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Pre-metric electrodynamics is a covariant framework for electromagnetism with a general consti-
tutive relation. Its lightcone structure can be more complicated than that of Maxwell theory as is
shown by the phenomenon of birefringence. We study the energy density of quantized pre-metric
electrodynamics theories with linear constitutive relations admitting a single hyperbolicity double-
cone and show that averages of the energy density along the worldlines of suitable observers obey
a Quantum Energy Inequality (QEI) in states that satisfy a microlocal spectrum condition. The
worldlines must meet two conditions: (a) the classical weak energy condition must hold along them,
and (b) their velocity vectors have positive contractions with all positive frequency null covectors
(we call such trajectories ‘subluminal’).

After stating our general results, we explicitly quantize the electromagnetic potential in a trans-
lationally invariant uniaxial birefringent crystal. Since the propagation of light in such a crystal is
governed by two nested lightcones, the theory shows features absent in ordinary (quantized) Maxwell
electrodynamics. We then compute a QEI bound for worldlines of inertial ‘subluminal’ observers,
which generalizes known results from the Maxwell theory. Finally, it is shown that the QEIs fail
along trajectories that have velocity vectors which are timelike with respect to only one of the
lightcones.

I. INTRODUCTION

The phenomenon of birefringence provides a vivid illus-
tration of the difference between electrodynamics in me-
dia and in vacuum – the propagation of light is governed
by two lightcones, neither of which need be that of the
background spacetime. At the theoretical level, neither
the constitutive relation H = H(F ) relating the electro-
magnetic induction to the field strength, nor the Maxwell
equations dH = J and dF = 0, need make reference to
any metric structure. Consequently, general electrody-
namics can display a much richer causal structure than
the vacuum situation in which H = ⋆F , where ⋆ is the
Hodge operator induced by the metric. This pre-metric
viewpoint on electromagnetism can be derived from basic
principles [1, 2] and has been studied both from a phe-
nomenological viewpoint [3–5] and also for its technical
and conceptual interest as an example of a theory based
on non-metric structures [6–9], including the interesting
situation where the constitutive relation is obtained from
a more general geometric structure such as an area met-
ric, which can appear i.a. as an effective background in
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quantum electrodynamics on curved backgrounds at first
order [6].

The present paper concerns quantized pre-metric elec-
trodynamics [10], recently formulated in terms of the 1-
form potential by two of us [11]. We will investigate
properties of its energy density, particularly the extent
to which it can assume negative expectation values. In
quantum field theory (QFT) it has long been known that
pointwise positivity of the energy density is incompati-
ble with standard assumptions [12]. Therefore the energy
density can exhibit negative expectation values and, at
any given point, is typically unbounded from below as
a function of the state. In various theories, however, it
turns out that local averages of the energy density are
bounded below by Quantum Energy Inequalities (QEIs,
also called quantum inequalities). QEIs have been proved
for a variety of free fields in flat and curved spacetimes
(see [13–18] for early results and [19–21] for reviews and
references) and also for non-free models including a large
class of conformal field theories in 2-dimensions [22] and
the massive Ising model [23]. In [24], for example, it
was shown that smooth local averages of the energy den-
sity of a free scalar field along arbitrary smooth timelike
curves in any globally hyperbolic spacetime obey QEIs
valid in all Hadamard states of the theory (the most gen-
eral class regarded as physically relevant), and analogous
QEIs hold for vacuum electromagnetism [25]. Our pur-
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pose here is to extend these results, for the first time, to
a pre-metric theory.

Several aspects of the theory must be reconsidered
in the pre-metric setting, because their usual formula-
tion depends on the spacetime metric. For instance,
the energy density is normally defined as a contraction
of the stress-energy tensor with a timelike vector, while
the QEIs hold along timelike curves, but not along null
curves [26] or over spatial volumes [27] or, consequently,
along spacelike curves. Moreover, the defining property
of Hadamard states is that their singularity structure is
determined by the metric [28, 29]. At the outset, there-
fore, it is not clear how to proceed in a theory with two
lightcones, for example, nor is it clear what QEIs can be
expected.

To be specific, we consider a general class of electro-
dynamic theories with local and linear constitutive re-
lations possessing a single pair of hyperbolicity cones in
the cotangent bundle (see Sect. IIA below) of which one
can be selected as ‘positive frequency’ (while the other
is its exact opposite). This assumption does not exclude
the possibility that there is more than one lightcone, and
is compatible with the lightcone structure of a birefrin-
gent uniaxial medium, for example. In this situation one
may classify trajectories according to their velocity tan-
gent vectors as subluminal, interluminal or superluminal.
The subluminal trajectories are followed by the admissi-
ble observers identified in [30] and generalize the notion of
timelike curves (travelling more slowly than all light rays)
in metric background geometry; by contrast, interlumi-
nal observers travel faster than some (but not all) light
rays, while superluminal observers travel faster than all
light rays. The classical energy density may be defined
along any future-pointing observer trajectory, which in
general may be sub- or interluminal (and in some cases
even superluminal, see Sect. II B), as a component of
a kinematic energy-momentum pseudo 3-form (replac-
ing the stress-energy tensor). Particular importance will
attach to those trajectories along which the (classical)
energy density is everywhere non-negative and vanishes
only where the field strength does. We refer to this as
the strict weak energy condition (sWEC).

Our main general result is that the quantized energy
density obeys a QEI along any future-pointing sublu-
minal observer trajectory for which the classical sWEC
holds, in any state obeying a microlocal spectrum condi-
tion of the type studied in [11] and enlarged upon here.
The main problem is to write the energy density in a sum-
of-squares form; after that, the argument proceeds more
or less as in [24, 25] taking account of the different form
of the microlocal spectrum condition in the present case.
The argument is fully rigorous, making use of microlo-
cal techniques. As the analysis of [11] was restricted to
translationally invariant constitutive relations, we have
to supplement our hypotheses with assumptions that the
QFT exists (in the expected form). In due course it is
hoped to address the conditions on the constitutive rela-
tion under which these assumptions can be proved.

The general QEI is illustrated for the constitutive rela-
tion corresponding to a translationally invariant uniaxial
birefringent medium, in which we are able to compute
the finite QEI bound explicitly for subluminal trajecto-
ries moving at uniform velocity relative to the medium.
Light propagation is governed by two lightcones, which
are nested and touch along a pair of opposing generators.
The outer lightcone in the tangent bundle (correspond-
ing to the inner lightcone in the cotangent bundle) de-
termines the propagation of ordinary (‘fast’) rays, while
the inner lightcone in the tangent bundle governs the
extraordinary (‘slow’) rays. Subluminal observer trajec-
tories have velocities less than the speed of slow light and
the QEI bound is indeed finite for such, but due to the
absence of boost and rotational symmetry, which is bro-
ken by the preferred direction given by the optic axis,
the bound depends on the rapidity with respect to the
rest frame of the crystal and the angle to the optical axis
of the subluminal observer. The QEI bound diverges as
the velocity vector of the trajectory of the observer ap-
proaches the inner lightcone. This leaves open the ques-
tion of whether there is any constraint on energy densities
along faster trajectories, because the QEI bounds are not
expected to be sharp, so a divergence in the bound does
not imply that this is actually exploited by states of the
theory. We are able to answer this question negatively by
explicitly constructing a family of single-particle states
whose averaged energy densities may be made arbitrar-
ily negative along trajectories moving at ‘interluminal’
velocities, i.e., between the slow and fast speeds of light
in the given direction. A point of interest here is that
the usual counterexamples to the existence of QEIs for
spatial or null averaging [26, 27] are based on superposi-
tions of the vacuum with a two-particle state and involve
some careful estimates; here, we are able to give a much
more direct and transparent example. One point that we
do not address, however, is whether there might be com-
ponents of kinematic energy-momentum other than the
energy density that have finite QEI bounds along trajec-
tories moving faster than slow light.

We begin with a short review of pre-metric electrody-
namics and a thorough extended discussion of the notion
of observers in the pre-metric setting in Sect. II, where
we introduce all notions and notations needed in this ar-
ticle and rewrite the electromagnetic energy density of
pre-metric electrodynamics into a form well-adapted for
quantum energy inequalities. In the following Sect. III,
we define a (classical) point-split version of the energy
density in pre-metric electrodynamics and, after quan-
tizing it, give a general proof of the quantum energy in-
equality. We then turn to the explicit example of the uni-
axial crystal in Sect. IV, where we derive the two-point
function of a ground state for electrodynamics inside the
crystal. In Sect. V we derive the quantized point-split en-
ergy density along subluminal observer trajectories (i.e.,
slower than the slow speed of light) explicitly. The re-
sulting quantity is used to compute the QEI bound for
these observers. We then show, by explicit constructions,
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that the energy density along worldlines with interlumi-
nal velocities is not bounded from below, so there are no
QEIs for such trajectories.

II. PRE-METRIC ELECTRODYNAMICS

Let us recapitulate some basic elements of pre-metric
electrodynamics, following [1]. In this approach, electro-
dynamics on a four-dimensional manifold M is formu-
lated quite generally by the equations of motion

dA = F, (1a)

dH = J, (1b)

for the electromagnetic vector potential 1-form A, the
field strength 2-form F , the induction pseudo-2-form H
and the current pseudo-3-form J . The physical proper-
ties of the electromagnetic medium are encoded in the
constitutive relation

H = #F

between H and F . There remains a gauge freedom A 7→
A+dλ in the potential A. Putting these various equations
together one obtains

d#dA = J. (2)

Once A is obtained (up to the gauge freedom) F and H
can be derived from it.

Note that (1a) follows from the assumption of magnetic
flux conservation, adopted as an axiom in [1]. Had one
adopted dF = 0 as a starting point, one would need to
assume additionally trivial first de Rham cohomology to
obtain (1a).

In this paper we adopt the setting of local and linear
pre-metric electrodynamics, in which the map # can be
expressed using a constitutive tensor κab

cd so that

(#F )ab =
1

2
κab

cdFcd. (3)

Thus we disregard the non-local and non-linear features
often exhibited by realistic media. In general the con-
stitutive tensor is a pseudo-tensor field. The methods
described in this and the next section are general enough
to encompass constitutive relations which depend on
x ∈ M . Only in Sect. IV do we restrict our consider-
ations to a constant constitutive relation.

This is the moment for a brief intermezzo on Levi-
Civita symbols, of which we will use two: the first, εabcd,
is the totally antisymmetric rank-

(
4
0

)
pseudo-tensor den-

sity of weight +1 whose components obey ε0123 = 1 in
every coordinate chart, while the second, ε̂abcd, is the
totally antisymmetric rank-

(
0
4

)
pseudo-tensor density of

weight −1 with components obeying ε̂0123 = 1 in ev-
ery coordinate chart. Evidently, the Levi-Civita symbols
can attain the numerical values +1,−1, 0 in coordinate

charts. Moreover, εabcdε̂abcd = 4!. If a metric is avail-
able, the Levi-Civita symbols can be transformed into
one another (up to a sign depending on the signature of
the metric) by raising and lowering indices. In our case
such an identification is not available, thus justifying the
notation with and without a hat.

The Levi-Civita symbol allows us to express the local
and linear constitutive relation (3) in terms of the more
convenient so-called constitutive density, a tensor density
χabcd of weight +1 defined so that

(#F )ab =
1

4
ε̂abcdχ

cdefFef . (4)

Often it is more convenient to use χ rather than κ.
From (4), we immediately read off the antisymmetry in
the first and second pair of indices:

χabcd = χ[ab][cd].

Additionally we assume that (1) can be derived from an
action (i.e., it is non-dispersive), which leads to the ad-
ditional symmetry

χ[ab][cd] = χ[cd][ab].

Finally, using the constitutive density, the field equa-
tions (2) can be rewritten as

(PA)a := ∂b(χ
abcd∂cAd) = ja, (5)

where ja = εabcdJbcd/3! is the current density, obeying
the conservation law ∂aj

a = 0. We emphasize that (5)
is indeed a covariant equation due to the tensor density
and antisymmetry properties of χ. Indeed, ∂a here is
just the covariant derivative with respect to any affine
connection.

A. Fresnel polynomial and the quasi-inverse of the

principal symbol

In this section we briefly introduce and define a ‘quasi-
inverse’ of the principal symbol of the field equations (5).
As described in [11], this quasi-inverse can be used to
construct the Green functions of the theory if the consti-
tutive relation is constant. In Sect. IV B we will perform
this construction for the uniaxial crystal.

The principal symbol of (5) is

Mab(k) = M(ab)(k) = χacbdkckd.

We immediately notice that

Mab(k)ka = 0 = Mab(k)kb,

which reflects the gauge freedom in (2) as well as the
conservation of the current density – two sides of the
same coin.

