 

6M cure: 18/50 (36%) 

High failure rate with standard therapy 

(SSG-resistance?) 

 

 Differences not statistically significant 

(95) USA,  

2012, 

Phase I 

RCT 

[1] Healthy volunteers (n=12) 

 

 

[2] Healthy volunteers (n=12) 

 

 

[3] Healthy volunteers (n=12) 

 

/ 

 

 

/ 

 

 

/ 

Leish F3 (20ug) 

+ GLA-SE (5ug) 

 

Leish F3 (20ug) 

+ GLA-SE (2ug) 

 

Leish F3 (20ug) 

Safe and immunogenic D84: 

10/10 

 

Safe and immunogenic D84: 

8/8 

 

Safe and immunogenic D84: 

9/9 

Subunit vaccine: single recombinant 

fusion protein of 2 preserved proteins 

 

 

(96) UK, 

2016, 

Phase I 

trial 

[1] Healthy volunteers (n=20] 

n=5 low dose 

n=15 high dose 

/ Ch1d63-KH 

(1x1010 vp or 

7.5x1010 vp) 

Safe and immunogenic D90: 

20/20 

Adenovirus vector encoding 2 

Leishmania proteins 

 

Dose escalation study 

 HIV & VISCERAL LEISHMANIASIS COINFECTION  

(68) CASE 

REPORT; 

1990 

Full blown AIDS patient with 

recurrent VL 

19y old Algerian male 

Meglumine 

antimoniate (dose 

unkown) 

IFNγ (175 µg/d iv 

or sc for 21 days) 

 

1 relapse treated 

Resistance to antimoniate 

 

 

In review



Pentamidine (2 mg/kg 

iv 3 times/w, 1w/mo) 

IFNγ (175 µg/d 

sc 3 times/w, 

1w/mo) 

3 relapses treated 

Cure 6M: Only two mild 

relapses with minimal adverse 

events 

(67) CASE 

REPORT; 

1993 

Three full blown AIDS patients Meglumine 

antimoniate (dose 

unknown) 

IFNγ (dose 

unknown) 

Clinical improvement 

Reduction in parasite burden 

 

(70) CASE 

REPORT; 

1994 

Full blown AIDS patient with 

KS 

40y old German male 

SSG (dose unknown) IFNγ (dose 

unknown) 

Aggravated Kaposi syndrome 

(KS) 

 

(79) CASE 

REPORT; 

2004 

Primary VL 

37y old Italian male 

CD4 <50 mcl 

On ART 

Amphotericin B 

(4mg/kg for 5 days + 5 

non-consequent days) 

GM-CSF 

(150 mcg/twice a 

week for 12 

weeks) 

Dramatic Clinical 

improvement 

 

No adverse event 

 

(83) CASE 

REPORT; 

2007 

Unresponsive VL 

36y old Italian woman 

CD4: 98 cells/µl 

On ART 

Amphotericin B 

(between every cycle) 

IL-2 (twice/day 

for 5 days – 

7cycles every 4-8 

weeks (cycle 1-4: 

3MIU; cycle 5-7: 

6MIU) 

No benefit 

 

Increase in Leishmania DNA 

 

IFN: interferon; SSG: sodium stibogluconate; VL: visceral leishmaniasis; EOT: End of Treatment: M: month 
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Figure 1: Current views on synergistic mechanisms in T cell immunity against VL due to 

HIV coinfection inciting persistent viral and parasite replication in VL-HIV coinfected 

patients.  

APC: antigen presenting cell; Th: T-helper; GALT: gut- associated lymphoid tissue; CTL: 

cytotoxic T cell; IL: Interleukin; ART: antiretroviral therapy; IFN: interferon; LPS: 

lipopolysaccharide; TNF: Tumor necrosis factor 

 

Figure 2: Overview of described clinical and preclinical immunomodulatory interventions in 

human visceral leishmaniasis and their application in (VL)-HIV (co)infection.  

IL: interleukin; IFN: interferon; PD-(L)1: programmed cell death-(ligand)1; GM-CSF: 

Granulocyte macrophage colony stimulating factor; CTLA: Cytotoxic T lymphocyte-

associated molecule; CD: Cluster of differentiation ; BCG: Bacillus Calmette-Guérin; Alu-

ALM: aluminum hydroxide precipitated autoclaved L. major; DC: dendritic cell; GP: 

Glycoprotein; Ara-LAM: Arabinosylated lipoarabinomannan; Pam3Cys: synthetic bacterial 

lipopeptide; CpG Odn: CpG oligodeoxynucleotides; ASA: Acetyl Salicylic Acid; MPL: 

monophosphoryl lipid  
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