For each non-zero covector k, which may also be com-
plex , choose a vector κ(k) such that k · κ(k) = 1. It
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is convenient (and later indeed necessary) to choose κ(k)
homogeneous of degree −1 in k for almost all k and hence-
forth this will be assumed. The Fresnel polynomial is
defined (up to an overall sign – see below) as

G(k) := adj(M)ab(k)κ
a(k)κb(k)

=
1

4!
ε̂c1a1a2a3

ε̂d3b1b2b3χ
a1c1b1d1χa2c2b2d2χa3c3b3d3

× kd1
kc2kd2

kc3 ,

where adj(M) denotes the adjugate matrix of M.
Clearly it is a density of weight +1 and a homogeneous
polynomial of order 4 in k. Its zeros are the charac-
teristic wave covectors k which represent light rays in
the geometrical optics approximation. It was first found
in [9] in the study of light propagation in pre-metric linear
electrodynamics. Moreover, the Fresnel polynomial de-
termines whether (5) possesses a well-posed initial value
problem, which it does if G is a so-called hyperbolic poly-
nomial [11, 30].

We say that the Fresnel polynomial is hyperbolic at
x ∈ M with respect to a covector n if G(x, n) 6= 0 and
t 7→ G(x, ξ + tn) has only real roots for real covectors
ξ. The covectors n for which G(x) is hyperbolic at the
point x form open convex cones Γx(n) ⊂ T ∗

xM , called
hyperbolicity cones. It can be shown that hyperbolicity
cones always exist in pairs Γx(n) and Γx(−n) = −Γx(n),
i.e., if G(x) is hyperbolic with respect to n, it is also hy-
perbolic with respect to −n. If it is possible to choose a
smooth distribution Γ =

⊔
x∈M Γx of hyperbolicity cones

for G, we say that the Fresnel polynomial is hyperbolic
on M with respect to Γ. The hyperbolicity double-cones
Γ∪ (−Γ) are the generalizations of the cones of past and
future pointing timelike covectors from Lorentzian ge-
ometry. Given such a choice we call the selected covec-
tors in Γ subluminal future-pointing covectors. As we
will see in the next section, they can be used to identify
future-pointing vectors, i.e., directions. In metric geom-
etry one classifies subluminal covectors according to the
sign of their Lorentzian ‘norm’. Depending on the signa-
ture convention for the metric, this can be either positive
or negative. Similarly the sign of G is constant on any
hyperbolicity cone; in this article we choose it (without
loss) to be positive inside Γ.

Thus a hyperbolic Fresnel polynomial defines the
causal structure of the theory, which is usually deter-
mined by the Lorentzian metric in ordinary Maxwell vac-
uum electrodynamics. In particular, it determines at ev-
ery point x ∈ M the set of null covectors

Nx :=
{
k ∈ T ∗

xM \ {0}
∣∣ G(x, k) = 0

}
. (6)

Further details on hyperbolicity cones are discussed in
Sect. II B and in [11, 30, 31]. We will always assume that
the Fresnel polynomial is hyperbolic. This condition is
comparable to the condition that the metric is Lorentzian
and does not degenerate at any point of the manifold.

With help of the gauge fixing vector field and the
Fresnel polynomial we can construct a pointwise ‘quasi-
inverse’ E of the principal symbol M; see [11] for details.

It is given by

Eab(k) :=
Qcd(k)π

c
a(k)π

d
b (k)

G(k) ,

where πc
a(k) = δca − κc(k)ka are projectors onto a sub-

space Vk of T ∗
xM complementary to the ray of k, and

Q is determined by the second adjugate of the principal
symbol

Qab(k) := adj2(M)abcd(k)κ
c(k)κd(k)

=
1

8
ε̂bc1a1a2

ε̂ad2b1b2χ
a1c1b1d1χa2c2b2d2kd1

kc2

The quasi-inverse E satisfies

Mca(k)Eab(k) = πc
b(k) = Eba(k)Mac(k)

whenever G(k) 6= 0. It is a true inverse of M, regarding
the latter as a map from Vk ⊂ T ∗

xM to the annihilator
of k in TxM . Since πa

cMcb = Mab = Macπb
c, it satisfies

Mac(k)Ecd(k)Mdb(k) = Mab(k),

Eac(k)Mcd(k)Edb(k) = Eab(k)

and is therefore a ‘generalized reflexive inverse’, but it is
not the Moore–Penrose inverse of M (except for certain
k and κ) due to the condition k · κ(k) = 1.

Although G and Q are gauge independent, it is evident
that E depends on the choice of the gauge fixing vector
field κ, see Sect. 2.2 of [11] for details. Different choices
of κ thus lead to different, but gauge-equivalent, Green
functions. The choice of κ or, equivalently, π can be un-
derstood as the selection of a set of polarization vectors.
Physical observables of the quantum field theory will be
gauge-invariant.

Note also that Eab(k) is homogeneous of degree −2 in k
and thus, in particular, Eab(k) = Eab(−k).

B. Observers

As there is no Lorentzian metric in pre-metric elec-
trodynamics, the description of legitimate observer tra-
jectories requires additional discussion. In fact, the mo-
tion of observers need have no relation to the laws gov-
erning propagation of light, as is the case in the phe-
nomenon of Cherenkov radiation. Nonetheless, in our
discussion of the QEIs, it will be necessary to classify
observer worldlines according to whether their tangent
vectors are slower than all light (which we call sublu-
minal), faster than some but not all light (interluminal),
or faster than all light (superluminal). Standard Maxwell
electrodynamics, governed by a single lightcone, excludes
the possibility of interluminal vectors.

Our classification will rely on methods and results de-
veloped in [30] and requires some additional technical
assumptions on the Fresnel polynomial G: specifically,
we will assume that G is reduced, bihyperbolic, energy-
distinguishing and time-distinguishing, all of which will
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be explained below. (These conditions have been iden-
tified as important to obtain a reasonable physical the-
ory [30]; however, it has not been determined whether
they are all independent, or whether bihyperbolicity
might also imply the time- and energy-distinguishing
properties.)

Under these conditions, the null covectors, see (6), split
into positive and negative frequency cones, defined con-
sistently in terms of the sign of their contraction with
subluminal vectors. Having identified these cones we find
that, conversely, subluminal vectors can be alternatively
characterized among future-directed vectors as the con-
nected component of vectors which have positive contrac-
tions with all positive frequency null covectors.

This characterization will play an important role in the
derivation of the QEI, which will hold for the subluminal
observers. Later, in Sect. V E, it will be seen that energy
densities observed by interluminal observers do not obey
(state independent) QEIs.

On a point of notation, we will need to define a num-
ber of subsets Ux of the tangent and cotangent spaces
TxM and T ∗

xM . In such cases, the same symbol with-
out the subscript will denote the corresponding subset
U =

⊔
x∈M Ux of the bundles TM or T ∗M .

Our starting point is the Fresnel polynomial G, and a
choice of hyperbolicity cone Γ, on which G is positive.
We have already identified the set of null covectors Nx,
which governs the propagation of massless momenta in
geometric optics. In metric geometry this set bounds the
hyperbolicity cone, Nx = (∂Γ)\{0}, but in general it can
be larger, as the example of the birefringent crystal nicely
demonstrates. Given these ingredients, we may pick out
cones of future and past-pointing tangent vectors by

Γ±
x :=

{
z ∈ TxM

∣∣ ± k · z > 0 for all k ∈ Γx

}
.

In the special case M = R4, and identifying M with T0M ,
the closure of Γ+

0 contains the support of a fundamental
solution of the constant-coefficient partial differential op-
erator G(i∂) [31, Thm. 12.5.1].

In metric geometry, Γ+
x would be the forward causal

cone at x and observers with tangent vectors in Γ+ could
agree on a partition of N into positive and negative fre-
quency cones. This is not possible in general. To make
progress, we must study the propagation of massless par-
ticles in the geometric optics limit, described in a phase
space picture by the Helmholtz action

S[x, k, λ] =

∫ (
k · ẋ− λG(x, k)

)
dτ,

where τ 7→ (x(τ), k(τ)) is any parameterisation of the
trajectory in T ∗M and λ is a Lagrange multiplier, re-
stricting to null covectors. One passes to configuration
space by eliminating λ and k as functions of x and ẋ with
help of the equations of motion obtained by varying the
Helmholtz action. The result is a new action given by

S[x, µ] =

∫
µG#(x, ẋ) dτ,

where µ is a new Lagrange multiplier function and
G#(x, ẋ) is the so-called dual polynomial on TM , which is
determined up to an irrelevant overall factor by the above
procedure. The Lagrange multiplier µ implies that the
corresponding tangent vectors z to solution curves lie in
the set of lightlike vectors

N#
x :=

{
z ∈ TxM \ {0}

∣∣ G#(x, z) = 0
}
.

At this point, we introduce two of our assumptions on
G. First, we assume that the lightlike tangent vectors
N# can be partitioned into (necessarily disjoint) future-
and past-pointing cones

(N#)± = N#
x ∩ Γ±.

In this situation, where N# = (N#)+ ∪ (N#)−, we say
that G is time-distinguishing. Second, we will assume
that G is bihyperbolic, which means that both G and the
dual polynomial G# are hyperbolic on M . Let Γ# ⊂
TM be a hyperbolicity cone for G#, chosen to be future-
directed, i.e., Γ# ⊂ int(Γ+)1. It may be assumed without
loss of generality that G# is positive on Γ#.

We now come to the classification of non-lightlike tan-
gent vectors at each point x ∈ M , based on the connected
component of TxM \ (N#

x ∪ {0}) to which they belong.
Namely,

• Γ#
x is the component of future-directed subluminal

vectors;

• any component, other than Γ#
x , whose boundary is

contained in (N#
x )+∪{0} consists of future-directed

interluminal vectors;

• any component whose boundary meets both (N#
x )+

and (N#
x )− consists of superluminal vectors;

• z ∈ TxM is past-directed subluminal (resp., inter-
luminal) if −z is future-directed subluminal (resp.,
interluminal);

A few remarks are appropriate here, which we illus-
trate with the sketch in Fig. 1. First, subluminal vectors
were identified in [30] as the tangent vectors to worldlines
of ‘admissible observers’; here, we prefer to use the term
‘subluminal’, the yellow sets in the illustration, and to in-
terpret the boundary (∂Γ#)\{0} ⊂ (N#)+ as the cone of
slowest future-pointing lightlike vectors. The designation
of ‘interluminal’ vectors as those trapped between either
future or past pointing lightlike sets should be clear, they
are blue in the picture. In metric geometry, there are no
future or past pointing superluminal vectors. Here, they

1 Here, we adapt an argument from [30, p.12], switching the roles
of G and G#, to show that a bihyperbolic and time distinguish-
ing Fresnel polynomial always has a hyperbolicity cone for G#

contained in Γ+, and in fact within the interior thereof, given
that hyperbolicity cones are open.
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(a)

(b)

Figure 1. Illustration of the classification of tangent vec-
tors for two different bi-metric dual polynomials G#, show-
ing nesting (a) or crossing (b) of light cones. The circular
pictures are slices through the future half of the cones. Vec-
tors are classified as subluminal (yellow), interluminal (blue)
and null (black). All other vectors are superluminal. In (b)
the bounded disc of future-directed superluminal vectors is
coloured red.

may exist on the basis of the rich null-structure available
in pre-metric electrodynamics, see the red set in the right
part of the sketch.

Observer worldlines can now be identified as future-
directed trajectories γ, i.e., their tangent satisfies γ̇ ∈ Γ+.
They can be labeled as being sub-, inter- or superlumi-
nal depending on whether γ̇ is everywhere sub-, inter- or
superluminal according to the definition given above. In
the standard Maxwell electrodynamics only subluminal
observers exist, while in the example of bi-metric Fresnel
polynomials with nested lightcones sub- and interluminal
observers come into play, see the left part of Fig. 1, Fig. 2
and the discussion of the uniaxial crystal in Sect. IV. Bi-
metric light propagation with overlapping lightcones, as
in the right part of Fig. 1, is an example for the existence
of sub-, inter- and superluminal observer directions (see
also [30, Fig. 7]).

We continue to develop the physical interpretation of
the subluminal vectors, aiming for an alternative char-
acterization for use in Sect. III C. Just as the hyperbol-
icity cone Γ ⊂ T ∗M allowed the definition of cones of
future- and past-directed vectors, the hyperbolicity cone
Γ# ⊂ TM determines cones Γ#± of positive and negative
frequency covectors by

Γ#±
x :=

{
k ∈ T ∗

xM
∣∣ ± k · z > 0 for all z ∈ Γ#

x

}
.

A Fresnel polynomial G is said to be energy-distinguishing
if and only if every null covector has either positive or

negative frequency, i.e., N = N+ ∪N−, where2

N±
x := Nx ∩ Γ#±

x

=
{
k ∈ Nx

∣∣ ± k · z > 0 for all z ∈ Γ#
x

}
. (7)

It can now be proven that for bihyperbolic and time-
and energy-distinguishing Fresnel polynomials which are
also reduced – that is, in any factorisation of G into poly-
nomials with real coefficients there are no repeated non-
constant factors – the subluminal vectors can be alter-
natively characterized among future-pointing vectors as
those having non-negative contractions with all positive
frequency null covectors. In other words, for z ∈ int(Γ+

x ),

z ∈ Γ#
x ⇐⇒ k · z > 0 for all k ∈ N+

x . (8)

Physically, this means that the subluminal observers are
precisely those that agree on N+ as indeed having posi-
tive frequency.

To establish (7), consider first any subluminal z ∈
Γ#
x ⊂ int(Γ+

x ); by definition of N+
x it holds that k · z > 0

for all k ∈ N+
x . To establish the reverse implication we

employ the invertible Legendre map Lx which maps Γx

into TxM

Lx : Γx → TxM, k 7→ 1

4G(x, k)
∂G(x, k)
∂ka

. (9)

As shown in the third and fourth lemmas in [30,
Sect. VII], the range of Lx is Lx(Γx) = int(Γ+

x ) and con-
tains Γ#

x . As a map Lx : Γx → int(Γ+
x ) an inverse of

the Legendre map exists L−1
x : int(Γ+

x ) → Γx. It has the
property that the inverse image of Γ#

x ⊂ int(Γ+
x ),

Sx := L−1
x (Γ#

x ) ⊂ Γx,

is precisely the cone of stable momenta: those massive
momenta k ∈ Γx that cannot lose energy by emitting
Cherenkov radiation while remaining on the same mass-
shell (level sets of G(x, ·) within Γx). Now if z ∈ int(Γ+

x )
but z /∈ Γ#

x , then L−1
x (z) /∈ Sx. This implies in turn,

see [30, Sect. X]3, that there exists a null covector k ∈
N+

x such that 0 > k · Lx(L
−1
x (z)) = k · z. Taking the

contrapositive, the proof of (8) is complete.
This proof also enables us to characterize the positive

and negative frequency null covectors as

N±
x =

{
k ∈ Nx

∣∣ ± ka∂G(x, n)/∂na > 0 for all n ∈ Sx

}
.

2 Note that in the previous article [11] the definition of the set
N± was incomplete in the sense that the sets defined there did
not contain all future/past-pointing null directions for general
Fresnel polynomials.

3 Observe that there is a sign error in [30, Sect. X] in the state-
ment of conditions under which a massive momentum p may
radiate positive frequency massless momentum in a Cherenkov-
like process. The condition stated there is that there must exist
a massless momentum r ∈ N+

x such that r ·Lx(p) > 0. However,
doing the calculation with the conventions used in [30, Sect. X]
actually yields the opposite condition, namely r · Lx(p) < 0.
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This is true since 1
4ka∂G(x, n)/∂na = G(x, n)k·Lx(n) > 0

for n ∈ S since Lx(n) ∈ Γ#
x and we have assumed that

G(x, n) > 0 for all n ∈ Γx so that G(x, n) k · Lx(n) > 0
is equivalent to k · Lx(n) > 0. When we prepare for the
proof of the QEI in Sect. III B the characterizations (8)
and (II B) will ensure that the quantized point-split en-
ergy density can be pulled back to subluminal observer
trajectories as a bi-distribution.

Summarizing, we have given conditions on the Fres-
nel polynomial that allow for the classification of tan-
gent vectors as sub-, inter- or superluminal, and pro-
vide corresponding definitions for observers. Further, the
subluminal vectors and positive frequency null covectors
have been given alternative characterizations that will
be needed in the sequel. We would like to stress again
that only subluminal observers are stable; for physical
inter- and superluminal observers Cherenkov radiation
processes are not kinematically forbidden, and would be
expected to emit radiation until they become subluminal.

C. Energy density

In a pre-metric theory, the stress-energy tensor clearly
cannot be obtained by variations of an action with re-
spect to the (absent) metric. It is, however, possible
to define the stress-energy tensor of the electromagnetic
field on kinematic grounds, see Chaps. B.2 and B.5 of [1]
and Sect. 2.8 of [11] which we follow here, writing the
resulting energy density in a form which is suitable for
the derivation of the quantum energy inequality.

In pre-metric electrodynamics, the kinematic energy-
momentum is a pseudo-3-form defined in terms of a vec-
tor field N by

TN :=
1

2

(
F ∧ (N yH)−H ∧ (N y F )

)
.

This is motivated physically [1] by the requirement that
dTN is related to a component of the Lorentz force by
dTN = (N y F ) ∧ J , in the case where N is a symme-
try vector field, viz., if the Lie derivative of the consti-
tutive tensor with respect to the vector field vanishes:
LNκab

cd = 0.

The kinematic energy-momentum can be used to de-
fine the energy density of the electromagnetic field along
a worldline γ in the following way. Choose any basis
e = {ea}3a=0 of the tangent spaces along γ that can be
extended smoothly to a contractible neighbourhood T of
γ so that e0 coincides with the observer’s velocity vector
on γ, e0|γ(τ) = γ̇(τ), and is everywhere future-pointing

in T (i.e., e0|x ∈ Γ+
x ). The integral curves of e0 define

a congruence of observer worldlines in T , and at each
point x, the basis e specifies a system of rods and clocks
for the observer at x. Denote the dual basis by {e∗a}3a=0

and write u = e0, n = e∗0. Then the energy density of
the electromagnetic field in T with respect to the frame e

is

ρ = (n ∧ Tu)(e0, e1, e2, e3), (10)

which, at any given point x ∈ T , is the component of the
4-form n∧Tu along the observer worldline through x and
taken with respect to the observer’s frame e. In particu-
lar, the energy density along γ is obtained by restriction;
clearly, it depends both on γ and the choice of frame e.

The energy density may also be expressed as

ρ =
1

8
ε(e)−1χabcd(FabFcd − 4nau

eFebFcd), (11)

using the constitutive relation H = #F , where we have
written ε(e) = ε(e0, e1, e2, e3) for short. If the frame is
obtained from a system of local coordinates, ea = ∂/∂xa,
the density factor becomes ε(e) = 1 (in those coordi-
nates).

In order to derive the QEI it is useful to give a novel
form for ρ, which we have not seen discussed elsewhere
for pre-metric electrodynamics. Setting

λb
a = δba − nau

b,

a straightforward calculation then shows that

ρ =
1

8
ε(e)−1χabcdλf

bλ
h
d(λ

e
aλ

g
c − 4nau

encu
g)FefFgh

=
1

8
(χabcd

1 + χabcd
2 )FabFcd, (12)

where

χefgh
1 := ε(e)−1χabcdλe

aλ
f
bλ

g
cλ

h
d ,

χefgh
2 := −4ε(e)−1χabcdnau

eλf
bncu

gλh
d .

These expressions will allow us to find a point-split en-
ergy density in the next section. They also give some
insight into the (classical) positivity of the energy den-
sity: ρ is certainly non-negative if both χ1 and χ2 de-
termine positive (semi-)definite metrics on the space of
2-forms. In fact, this is a necessary and sufficient con-
dition. To see why, note that λc

[aλ
d
b] projects (at each

point x ∈ T ) onto the 3-dimensional subspace of ‘mag-
netic’ 2-forms u⊥ ∧ u⊥, where u⊥ consists of covectors
annihilating u, while 2n[au

cλd
b] projects onto a comple-

mentary 3-dimensional ‘electric’ subspace n ∧ u⊥. If
χabcd
1 GabGcd < 0, then by defining Fab = λc

aλ
d
bGcd, one

has ρ = 1
8χ

abcd
1 GabGcd < 0. A similar argument shows

that if χ2 fails to be positive semi-definite, then so does
ρ.

Thus the weak energy condition (WEC), i.e., non-
negativity of ρ, is equivalent to positive semi-definiteness
of χ1 and χ2.

A stronger statement can be made, and will be use-
ful to us in what follows. Suppose ρ is not only non-
negative, but vanishes precisely at points of vanishing
field strength F :
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sWEC: ρ(x) ≥ 0 for all x ∈ T ′, and ρ(x) = 0 for
some x ∈ T ′ if and only if F |x = 0

where T ′ is a subset of T . Then we will say that the strict
form of the weak energy condition (sWEC) holds on T ′

with respect to the frame e. The sWEC is equivalent to
χ1 and χ2 being positive definite on the magnetic and
electric subspaces respectively at all points in T ′. For
instance, if χ1 is not positive definite on the magnetic
subspace, then there is a non-zero Fab in this subspace for
which ρ = 1

8χ
abcd
1 FabFcd ≤ 0 and sWEC fails; a similar

argument holds in the electric case. Conversely, if χ1 and
χ2 are positive definite on their respective subspaces then
it is easily seen from the definitions that sWEC holds.

D. Quantization

We briefly discuss the quantization of the electro-
magnetic potential in pre-metric electrodynamics as de-
scribed in [11] with the following differences. Instead
of closed 3-forms we base the quantization here analo-
gously on conserved vector densities with which they are
in one-to-one correspondence. Moreover we use a dif-

ferent sign convention for the Fourier transform f̂(ξ) :=∫
f(x) eiξ·x dnx, where · denotes the Euclidean dot prod-

uct.
Throughout this section, denote by j, j′ arbitrary

conserved compactly supported vector densities, and
by A compactly supported 1-forms. Further, recall that
(PA)a = ∂b(χ

abcd∂cAd). Distributions of some tensorial
type are continuous linear functionals on compactly sup-
ported densities of the dual tensorial type, e.g., a covector
distribution acts on vector densities, and this convention
extends in an obvious way to bi-distributions.

In order to formulate the quantum theory, we assume
that there is an antisymmetric covector bi-distribution σ
which restricts to the space of conserved compactly sup-
ported vector densities as an anti-symmetric, bilinear
form with the property that σ(j, j′) = 0 for all j′ if and
only if j = PA for some compactly supported 1-form
A. If the constitutive relation is constant, it was shown
in [11, §II.G] that such an anti-symmetric distribution
exists and is given by the Pauli–Jordan propagator, viz.,
the difference of advanced and retarded Green functions
obtained with respect to a choice of gauge. Thus our
assumption amounts to a requirement on the global well-
posedness and solvability (up to gauge transformations)
of the field equation (2). In Sect. IV, we explicitly con-
struct the Pauli–Jordan propagator for the Fresnel poly-
nomial of an uniaxial crystal.

Once σ is fixed, the quantization may be performed
using well-established methods from algebraic quantum
field theory as used for example in mathematical ap-
proaches to quantum field theory in curved spacetimes.
Namely, we construct an algebra of quantum fields
A, which is the unital ∗-algebra finitely generated by

a smeared quantum field observables Â(j) labelled by

(complex-valued) compactly supported, conserved vector
densities j, and satisfying the relations

Linearity: Â(αj+βj′) = αÂ(j)+βÂ(j′)
for all α, β ∈ C,

Hermiticity: Â(j)∗ = Â(),

Field equation: Â(PA) = 0,

CCR:
[
Â(j), Â(j′)

]
= iσ(j, j′)1;

here, we denote the unit element of A by 1 and make use
of our standing conventions on j’s and A’s.

The algebra element Â(j) can be interpreted as a

smeared field
∫
Âaj

a (recall that j is a vector density of
weight 1, so no volume element appears); later, we will
discuss Hilbert space representations in which this can be

taken literally, with Âa understood as an operator-valued
distribution.

It is convenient to identify elements of A corresponding
to smeared field strengths: for any smooth compactly
supported second rank contravariant tensor density t, we
define

F̂ (t) := 2Â(div t), (13)

where (div t)a = ∂bt
[ab] is clearly a conserved vector den-

sity; F̂ (t) can be interpreted as a smeared field
∫
F̂abt

ab.
The normalized positive functionals on A are called

(quantum) states. That means, Λ is a state on the field
algebra A if

Normalization: Λ(1) = 1 ,

Positivity: Λ(a∗a) ≥ 0 ,

Hermiticity: Λ(a∗) = Λ(a)

for all a ∈ A. Each state Λ can be represented by a
hierarchy of n-point functions (Λn)n≥0 by setting

Λn(j1, . . . , jn) := Λ
(
Â(j1) · · · Â(jn)

)

for conserved compactly supported vector densities
j1, . . . , jn, and then extending arbitrarily to general com-
pactly supported vector densities. In this way the state
fixes the n-point functions only up to gauge equivalence.

Of particular importance are quasi-free states (also
called Gaussian states). These states are completely
characterized by their two-point function so that all even
n-point functions are given by sums of products of two-
point functions according to a Wick expansion and all
odd n-point functions vanish. A two-point function Λ2

necessarily satisfies the following relations (recall our
standing conventions concerning the symbols j and A):

Positivity: Λ2(j, j) ≥ 0,

Hermiticity: Λ2(j, j′) = Λ2(j′, j),

Field equation: Λ2(j, PA) = 0 = Λ2(PA, j),

CCR: Λ2(j, j
′)− Λ2(j

′, j) = iσ(j, j′).
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In the framework developed in [11], physical states in
pre-metric electrodynamics are required to obey the mi-
crolocal spectrum condition (µSC), a generalization of
the Hadamard condition used for QFT in curved space-
times [28, 29]:

µSC: among the gauge equivalent two-point
functions Λ2 induced by the state Λ, there should
be at least one that is a covector bi-distribution,
with wave-front set obeying

WF(Λ2) ⊂ N+ ×N− ⊂ T ∗M × T ∗M (14)

with N± as defined in (7) or equivalently (II B),
and whose anti-symmetric part is fixed up to
smooth terms by the generalized CCR4

Λ2 − ΛT
2 = iσ (mod C∞),

where the transposed distribution is defined by
ΛT
2 (f, f

′) = Λ2(f
′, f) for general compactly sup-

ported vector densities f, f ′.

The wave-front set encodes details about the singu-
lar structure of a distribution in both configuration and
momentum space5. The theory of the wave-front set is
developed e.g. in [32], see also [33, 34] for an introduction
to the subject. The condition (14) asserts that the wave-
front set of Λ2 consists of pairs ((x1, k1), (x2,−k2)) ∈
T ∗M × T ∗M such that (xi, ki) are zeros of the Fresnel
polynomial G(xi, ki) = 0 and (x1, k1) lies on the posi-
tive frequency null-structure while (x2,−k2) lies on the
negative frequency null-structure. It is possible to be
rather more specific, because the propagation of singu-
larities imposes further relations on the wave-front set. In
scalar QFT on curved spacetimes, for example, the pairs
(x1, k1) and (x2,−k2) must be connected by the Hamilto-
nian flow induced by the principal symbol of the Klein–
Gordon equation. We avoid further specification here,
partly because it will be unnecessary for our purposes,
but also because in pre-metric theories various subtleties
can arise. In the uniaxial crystal studied in Sect. IV,
for example, the Hamiltonian flow of G(x, k) degenerates
along the optic axis, necessitating a more ramified de-
scription of the wave-front set. Evidently, the existence
of states obeying the µSC places non-trivial restrictions
on the wave-front set of σ.

4 This condition was implicitly assumed in [11]; here we make it
explicit.

5 For completeness, we give a brief definition of the wave-front
set of a distribution u ∈ D′(M): Suppose first that M = Rn.
Then (x, ξ) /∈ WF(u) ⊂ M × (Rn \ {0}) if there exist a conical
neighbourhood Γ ⊂ Rn \ {0} of ξ and a function χ ∈ C∞

0 (M)
with χ(x) = 1 such that the Fourier transform F(χu) is rapidly
decaying in Γ. Suppose now that M is a manifold. Then the
wave-front set can be defined in the same way using local co-
ordinate neighbourhoods, and it can be shown that WF(u) is a
conical subset of the cotangent bundle.

Any two-point functions Λ2, Λ
′
2 satisfying the microlo-

cal spectrum condition (even for distinct states) differ
only in their smooth part. To see this, set u = Λ′

2 − Λ2

and observe that, on one hand, WF(u) ⊂ N+ × N−

by (14), while on the other, the generalized CCR ensures
that u is symmetric up to smooth errors. Thus

WF(u) = WF(uT ) = WF(u) ∩WF(uT )

⊂
(
N+ ×N−

)
∩
(
N− ×N+

)
= ∅,

and we see that u is smooth.
We also remark that a state Λ for A induces by (13) a

unique two-point function for the smeared field strengths,
a second-rank covariant tensor bi-distribution which in-
herits the microlocal properties of Λ2. Moreover, the
anti-symmetric part of this two-point function is fixed
completely in terms of the restriction of σ to vector den-
sities and is therefore common to all states.

III. QUANTUM ENERGY INEQUALITY

In this section we state and prove a QEI for pre-
metric electrodynamics. The proof follows the struc-
ture of [24, 25] but with some differences following from
the more complicated form of both the energy density
and the lightcone structure. In addition, [24, 25] es-
tablished QEIs for averaging the energy density along
timelike curves. Here the structure which determines the
‘timelike’ curves is the Fresnel polynomial and its dual
polynomial.

We prove a QEI for curves γ and their conormals n
satisfying two assumptions. First, the classical sWEC
should hold along γ, i.e., the energy density is non-
negative and vanishes precisely at points of vanishing
field strength. In Sect. III A this assumption will be used
to construct a suitable point-split classical energy den-
sity in a ‘sum of squares’ form. Second, the trajectory
must be ‘subluminal’, which is equivalent to the fact that
its tangent vector has everywhere positive contractions
against every future-pointing null covector as proven in
Sect. II B (recall that there may be multiple lightcones
that may touch or cross each other). In Sect. III B, this
assumption will be used in the definition of the quan-
tized point-split energy density. Here, techniques from
microlocal analysis are used. Once this is done, the ac-
tual proof of the QEI in Sect. III C can follow established
lines [24, 25].

The setting has been kept as general as possible to ac-
commodate variable constitutive relations – even though
the quantization in [11] was worked out only in the con-
stant case, the outline of the theory seems clear enough
and what is lacking is a rigorous and general existence
proof for the Pauli–Jordan propagator, so that a commu-
tator may be defined. In Sect. IV we will compute the
QEI bound in detail for electrodynamics in a translation-
ally invariant uniaxial birefringent crystal. This will also
show that averages of the energy density along ‘interlumi-
nal observer trajectories’, whose tangents have positive
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contractions against some, but not all, null covectors, do
not obey QEIs.

Finally, we remark that instead of providing an in-
equality for the energy density below, we could have pro-
duced one for either the electric or the magnetic field
squared – the general methods would have been the same.

A. Classical point-split energy density

Let γ : I → M be a smooth curve, for some open
interval I ⊂ R and let ρ be the energy density along γ,
defined as in Sect. II C with respect to a choice of frame e
in a contractible neighbourhood T of γ. If the sWEC
holds on γ (with respect to e) then the tensor fields χ1

and χ2 induce positive definite metrics along γ on the
magnetic and electric subspaces respectively. Hence this
also holds within some neighbourhood of γ, which we
may take without loss of generality to be T (redefining
it if necessary).

We may therefore write

χabcd
1 FabFcd = XAB

1 b
ab
A b

cd
B FabFcd, (15a)

χabcd
2 FabFcd = XAB

2 e
ab
A e

cd
B FabFcd, (15b)

where the indices A,B run over 1, 2, 3, babA and eabA are
smooth dual frames for the magnetic and electric sub-
spaces respectively, and X1 and X2 are smooth families
of real symmetric 3 × 3 matrices. Using the Kronecker-
δ to raise and lower matrix indices, (Xr)

A
B (r = 1, 2)

are positive definite (with respect to the inner product
δAB on 3-dimensional vectors) at each point of T and
have spectra uniformly bounded away from zero on com-
pact subsets. They therefore possess (unique) smooth6

positive square roots (Yr)
A
B on any such subset of T

and indeed, by considering a compact exhaustion, on all
of T . Accordingly, XAB

r = (Yr)
A
C(Yr)

C
DδDB and we

have a sum-of-squares form for the electromagnetic en-
ergy density

ρ =
1

2
δAB(E

A
E
B +B

A
B

B), (16)

where

E
B =

1

2
Fabe

ab
A Y AB

1 ,

B
B =

1

2
Fabb

ab
A Y AB

2

are linear combinations of the components of Fab with
smoothly varying real coefficients. The notation EB and
BB is intended to remind the reader of ‘electric’ and

6 Square roots of uniformly positive definite matrices vary
smoothly with the matrix as can be seen by an application of
the inverse function theorem. We are grateful to Simon Eveson
for discussions on this matter.

‘magnetic’. However, we caution that in general these
quantities are not to be interpreted as components of the
electric or magnetic field strengths. Indeed, the energy
density in pre-metric electrodynamics involves the elec-
tric and magnetic field strengths and also the electric and
magnetic excitations (see, e.g., [1, §B.5.3]). Thus, our
quantities EB and BB are combinations of field strengths
and excitations.

The expression (16) allows us to define the classical
point-split energy density for a worldline γ(τ) as

ρ(τ, τ ′) :=
1

2
δAB

(
E
A(γ(τ))EB(γ(τ ′))

+B
A(γ(τ))BB(γ(τ ′))

)
. (17)

It is obvious that ρ(τ, τ) = ρ(τ) is again the energy den-
sity with respect to the worldline γ and the frame e.

There exists an interesting class of constitutive rela-
tions and worldlines for which the point-split energy den-
sity can be obtained without the need to use the square-
root construction above. Namely, suppose that there ex-
ists a global Cartesian coordinate system on spacetime
in which the components of the constitutive density is
translationally invariant, and consider an inertial world-
line γ with an associated framing e that is translationally
invariant. Then the density factor ε(e)−1 is constant and
the point-split energy density may be given in the form

ρ(τ, τ ′) =
1

8
(χabcd

1 + χabcd
2 )Fab(γ(τ))Fcd(γ(τ

′))

=
1

8
ε(e)−1(χabcd − 2χebcdneγ̇

a − 2χabedneγ̇
c)

× Fab(γ(τ))Fcd(γ(τ
′)). (18)

Observe that translational invariance of χ and e are nec-
essary to obtain this expression because otherwise one
would have to specify where the prefactors before the
field strengths were evaluated. The system of inertial
worldlines in an uniaxial crystal, which we will discuss in
detail in Sect. IV, belongs to this class.

B. Quantized point-split energy density

The classical fields EA and BA are easily quantized.
For any (scalar) density f compactly supported in T , we
define (for B = 1, 2, 3)

Ê
B(f) =

1

2
F̂ (eAY

AB
1 f),

B̂
B(f) =

1

2
F̂ (bAY

AB
2 f)

which are elements of the algebra A. Any (suffi-
ciently regular) state Λ induces scalar bi-distributions
EAB
2,Λ ,B

AB
2,Λ ∈ D′(T × T ) by

E
AB
2,Λ(f1, f2) := Λ

(
Ê
A(f1)Ê

B(f2)
)
,

B
AB
2,Λ(f1, f2) := Λ

(
B̂

A(f1)B̂
B(f2)

)
,



11

whose wave-front sets are both contained in N+ ×N− if
Λ obeys the microlocal spectrum condition.

We note two important properties of the distributions
EAA
2,Λ and BAA

2,Λ (no sum on A): (a) their antisymmetric
parts are independent of the state Λ, being determined by
the CCRs; (b) they are of positive type as a consequence
of the positivity of Λ as a state.

Our aim is to define the (un-renormalized) point-split
energy density along γ in state Λ as a pull-back

ρΛ =
1

2
δABϕ

∗
(
E
AB
2,Λ +B

AB
2,Λ

)
,

where

ϕ : I × I → M ×M

(τ, τ ′) 7→ ϕ(τ, τ ′) = (γ(τ), γ(τ ′)).

The required pull-back exists provided that γ is a sublu-
minal trajectory as we now describe. Note that in this
case we have k · γ̇ > 0 for all k ∈ N+. This condition im-
plies directly that the intersections Nγ ∩ N± are empty,
where

Nγ =
{
(γ(τ), k) ∈ T ∗M

∣∣ k · γ̇(τ) = 0
}

is the set of conormals of γ, and also that the pull-backs

γ∗N± =
{
(τ, k · γ̇(τ)) ∈ T ∗I

∣∣ (γ(τ), k) ∈ N±
}

are contained in I × R± ⊂ T ∗I. Now the conormals of
the map ϕ are the same as stated in [24]

Nϕ =
{
(γ(τ), k; γ(τ ′), k′) ∈ T ∗(M ×M)

∣∣
k · γ̇(τ) = k′ · γ̇(τ ′) = 0

}

= Nγ ×Nγ

and we deduce immediately that (N+ × N−) ∩ Nϕ is
empty. By the microlocal spectrum condition and Hör-
mander’s criterion [35, Thm 2.5.11′], it follows that the
pull-backs ϕ∗EAB

2,Λ and ϕ∗BAB
2,Λ exist as distributions in

D′(R× R), with wave-front sets obeying

WF(ϕ∗
E
AB
2,Λ), WF(ϕ∗

B
AB
2,Λ) ⊂ ϕ∗(N+ ×N−)

⊂ (I × I)× (R+ × R−)

in T ∗(I × I). Furthermore, the distributions ϕ∗EAA
2,Λ and

ϕ∗BAA
2,Λ (no sum) inherit the properties of having state-

independent antisymmetric parts and being of positive
type. Consequently, the point-split energy density ρΛ
exists, is of positive type, and has wave-front set

WF(ρΛ) ⊂ (I × I)× (R+ × R−) (19)

in T ∗(I × I).
It is useful to illustrate the above in the example

of a bi-metric Fresnel polynomial, for which G(k) =
ϑ ζ−1(k, k) η−1(k, k), where ζ−1 and η−1 are the inverses
of two Lorentzian metrics with signature −+++ and ϑ
is a density, and we assume that the (positive frequency)

Γ

x
T ∗
xM

ζ−
1(k, k) =

0

η−1(k, k) = 0

x
TxM

η(X,X) = 0

ζ(X,X) = 0

Figure 2. Cone structure in the cotangent (top) and tangent
(bottom) space at x ∈ M . Subluminal directions are inside
the inner cone, interluminal directions lie between the cones,
and superluminal directions outside of both cones in TxM .

lightcone of η−1 lies inside that of ζ−1 in the cotangent
space T ∗

xM (see Fig. 2). Of course this means that the
(future) lightcone of ζ lies within that of η in the tangent
space TxM . (Uniaxial birefringent crystals have constitu-
tive relations of this type, in a degenerate case where the
two lightcones touch along two generators.) In this situ-
ation, N+ consists of the union of the positive frequency
lightcones of both η−1 and ζ−1 in T ∗

xM \{0}. Meanwhile,
the hyperbolicity double cone of the bi-metric theory con-
sists of the covectors satisfying η−1(k, k) < 0, from which
one component can be chosen to be the hyperbolicity
cone Γ ⊂ T ∗

xM defining the causal orientation.

Vectors which are timelike with respect to both met-
rics, like the blue vector in Fig. 2, have positive contrac-
tion with all positive frequency null covectors and are
tangents to subluminal trajectories. They form the cone
Γ#, which consists of the future timelike vectors of ζ in
TxM . As described above, the point-split energy density
can be defined for these curves. On the other hand, in-
terluminal vectors are timelike with respect to one of the
metrics while being spacelike for the other, like the red
vector in Fig. 2. They have positive contractions with
some positive frequency null covectors but not with oth-
ers, and so the above construction does not apply. This is
not to say that the point-split energy density does not ex-
ist as a distribution along interluminal trajectories, but
rather that it fails the sufficient condition provided by
microlocal techniques. Thus the bounds (19) (and also
the QEI below) are not guaranteed to hold. Indeed, we
will show later that, for uniaxial birefringent crystals,
there are states of the QFT that violate the QEIs along
interluminal trajectories.
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C. Statement and proof of the QEI

The discussion above involved two assumptions on the
curve γ : I → M and the constitutive relation. The first
was that the classical sWEC holds along γ, with respect
to a choice of frame e, allowing the construction of a
point-split energy density on M × M , while the second
required γ to be a subluminal trajectory, thus allowing
the point-split energy density to be defined using a pull-
back.

With these assumptions in force, let Ω be a fixed ref-
erence state on A obeying the microlocal spectrum con-
dition. In particular, if Λ is also a state obeying the mi-

crolocal spectrum condition, the differences EAB
2,Λ − EAB

2,Ω

and BAB
2,Λ − BAB

2,Ω are smooth, and therefore the same
is true of ρΛ − ρΩ. Furthermore, ρΛ − ρΩ is symmet-
ric in its arguments, because the antisymmetric part of
ρΛ is state-independent. The expectation value in Λ of
the normal ordered energy density on γ (relative to the
reference state Ω) may then be defined as

〈 :ρ(τ):〉Λ := (ρΛ − ρΩ)(τ, τ).

With our preparations complete, the QEI may be stated.
It asserts that the inequality

∫

R

g(τ)2〈 :ρ(τ):〉Λ dτ ≥ − 1

π

∫ ∞

0

(∫∫

R2

g(τ)g(τ ′)e−iβ(τ−τ ′)ρΩ(τ, τ
′) dτ dτ ′

)
dβ (20)

holds for all states Λ on A obeying the microlocal spec-
trum condition, and all real-valued compactly supported
g ∈ C∞

0 (I), and that the right-hand side of the inequal-
ity is finite. Note that this lower bound is independent
of the state Λ but depends on the reference state Ω.

The proof is similar to those of [24, 25] – the main
differences are contained in the construction of the en-
ergy density and its pull-back. Therefore, the following
argument will be kept brief. The first step is to split the
points apart, by insertion of a δ-function in its Fourier
representation

∫

R

g(τ)2〈 :ρ(τ):〉Λ dτ =
1

2π

∫

R

(∫∫

R2

g(τ)g(τ ′)e−iβ(τ−τ ′)
(
ρΛ(τ, τ

′)− ρΩ(τ, τ
′)
)
dτ dτ ′

)
dβ.

Next, we exploit the symmetry of ρΛ − ρΩ to write the expression as an integral over R+:

L.H.S. =
1

π

∫ ∞

0

(∫∫

R2

g(τ)g(τ ′)e−iβ(τ−τ ′)
(
ρΛ(τ, τ

′)− ρΩ(τ, τ
′)
)
dτ dτ ′

)
dβ

≥ − 1

π

∫ ∞

0

(∫∫

R2

g(τ)g(τ ′)e−iβ(τ−τ ′)ρΩ(τ, τ
′) dτ dτ ′

)
dβ

≥ − 1

π

∫ ∞

0

F
(
(g ⊗ g)ρΩ

)
(−β, β) dβ,

where we have also used the positive type property to
discard ρΛ and written the resulting expression as an in-
tegral of a Fourier transform, denoted here by F . Finally,
(19) entails that the Fourier transform of the compactly
supported distribution (g ⊗ g)ρΩ decays faster than any
inverse power along (−β, β) as β → ∞. Thus the integral
is finite and the QEI is established.

IV. UNIAXIAL BIREFRINGENT CRYSTALS

In order to gain a deeper understanding of how QEIs
in pre-metric electrodynamics differ from those in ordi-
nary Maxwell theory, we consider a simple translation-
ally invariant birefringent crystal in Minkowski spacetime
whose constitutive density takes the following form in a
global Cartesian coordinate system [11, 36]

χabcd = |η| 12 (2ηc[aηb]d + 4X [aU b]X [dU c]). (21)

Here we use the following notation:

• η is the Minkowski metric (with signature −+++)
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and |η| 12 is the associated density. When we raise
or lower indices, we use this metric.

• U is a timelike vector field (normalized such that
η(U,U) = −1), which represents the rest frame of
the crystal.

• X is a spacelike vector orthogonal to U (viz.,
η(X,U) = 0), which defines the optic axis of the
birefringent crystal. We set ξ2 = η(X,X).

The quantities η, X and U and hence χ are all transla-
tionally invariant; in particular, χabcd is constant in the
chosen global Cartesian coordinate system and |η| = 1.
We label the coordinate with indices running from 0 to 3
such that 0 indicates a timelike direction. We can always
rotate the coordinate system such that U = Ua∂a = ∂0
and X = Xa∂a = ξ∂1. From now on we will use this
specific coordinate system in our calculations.

A. Lightrays

The Fresnel polynomial of the constitutive rela-
tion (21) is bi-metric,

G(k) = |η| 12 η−1(k, k)ζ−1(k, k) (22)

where ηab = (η−1)ab and

(ζ−1)ab = ηab − ξ2UaU b +XaXb

are components of inverse metrics while ηab and

ζab = ηab +
ξ2

1 + ξ2
UaUb −

1

1 + ξ2
XaXb (23)

denote the components of the metrics.
The zeros of the Fresnel polynomial determine the

propagation of light rays in the geometrical optics ap-
proximation. In the case at hand they are given by the
ordinary lightcone defined through

η−1(k, k) = 0,

and the extraordinary lightcone described by

ζ−1(k, k) = 0.

Examples of extraordinary and ordinary lightrays are
ka ∝ (1, 0, 0, (1 + ξ2)1/2) and ka ∝ (1, 0, 0, 1), respec-
tively. There is one direction along which the ordinary
and extraordinary lightcones coincide; namely the optic
axis X. If both η−1(k, k) = 0 and ζ−1(k, k) = 0, then
(k ·X)2 = ξ2(k · U)2, which occurs precisely when

ka ∝ Xa ± ξUa,

i.e., in coordinates ka ∝ (±1, 1, 0, 0). The ordinary light-
cone given by η is the inner lightcone in the cotangent
spaces, while, by duality, it is the outer lightcone in

the tangent spaces, compare Fig. 2. This inner cone is
also the hyperbolicity cone according to the discussion in
Sect. IIA. Thus the ordinary lightcone determines maxi-
mum velocity of light in the medium. In our terminology,
an observer whose velocity lies within the extraordinary
lightcone is subluminal, and one whose velocity lies be-
tween the extraordinary and ordinary lightcones is inter-
luminal.

In a 1+3 split, we can write each momentum covector

k as k = (k0, ~k). For each fixed ~k we define ω(~k) and ω̃(~k)
as the unique positive zeros of η(k, k)−1 and ζ(k, k)−1,
as functions of k0, namely

ω(~k) =
√
k21 + k22 + k23, (24a)

ω̃(~k) =
√

k21 + (k22 + k23)/(1 + ξ2). (24b)

Clearly, ω = ω(~k) and ω̃ = ω̃(~k) are the frequencies of

a lightray with momentum ~k, propagating on the ordi-
nary or extraordinary (forward) lightcone, measured by
an observer at rest with respect to the crystal. In the

following we will suppress the explicit ~k-dependence of ω
and ω̃.

B. Green functions, two-point functions and the

Pauli–Jordan propagator

In this subsection, we compute the Pauli–Jordan prop-
agator, which is necessary to construct the algebra A

of smeared quantum fields, and present a suitable ref-
erence state on A that satisfies the microlocal spectrum
condition. Both the Pauli–Jordan propagator and the
two-point function of the state may be obtained from an
analysis of the retarded and advanced Green functions

E
ret/adv
ab (x, x′) using contour integral methods.
As stated in Sect. II A, the quasi-inverse E of the princi-

pal symbol M is the main ingredient in the construction
of the Green functions. The results of [11] give

E
ret/adv
ab (x, x′) := lim

ε→0+

1

(2π)4

∫

R3

∫

R±iε

Eab(k)

× e−i~k·(~x−~x′)−ik0(t−t′) dk0 d~k,

where the limit in ε is taken in the sense of distributions
and, as before,

Eab(k) =
Qcd(k)π

c
a(k)π

b
d(k)

G(k) .

Since Q is contracted with the projectors π, it can be
replaced with a tensor Q̃ which differs from Q by terms
proportional to the momentum covector k. For the uni-
axial crystal, a suitable Q̃ is given by, see Appx. A in [11],

Q̃ab(k) := ηabζ
−1(k, k) + qa(k)qb(k) (25)
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with

qa(k) := (k ·X)Ua − (k · U)Xa.

Eq. (25) nicely demonstrates the effect of the crystal com-
pared to Maxwell vacuum electrodynamics. Indeed, the
properties of the crystal are encoded in the vector q, while
the first term is the same as in vacuum electrodynamics.

Defining the operators Eret/adv by

(Eret/advj)a(x) :=

∫

R4

E
ret/adv
ab (x, x′)jb(x′) dx′,

it may be verified that the support of Eret/advj is con-
tained in the causal future/past of the support of j. In
this context the notions of causal future/past refer to
the causal structure defined by the Fresnel polynomial,
see [11, Sect. 2.3] for the technical definitions. Briefly,
the causal future of a point x ∈ M comprises all points
which can be connected to x by future/past-pointing
non-superluminal curves, i.e., all curves with future/past-
pointing subluminal, interluminal or luminal tangent as
they are defined in Sect. II B.

The important property of the Green functions is that
they are inverses to the differential operator P up to
gauge: that is, the identities

PEret/advj = j

Eret/advPA = A+ dλ

hold for all conserved compactly supported vector densi-
ties j, and for any compactly supported 1-form A, where
λ is a smooth function depending on A and the choice of
advanced or retarded.

The Pauli–Jordan propagator is the difference of the
advanced and retarded Green functions:

∆ab(x, x
′) := Eadv

ab (x, x′)− Eret
ab (x, x

′).

We will use residue methods to evaluate the k0-integrals
involved in defining ∆ab(x, x

′), and therefore the gauge
fixing vector field κa(k) (used to construct the projec-
tors π in Eab) must be defined on k ∈ C × R3, depend
meromorphically on k0 and obey k ·κ(k) = 1 everywhere
except at its poles. Noting that qaka = 0, a convenient
choice is given by

κa =
ka + iqa

η−1(k, k)
,

for which one may calculate, using

ζ−1(k, k) = η−1(k, k)− η−1(q, q),

that

Eab(k) =
ηab

η−1(k, k)
− (ka + iqa)(kb + iqb)

ζ−1(k, k)η−1(k, k)
.

Evidently, the poles of Eab(k) in k0 for fixed ~k are pre-
cisely at k0 = ±ω and k0 = ±ω̃. Note that κ is complex

+ω̃−ω̃ +ω−ω

C

C+C−

Figure 3. Illustration of the contours C, C+ and C− used to
compute the Pauli–Jordan propagator and the positive and
negative frequency bi-distributions.

even when k is restricted to the real axis; consequently,
∆ab(x, x

′) also becomes complex. The imaginary part is
associated with pure gauge terms and therefore has no
physical significance.

With these choices, ∆ab(x, x
′) may be expressed as a

contour integral

∆ab(x, x
′) =

1

(2π)4

∫

R3

∫

C

Eab(k) e−i~k·(~x−~x′)−ik0(t−t′)

× dk0 d~k, (26)

where the contour C can depend on ~k, provided it encir-
cles all the poles once in the counterclockwise direction
as shown in Fig. 3. Convergence of this integral is under-
stood in the distributional sense; that is, the k-integrals
should be taken after integrating against compactly sup-
ported vector densities in the two points x, x′ ∈ M . This
controls the integration in the large momentum limit and
leaves only the question of possible divergences at finite
momenta.

By changing the contour C in (26) we may obtain
distributions that will determine the positive and nega-
tive frequency two-point functions ∆± of a vacuum state
on the algebra of observables A. Specifically, the kernel
∓i∆±

ab(x, x
′) is obtained by using the contours C±, which

encircle only the positive (+) or negative (−) frequency
poles (see Fig. 3), instead of C. It is immediately clear
that

i∆ab(x, x
′) = ∆

+
ab(x, x

′)− ∆
−
ab(x, x

′). (27)

Avoiding for the moment the special case k2 = k3 =
0 (in which case there are second order poles at k0 =
±ω = ±ω̃) the poles in the integrand are all first order
and one easily computes, using η−1(k, k) = ω2 − k20 and
ζ−1(k, k) = (1 + ξ2)(ω̃2 − k20), that

res
k0=ω

Eab(k0, ~k) = −Uab(~k)

2ω
,

res
k0=ω̃

Eab(k0,~k) = −Ũab(~k)

2ω̃
,
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where

Uab(~k) := ηab +
(ka + iqa)(kb + iqb)

η−1(q, q)

∣∣∣∣
k0=ω

(28)

Ũab(~k) := − (ka + iqa)(kb + iqb)

(1 + ξ2)η−1(q, q)

∣∣∣∣
k0=ω̃

. (29)

Using the symmetry Eab(−k) = Eab(k), one also has

res
k0=−ω

Eab(k0,−~k) =
Uab(~k)

2ω
,

res
k0=−ω̃

Eab(k0,−~k) =
Ũab(~k)

2ω̃
.

In the above calculations, we have used the equalities

ζ−1(k, k) = −η−1(q(k), q(k))

for k on the ordinary lightcone k0 = ±ω and

η−1(k, k) = η−1(q(k), q(k))

for k on the extraordinary lightcone k0 = ±ω̃.

Assembling these results (and changing variables ~k 7→
−~k for ∆−

ab) we find

∆
±
ab(x, x

′) :=
1

(2π)3

∫

R3

(
Uab(~k)

e∓iω(t−t′)

2ω

+ Ũab(~k)
e∓iω̃(t−t′)

2ω̃

)
e∓i~k·(~x−~x′) d~k. (30)

Note that the individual terms in the integrand have di-
vergences as k22 + k23 → 0, which is the special case in
which the ordinary and extraordinary lightcone touch.
However, their sum remains regular in this limit, and
the limiting value can be obtained by taking a residue at
the double pole formed when the two single poles merge.
Thus the above integrals are well-defined in the distribu-
tional sense. The Pauli–Jordan propagator is then

∆ab(x, x
′) = − 1

(2π)3

∫

R3

(
Uab(~k)

sin
(
ω(t− t′) + ~k · (~x− ~x′)

)

ω
+ Ũab(~k)

sin
(
ω̃(t− t′) + ~k · (~x− ~x′)

)

ω̃

)
d~k. (31)

Since Uab and Ũab are symmetric in their indices, we have

∆ab(x, x
′) = ∆(ab)(x, x

′),

∆
±
ab(x, x

′) = ∆
±
(ab)(x, x

′).

It is also clear that ∆
−
ab(x, x

′) = ∆
+
ba(x

′, x), and hence
∆ab(x

′, x) = −∆ba(x, x
′), so ∆ is an anti-symmetric cov-

ector bi-distribution. We remark that Lorentz boost in-
variance is broken because the crystal four-velocity U and
optic axis X are preferred directions.

C. Positivity and the microlocal spectrum

condition

In this subsection we show that the Pauli–Jordan prop-
agator and positive frequency two-point function meet
the general conditions required to formulate the alge-
bra A of smeared quantum fields and satisfy the microlo-
cal spectrum condition.

Beginning with the Pauli–Jordan propagator,
∆ab(x, x

′) is evidently an antisymmetric bi-distribution.
It restricts to conserved compactly supported vector
densities as a bilinear form

σ(j, j′) := ∆(j, j′) =

∫

R4×R4

∆ab(x, x
′)ja(x)j′b(x′) dx dx′.

with the property that σ(j, j′) = 0 for all j′ if and only
if j = PA for some compactly supported 1-form A. This
fact was already stated in [11], however a precise proof
was missing. For completeness, we sketch the required
argument here, which uses the fact that Eret/adv are in-
verses of P up to gauge. If σ(j, j′) = 0 for all j′, then
Eadvj and Eretj must be equal up to a pure gauge term.
Therefore their exterior derivatives are equal and, recall-
ing the support properties of Eret/adv, compactly sup-
ported. As F = dEretj is closed and compactly sup-
ported, there exists a compactly supported 1-form A0

such that F = dA0 and therefore Eretj = A0 + dχ
for some smooth χ. Here we have used the Poincaré
lemma in both the compact support and unrestricted
forms [37]. It follows that j = PEretj = PA0. Con-
versely, if j = PA0 for some compactly supported 1-
form A0, then Eret/advj = Eret/advPA0 are equal up to
a pure gauge term, and so σ(j, j′) = 0 for all j′. Thus
the Pauli-Jordan propagator defines the desired bilinear
form required in Sect. II D to define the commutator of
the algebra of quantum fields.

Turning to ∆
+, (27) together with the expression

∆− = (∆+)T derived above show that the generalized
CCRs are fulfilled, i.e., ∆+−(∆+)T = i∆. The microlocal
spectrum condition requires the calculation of WF(∆+),
which is most conveniently performed by using transla-
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tional invariance to give

WF(∆+) =

3⋃

a,b=0

WF(∆+
ab)

=
3⋃

a,b=0

{
(x, k;x′,−k) ∈ T ∗R4 × T ∗R4

∣∣

(x− x′, k) ∈ WF(∆̃+
ab)
}
,

where the scalar distributions ∆̃
+
ab are defined so that

∆
+
ab(x, x

′) = ∆̃
+
ab(x − x′). To show that ∆+ obeys (14)

it will suffice to show that WF(∆̃+
ab) ⊂ N+. Because

G(k)Eab(k) is holomorphic, each ∆̃
+
ab is a solution for the

partial differential operator G(i∂), and it follows that

WF(∆̃+
ab) ⊂ N , which is the corresponding characteristic

set. We must therefore show that there are no directions
from N− in the wave-front set. This can be seen from
the computation

̂f ∆̃+
ab(ℓ) =

i

(2π)4

∫

R3

∫

C+

Eab(k) f̂(ℓ− k) dk0 d~k,

for any test function f ∈ C∞
0 (R). As k0 has nonnegative

real part in the integration region, it is easily checked
that the above expression decays rapidly as ℓ → ∞ in
any cone within (−∞, 0)×R3. Every direction in N− is

therefore a regular direction for ∆̃
+
ab and hence excluded

from the wave-front set.
Next, we show that ∆+ obeys the hermiticity and pos-

itive type conditions when restricted to the space of con-
served vector densties. To do this, it is useful to de-
compose the tensors Uab and Ũab as sums of manifestly
positive rank-1 tensors and additional ‘pure gauge’ terms
containing either ka or kb, which vanish when contracted
with any vectors V a

1 , V
a
2 for which k · Vi = 0 (i = 1, 2).

Starting with Ũab, an obvious possibility is to decompose
Ũab = ũaũb + pure gauge, where

ũa :=
qa√

(1 + ξ2)η−1(q, q)

∣∣∣∣
k0=ω

=
1√

k22 + k23



k1
ω̃
0
0


 .

However, this covector diverges as k22 + k23 → 0, i.e., in
the limit where the extraordinary and ordinary lightcones
touch. Instead, we use a gauge-modified version

ṽa(~k) := ũa(~k)−
k1ka

ω̃
√
k22 + k23

=
1

ω̃
√

k22 + k23




0
(k22 + k23)/(1 + ξ2)

−k1k2
−k1k3


 (32)

which satisfies ζ−1(ṽ, ṽ) = 1 and remains bounded as k22+

k23 → 0, giving a decomposition Ũab = ṽaṽb+pure gauge.

Turning to Uab, we note that the (non-zero) tensor

Vab(~k) := ηab−
qa(k)qb(k)

η−1(q, q)

∣∣∣∣
k0=ω

+
2(k ·X)X(akb)

η−1(q, q)

∣∣∣∣
k0=ω

− η(X,X)(kakb + 2(k · U)U(akb))

η−1(q, q)

∣∣∣∣
k0=ω

annihilates Ua, Xa and ka and therefore has rank-1. In-
deed, one has Vab = vavb, where

va(~k) :=
1√

k22 + k23




0
0
k3
−k2


 (33)

obeys the normalization condition η−1(v, v) = 1; as Vab

differs from Uab only by pure gauge terms, we have Uab =
vavb + pure gauge.

Evidently the polarization covectors v and ṽ satisfy an

analogue of the Coulomb gauge: writing ka = (ω,~k),

k̃a = (ω̃,~k), we have

ṽ · U = 0 = v · U,
η−1(k, v) = 0 = ζ−1(k̃, ṽ)

for all ~k. Evaluating ∆+(j, j′), the pure gauge terms drop
out and one has

∆
+(j, j′) =

1

(2π)3

∫

R3

(
va(~k)̂

a(−k)vb(~k)̂
′b(k)

2ω

+
ṽa(~k)̂

a(−k̃)ṽb(~k)̂
′b(k̃)

2ω̃

)
d~k

for all conserved compactly supported vector densities
j, j′. Hermiticity holds because v and ṽ are real, while
the positivity condition is satisfied because

0 ≤ ∆
+(, j) =

1

(2π)3

∫

R3

( |va(~k)̂ a(k)|2
2ω

+
|ṽa(~k)̂ a(k̃)|2

2ω̃

)
d~k.

Summarizing, the positive frequency solution ∆+

obeys all the conditions required to define a physical
quasi-free state Ω on the algebra A, completely deter-
mined by

Ω
(
Â(j)Â(j′)

)
:= ∆

+(j, j′). (34)

Below, this will be shown to be a ground state with re-
spect to time translations. By construction, ∆+ extends
the two-point function of Ω to a bi-distribution.

D. Fock space and quantum fields

It will be useful to have a Hilbert space representation
of A available, in which the ‘vacuum’ state Ω defined
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by (34) is a vector state. This can be done using the
bosonic Fock space over a one-particle space

L2(R3, d~k/(2π)3)⊗ C2.

In familiar notation, this Fock space carries a quantum

field Âa(x) = Âa(t, ~x) given by

Âa(t, ~x) :=
1

(2π)3

∫

R3

(
a(~k)

va(~k)√
2ω

e−i(~k·~x+ωt)

+ ã(~k)
ṽa(~k)√
2ω̃

e−i(~k·~x+ω̃t) + h.c.

)
d~k, (35)

where the annihilation and creation operators obey the
CCR

[
a(~k), a∗(~k′)

]
=
[
ã(~k), ã∗(~k′)

]
= (2π)3δ(3)(~k − ~k′)1

with all other commutators vanishing. The integral
in (35) includes rays along the optic axis, at which
the polarization covectors v and ṽ have discontinuous,
direction-dependent, limits. As they remain bounded,
however, (35) is well-defined; what is required is that
maps such as j 7→ (2ω)−1/2v · ̂|k0=ω are well-defined

maps from test vector densities to L2(R3, d~k/(2π)3).

Smearings of Â against conserved vector densities, and
sums of products thereof, provide a representation of A.

For example, it is not difficult to verify directly that Âa

solves the field equations (2). Indeed, the computation
reduces to the verification of

χacbdvbkckd = 0, χacbdṽbk̃ck̃d = 0

on the ordinary resp. extraordinary lightcone, easily
proved using (21), (33) and (32). The CCRs hold as
a result of (31) and the equality of Uab and vavb (resp.,

Ũab and ṽaṽb) up to pure gauge terms; in a similar way,
one may compute directly that

〈Ω | Â(j)Â(j′) Ω〉 = ∆
+(j, j′)

holds for conserved j, j′, where we have written Ω to
denote also the Fock vacuum vector, annihilated by all

a(~k) and ã(~k). Note that Â can be smeared against
any smooth compactly supported vector density to give a
Hilbert space operator, but only smearings against con-
served vector densities yield operators representing ele-
ments of A.

Although boost invariance is broken in the crystal
background, translational invariance is maintained. In
particular, time translations are generated by the Hamil-
tonian

H =
1

(2π)3

∫

R3

(
ωa∗(~k)a(~k) + ω̃ã∗(~k)ã(~k)

)
d~k

with respect to which Ω is clearly a ground state.

Starting from these definitions, one can introduce op-
erators corresponding to other observables. For example,
the quantized field strength

F̂ab(x) = − 2i

(2π)3

∫

R3

(
a(~k)

k[avb](~k)√
2ω

e−i(~k·~x+ωt)

+ ã(~k)
k̃[aṽb](~k)√

2ω̃
e−i(~k·~x+ω̃t) − h.c.

)
d~k

can be directly obtained from (35).

V. QEI FOR THE UNIAXIAL CRYSTAL

In this section, we first demonstrate the existence of
negative energy density states in the uniaxial crystal,
then show that the QEI derived in Section III holds for
subluminal trajectories and evaluate the bound explic-
itly. Among other things this involves an explicit proof
that the classical sWEC holds on subluminal trajecto-
ries. The situation is different for interluminal trajecto-
ries: the classical sWEC fails and, consequently, so do
the QEI bounds. A subtle point is also addressed: in
the pre-metric situation there is no preferred proper time
normalization of observer trajectories. Accordingly, we
discuss normalizations arising both from the background
Minkowski metric η and intrinsically generated from the
pre-metric theory, and trace the effect on our results.

A. States with locally negative energy density

In the Fock space, normal ordering with respect to the
state Ω can be achieved by the standard normal ordering
of annihilation and creation operators. Computing the
normal ordered energy density operator :ρ̂(f): in this
way for a given choice of frame, we adapt a simple ar-
gument here to demonstrate that there exist states with
locally negative energy density expectation values. Con-
sider the quantum states defined by the family of vectors

Ψ(φ) := cosφ Ω+ sinφ :ρ̂(f):Ω, φ ∈
[
−π

2 ,
π

2

]
,

where Ω is the Fock vacuum vector discussed in
Sect. IVD and f ∈ C∞

0 (R4) is a real-valued test func-
tion, normalized so that ‖ :ρ̂(f):Ω‖ = 1. (As shown
in Appendix B, one can exclude the possibility that
:ρ̂(f):Ω = 0.) Calculating the expectation value of the
quantized energy density in the state given by Ψ(φ) yields

〈 :ρ̂(f):〉Ψ(φ) = sin(2φ)‖ :ρ̂(f):Ω‖2 + sin2 φ 〈Ω | :ρ̂(f):3 Ω〉
= 2φ+O(φ2).

Choosing −φ sufficiently small, we thus see that there ex-
ist states such that the expectation value of the quantized
energy density becomes negative and therefore the point-
wise energy density must also be negative on an open set
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within the support of f . By translation, one can arrange
that this occurs in any desired region of any given world-
line of interest. Owing to the quantum energy inequality,
however, the expectation of :ρ̂(f): cannot become arbi-
trarily negative in the states Ψ(φ) or any other states
satisfying the microlocal spectrum condition.

B. Quantized point-split energy density

We now begin the explicit computation of the QEI
along trajectories with uniform velocity relative to the
crystal. The first step is to obtain the point-split en-
ergy density, for which purpose we may use (18) instead
of (17) due to translational invariance. However, the cal-
culations that would be needed to use (17) can be read
off from Sect. V C. The QEI bound itself will be derived
in Sect. VD.

1. General expression

Let γ be a subluminal trajectory, equipped with a
frame e such that ε(e) = |η|1/2 (equal to unity in the
global Cartesian coordinates). Evaluating the point-split
energy density (18) in the state defined by the two point
function (30), we obtain

ρΩ(τ, τ
′) =

1

2(2π)3
(χabcd − 2χebcdneγ̇

a − 2χabedneγ̇
c)

×
∫

R3

(
k[aUb][dkc]

e−ik(γ(τ)−γ(τ ′))

2ω

+ k̃[aŨb][dk̃c]
e−ik̃(γ(τ)−γ(τ ′))

2ω̃

)
d~k,

where we again use the notation k = (ω,~k) and k̃ = (ω̃,~k)
for the ordinary and extraordinary null covectors given

by ~k.
Specializing to the case of a constant velocity inertial

observer γ(τ) = γ̇τ (maintaining the condition ε(e) =

|η|1/2), we employ the definition of U and Ũ in (28)
and (29) to obtain from a straightforward but lengthy
calculation

ρΩ(τ, τ
′) = − 1

2(2π)3

∫

R3

(
(k · γ̇) η−1(n, k)

ω
e−ik·γ̇(τ−τ ′)

+
(k̃ · γ̇) ζ−1(n, k̃)

(1 + ξ2)ω̃
e−ik̃·γ̇(τ−τ ′)

)
d~k, (36)

with Minkowski spacetime limit ξ → 0

ρΩ(τ, τ
′) = − 1

(2π)3

∫

R3

(k · γ̇) η−1(n, k)

ω
e−ik·γ̇(τ−τ ′) d~k.

To gain more insight about this expression we will eval-
uate it more explicitly for sub- and interluminal trajec-
tories.

2. Expression for subluminal trajectories

Consider a uniform velocity trajectory that is η-
timelike, and therefore is either subluminal or interlu-
minal. Let α ∈ R be its rapidity, in the rest frame of
the crystal, and β ∈ (−π,π] be the angle made between
the 3-velocity and the positive x-axis, i.e., the optic axis.
Without loss of generality (rotating the coordinate sys-
tem in the yz-plane if necessary) the worldline takes the
form

γ(τ) = ℵ τ (coshα, sinhα cosβ, 0, sinhα sinβ). (37)

Then γ̇ = ℵ (coshα, sinhα cosβ, 0, sinhα sinβ) is con-
stant and this vector may be extended to a frame e with
e0 = γ̇ and ε(e) = |η|1/2, and so that the dual basis
covector n = e∗0 is

n = ℵ−1 (coshα,− sinhα cosβ, 0,− sinhα sinβ).

The normalization factor ℵ in (37) was introduced to
trace how our results (38) and (42) depend on the
parametrization of the worldlines, and will be discussed
in Sect. VB 3.

While the worldline γ is η-timelike by construction, it
is not necessarily timelike with respect to ζ because

ζ(γ̇, γ̇) = ℵ2 ξ2 sinh2 α sin2 β − 1

1 + ξ2
,

see (23). Therefore the trajectory is subluminal if

sinh2 α sin2 β < ξ−2

and interluminal if

sinh2 α sin2 β > ξ−2.

This distinction has another significance: as we show in
Sect. V C, the sWEC holds for subluminal trajectories
but fails in the interluminal case.

For the rest of this subsection, and also subsection V D,
we will assume that γ is subluminal, so γ̇ is timelike with
respect to both metrics η and ζ. In this case, the integrals
in (36) may be calculated using identities (A2) and (A3)
proved in Appendix A to give

ρΩ(τ, τ
′) =

C(α, β, ξ)

(2π)2 ℵ4

∫ ∞

0

κ3e−iκ(τ−τ ′) dκ, (38)

where

C(α, β, ξ) := ℵ4

(
n · γ̇

η(γ̇, γ̇)2
+

n · γ̇
ζ(γ̇, γ̇)2

)

= 1 + (1 + ξ2)
(
1− ξ2 sinh2 α sin2 β

)−2

= 2 + (1 + 2 sinh2 α sin2 β)ξ2 +O(ξ4). (39)

Note that C(α, β, ξ) → 2 as ξ → 0 with α, β
fixed, which reproduces the known Lorentz-invariant
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Figure 4. Plot of C(α, β, ξ) with α and ξ in the range
[−2.5, 2.5], β = 0, π

16
, π

2
(from left to right), and C(α, β, ξ)

cut off at the value 9.

Minkowski spacetime result for electromagnetism [25].
On the other hand, fixing ξ we see that C(α, β, ξ) →
2 + ξ2 as α → 0 or β → 0, but C(α, β, ξ) → +∞ as
sinhα sinβ → ±ξ−1, i.e., C(α, β, ξ) diverges for world-
lines which become lightlike with respect to the extraor-
dinary lightcone given by ζ. The shape of C(α, β, ξ) can
be seen in Fig. 4 in the cases β = 0, π

16 ,
π

2 .

As expected the result (38) depends on the normaliza-
tion ℵ of the worldline under consideration, whose influ-
ence we will discuss now.

3. Normalization factor

There are different viewpoints from which one can in-
terpret this uniaxial crystal electrodynamics. One may
regard it as describing a crystal in Minkowski spacetime
which is probed by observers whose dynamics are de-
termined by special relativity. Alternatively, one may
see the constitutive relation of the crystal as fundamen-
tal and demand that probes obey the point particle dy-
namics and causal behavior dictated from the theory of
electrodynamics which it defines. For our purposes, the
difference between the two viewpoints lies in the way how
one parametrizes the trajectory of the probe, along which
one calculates the QEI. The choice of parametrization is
reflected in the quantized point-split energy density (38)
by the appearance of normalization factor ℵ.

In the context of special (SR) and general relativity
timelike worldlines γ are observer worldlines if they are
proper time parametrized, i.e., satisfy η(γ̇, γ̇) = −1 resp.
η replaced by a general Lorentzian metric. For the curves
we are considering this corresponds to the choice ℵ =
ℵSR = 1, which represents observers not influenced by
the crystal background structure.

An alternative choice for ℵ is to consider observers
subject to the dispersion relation induced by electrody-
namics. The Fresnel polynomial of the uniaxial crys-
tal (UC) defines a natural massive dispersion relation
|η|−1/2G(k) = m4 and this in turn gives a natural param-
eterization of the motion of probe particles with mass m
i.e. their proper time. The precise mathematical meth-
ods to derive this normalization were discussed in detail
in [30]. In this approach the normalization ℵ = ℵUC de-
pends on the crystal parameter ξ, the rapidity α and the
angle β made with the optic axis, modifying the point-
split energy density along the curve. As a matter of fact
the calculations needed to compute the normalization as
a function ℵ(α, β, ξ) for massive point particles governed
by this electrodynamically induced clock are non-trivial,
which is why we only derive it to third order in the crystal
parameter

ℵUC = 1− ξ2

4
(1 + sinh2 α sin2 β) +O(ξ4).

The derivation can be found in Appx. C. The all order
calculation is beyond the scope of this work and may be
investigated in the future. What can be deduced to all or-
ders already at this point is that ℵξ(α, β) = ℵ(α, β, ξ) is a
smooth non-vanishing function of the rapidity parameter
α and the angle β. This behavior is guaranteed by the
smoothness and invertibility properties of the Legendre
map (see Sect. II B around (9) and [30]) as a map from
massive momenta, i.e., the interior of the hyperbolicity
cone Γ of the dispersion relation, onto velocities inside
the dual Γ+ of the hyperbolicity cone.

For the dependence of the point-split energy density
(38) on the rapidity α, the angle β and the crystal pa-
rameter ξ this means that for the special relativistic ob-
server normalization ℵSR = 1, C(α, β, ξ) determines the
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behaviour of the point-split energy density completely.
For the alternative normalization ℵUC to second order in
the crystal parameter we find the modified dependence

C(α, β, ξ)

ℵ4
UC

= 2 + (3 + 4 sinh2 α sin2 β)ξ2 +O(ξ4), (40)

which nicely illustrates the influence of the normalization
factor explicitly by comparing (39) and (40).

C. Proof of the sWEC

To show that the general quantum energy inequality
derived in Sect. III holds for subluminal trajectories in
the uniaxial crystal considered here, we also need to show
that the strict form of the weak energy condition (sWEC)
holds for such trajectories. We will show this using the
decomposition of ρ into χ1 and χ2 in (12), acting on
the subspace of ‘magnetic’ and ‘electric’ 2-forms, respec-
tively. More precisely, we will use the formulas (15) to
express χ1 and χ2 as 3×3 matrices in a judiciously chosen
basis.

Choose the following dual frame for the magnetic and
electric subspaces

[bab1 ] =
(
0,− sinhα sinβ, 0, 1 + (coshα− 1) sin2 β, 0, (1− coshα) cosβ sinβ

)
, (41a)

[bab2 ] =
(
sinhα sinβ, 0,− sinhα cosβ, 0, coshα, 0

)
, (41b)

[bab3 ] =
(
0, sinhα cosβ, 0, (1− coshα) cosβ sinβ, 0, 1 + (coshα− 1) cos2 β

)
, (41c)

[eab1 ] = C− 1
2

(
1 + sinh2 α sin2 β, 0,− sinh2 α cosβ sinβ, 0, coshα sinhα sinβ, 0

)
, (41d)

[eab2 ] =
(
0, coshα, 0,− sinhα sinβ, 0, sinhα cosβ

)
, (41e)

[eab3 ] = C− 1
2

(
0, 0,− coshα, 0, sinhα cosβ, 0

)
, (41f)

where C = 1 + sinh2 α sin2 β and the 6 entries give the
01, 02, 03, 23, 31, 12 components, i.e.,

[babA ] = (b01A , b02A , b03A , b23A , b31A , b12A )

and similar for eabA . In this basis, we calculate (with the
help of the computer algebra system MathematicaTM)

XAB
1 =



1 0 0
0 1− ξ2 sinh2 α sin2 β 0
0 0 1


 ,

XAB
2 =



1 + ξ2(1 + sinh2 α sin2 β) 0 0

0 1 0
0 0 1




so that χabcd
1 = XAB

1 bab1 bcd1 and χabcd
2 = XAB

2 eab1 ecd1 . We
immediately see that X2 is always positive definite, while
X1 is positive definite if and only if sinh2 α sin2 β < ξ−2,
which is exactly the condition of Sect. V B 2 that the
worldline γ is subluminal. This proves that sWEC holds
inside the uniaxial crystal along all subluminal trajecto-
ries. Simultaneously, this shows that the QEI derived in
Sect. III holds.

Since the matrices X1, X2 are diagonal, we can easily

take their square roots in the subluminal case:

Y AB
1 =



1 0 0

0
√
1− ξ2 sinh2 α sin2 β 0

0 0 1


 ,

Y AB
2 =




√
1 + ξ2(1 + sinh2 α sin2 β) 0 0

0 1 0
0 0 1


 .

We could use this result to explicitly determine the QEI
bound, i.e., the right-hand side of (20). However, due to
translational invariance it is easier to use simpler meth-
ods as applied in the following section.

D. QEI bound for subluminal trajectories

We can now give the explicit form of the quantum en-
ergy inequality (20) for the uniaxial crystal for curves
which propagate slower than the extraordinary speed of
light. The statement of the QEI is that for all sublu-
minal curves (37), that is, for sinh2 α sinβ < ξ−2, the
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normal-ordered energy density obeys

∫

R

|g(τ)|2〈 :ρ(τ):〉Λ dτ

≥ − 1

π

∫ ∞

0

(∫∫

R2

g(τ)g(τ ′)ρΩ(τ, τ
′)

× e−iβ(τ−τ ′) dτ dτ ′
)
dβ

for all states Λ obeying the microlocal spectrum condi-
tion and all real valued compactly supported g. Inserting
the point-split energy density (38) and evaluating the re-
sulting integrals by rearranging the order of integration
and the Plancherel theorem, this becomes

∫

R

|g(τ)|2〈 :ρ(τ):〉Λ dτ

≥ −C(α, β, ξ)

π(2π)2 ℵ4

∫ ∞

0

(∫ ∞

0

κ3|ĝ(κ+ β)|2 dκ
)
dβ

= −C(α, β, ξ)

π(2π)2 ℵ4

∫ ∞

0

(
|ĝ(θ)|2

∫ θ

0

κ3 dκ

)
dθ

= −C(α, β, ξ)

2(2π)3 ℵ4

∫ ∞

0

θ4|ĝ(θ)|2 dθ

= −C(α, β, ξ)

4(2π)2 ℵ4
‖g′′‖22, (42)

and the overall result can be extended to complex-valued
test functions by applying the real result to the real and
imaginary parts of g separately. Thus along subluminal
trajectories there exists a finite negative bound on the
quantized energy density of the electromagnetic field. In
the Minkowski spacetime limit ξ → 0 the bound becomes
independent of α, β for either of the two normalizations
discussed, since C(α, β, 0) = 2 and ℵ(α, β, 0) = 1.

For the observer at rest with respect to the crystal
(α = 0) we find

∫

R

|g(τ)|2〈 :ρ(τ):〉Λ dτ ≥ − 2 + ξ2

16π2 ℵ4
‖g′′‖22

and indeed this holds for any α if β = 0, i.e., for motion
along the optic axis.

However, for β 6= 0, the closer the observer’s velocity
comes to the extraordinary speed of light, i.e., the ligh-
trays propagating along the cone of ζ, the more negative
the lower bound (42) becomes, diverging in the limits
sinhα sinβ → ±ξ−1. Again this holds for either choice
of normalizations discussed.

E. Failure of QEIs along interluminal trajectories

Our QEI above was proved for averaging along sublu-
minal trajectories, for which the classical sWEC holds as
discussed in Sect. V C. Here, we show that no QEI can

hold along an interluminal trajectory (η-timelike and ζ-
spacelike) in the translationally invariant uniaxial bire-
fringent crystal. The argument is based on one intro-
duced in [38] for non-minimally coupled scalar fields and
shows that a failure of the classical sWEC for a positive
energy solution entails a corresponding failure in the QEI.
It is valid for any constant velocity curve passing through
x = 0, and is thus independent of the parametrization
and normalization of the curve.

The starting-point is the fact that single-particle states
in QFT correspond to classical positive frequency solu-
tions. Let Ψ be a vector state in the Fock space of the
form

Ψ =

∫

R3

√
2ω̃(k22 + k23) f(

~k) ã∗(~k) Ωd~k,

where Ω is the vacuum vector and f ∈ S(R3) is a
Schwartz function, chosen so that Ψ is normalized. (The
factors in the square root are inserted for later conve-
nience.) Then, using the explicit form of the quantum
field (35), the corresponding positive frequency solution
is

Aa(x) := 〈Ω | Âa(x)Ψ〉

=

∫

R3

√
k22 + k23 f(

~k) ṽa(~k) e
−i(~k·~x+ω̃t) d~k

and is easily seen to be smooth as a consequence of the
rapid decay of f .

As a consequence of Wick’s theorem, the n-particle
state Ψ⊗n has two-point function

〈Ψ⊗n | Âa(x)Âb(y)Ψ
⊗n〉

= n
(
Aa(x)Ab(y) +Ab(y)Aa(x)

)

+ 〈Ω | Âa(x)Âb(y) Ω〉

and therefore the normal ordered two-point function is

〈Ψ⊗n | :Âa(x)Âb(y): Ψ
⊗n〉 = 2nRe

(
Aa(x)Ab(y)

)
.

It follows that the quantized energy density (defined with
respect to any curve γ and frame e) in the state Ψ⊗n

is n-times that in state Ψ, which in turn equals twice
the corresponding complexified classical energy density
of the complex-valued solution Aa(x) defined by

ρ =
1

8
ε(e)−1χabcd

(
F abFcd − 4naγ̇

e Re(F ebFcd)
)
,

with F = dA as usual. One sees immediately that if ρ < 0
at some point along γ – a failure of the classical sWEC
for positive energy solutions – then the quantum field
theory cannot obey a QEI: any weighted average of the
quantized energy density :ρ̂: along γ, supported in the
region where the sWEC fails, has a negative expectation
value in the state Ψ, and hence its expectation value in
state Ψ⊗n is unbounded from below as n → ∞.

It remains to show that f may be chosen to violate
the sWEC for a constant-velocity interluminal observer.
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The solution is in the form of a wave packet of extraor-
dinary light rays. Using the same parameterization as in
the previous section, one finds that the definitions of A
and the polarization vector ṽ, see (33), imply F23 van-
ishes. Now choose f01, f03, f31 to be suitable multiples of

a Gaussian in ~k:

f01(~k) =
iτ30√

π3(1 + ξ2)
exp
(
−(ω̃τ0)

2
)
,

f03(~k) = − 4ik1k3τ
5
0√

π3(1 + ξ2)2
exp
(
−(ω̃τ0)

2
)
,

f31(~k) =
4iω̃k3τ

5
0

5
√
π3(1 + ξ2)2

exp
(
−(ω̃τ0)

2
)

and set

f = −f01 sinhα sinβ + f03 sinhα cosβ + f31 coshα

Then we compute

F02(0) = i

∫

R3

k1k2f(~k) d~k = 0,

F12(0) = i

∫

R3

ω̃k2f(~k) d~k = 0.

and the only non-zero components are

F01(0) = −i

∫

R3

(ω̃2 − k21)f(
~k) d~k = −τ−2

0 sinhα sinβ,

F03(0) = i

∫

R3

k1k3f(~k) d~k = τ−2
0 sinhα cosβ,

F31(0) = −i

∫

R3

ω̃k3f(~k) d~k = τ−2
0 coshα.

Moreover, note that Fab is smooth with Schwartz class
components.

With this choice of Fab we find that bab2 Fab = 2τ−2
0 is

the only non-zero contraction of Fab with any of the basis
vectors in (41). Therefore

ρ(0) = 4(1− ξ2 sinh2 α sin2 β)τ−4
0 < 0

in the interluminal case. Since ρ is smooth it follows that
ρ < 0 in an open neighbourhood of the origin.

In summary, we have shown that the classical sWEC
is violated for interluminal observers (in certain positive
frequency complex-valued solutions) and, consequently,
there exists no finite lower bound for the normal ordered
quantized energy density along their worldline. The same
result evidently holds for the magnetic part of the en-
ergy density by itself. However, the electric part is posi-
tive definite and so we cannot conclude from these argu-
ments whether or not it is unbounded below in the QFT.
Further insight might be gained by considering states
that are superpositions of the vacuum with a two-particle
state, as in [26, 27].

VI. DISCUSSION

The main result of this article is the rigorous deriva-
tion of a state-independent Quantum Energy Inequality
for certain types of observers in pre-metric linear electro-
dynamics, and its explicit calculation in the illustrative
and physically interesting example of a uniaxial crystal.
This required a classification of possible observer tra-
jectories (extending previous work by [30]) to account
for the richer causal structure possible in the pre-metric
theory, compared to the usual Lorentzian metric struc-
ture of Maxwell electrodynamics. For reduced, bihy-
perbolic, energy-distinguishing and time-distinguishing
Fresnel polynomials, we classified future-pointing trajec-
tories as either sub-, inter- and superluminal, depending
on the relation of their tangents to the null structure of
the dual polynomial. Such a classification is unnecessary
in Lorentzian geometry, where only one class of future-
pointing trajectories exists, namely timelike trajectories.

The clarification of possible observer trajectories set
the language to discuss QEIs for quantized pre-metric
electrodynamics, which we proved to hold on gen-
eral grounds for subluminal observers in Sect. III C. In
Sect. IV, we derived an explicit QEI bound for sublu-
minal observers moving at uniform velocity relative to
the medium. We were particularly careful about the nor-
malization of the observer trajectories which may differ
according to the interpretation of the uniaxial electro-
dynamics model. While the value of the QEI bound
depends on the normalization chosen, its divergence at
the extraordinary lightcone does not. To gain an insight
into the quantized energy density along non-subluminal
directions, we also showed in Sect. V E that there exist
quantum states in which the energy density can become
arbitrarily negative (independent of normalization).

The next steps in the quantization of pre-metric elec-
trodynamics are the rigorous construction of the quan-
tized theory for non-constant constitutive relations and
its coupling to other fields. Since general non-constant
constitutive relations can lead to lightcone structures
which split, combine and cross, not only is the causal
behavior of such theories more complicated but also the
construction of propagators faces additional difficulties.
For instance, the problem of propagation of singularities
for distributional solutions to PDEs with lightcones of
variable multiplicity has not been conclusively solved in
the mathematical literature (see, e.g. [39, 40]).

Regarding the coupling to other fields, a first step to-
wards a spinor theory on a background geometry deter-
mined by Fresnel polynomial has been made in [41]. Next
one could attempt a quantization (in the algebraic ap-
proach) of the spinor theory based on a Fresnel polyno-
mial. It would be interesting to investigate QEIs for such
a theory (see [42, 43] for general QEIs on Dirac fields in
the metric case).

An interesting phenomenon which appears also in
quantized pre-metric electrodynamics is the Casimir ef-
fect. In [10], the Casimir effect was already studied in
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media with a certain bi-metric Fresnel polynomial. Based
on the results presented in this article, the Casimir effect
could be investigated explicitly in uniaxial crystals and a
priori bounds for other media could be given.

Apart from being interesting in their own right, non-
linear media have a promising application as analog mod-
els for quantum gravity. For example, as in [44–46] one
can study non-linear dielectrics as an analog model for
lightcone fluctuations. The pre-metric approach might
provide a clearer conceptual footing to this problem.
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Appendix A: Identities used to evaluate the

quantized point-split energy density

In this Appendix, we prove the identities (A2)
and (A3) used in Sect. IV.

Let f ∈ C∞
0 (R) and let u and v be fixed 4-vectors with

u η-timelike and future-pointing. We claim that

1

(2π)3

∫

R3

(k · u)(k · v)
2ω

f̂(k · u) d~k

= − η(u, v)

4π2η(u, u)2

∫ ∞

0

κ3f̂(κ) dκ. (A1)

To prove this, first observe that if (k · u)(k · v) in (A1)
were replaced by kakb, the resulting integral would be
constructed covariantly from ηab and uaub and would
vanish on contraction with ηab; it is therefore propor-
tional to ηab − 4uaub/η(u, u). Therefore the left-hand
side of (A1) equals Aη(u, v), where the constant of pro-
portionality A is fixed by the special case v = u. Using

Lorentz-invariance of the measure (2ω)−1d~k, this integral
may be evaluated in the rest-frame of u, whereupon

Aη(u, u) = −η(u, u)

2(2π)3

∫

R3

ωf̂(ω
√
−η(u, u)) d~k

= −η(u, u)

4π2

∫ ∞

0

ω3f̂(ω
√
−η(u, u)) dω.

Changing variables to κ = ω
√
−η(u, u) gives the required

result (A1).
Removing the test function, (A1) implies

1

(2π)3

∫

R3

(k · u)(k · v)
2ω

e−ik·u(τ−τ ′) d~k

= − η(u, v)

4π2η(u, u)2

∫ ∞

0

κ3e−iκ(τ−τ ′) dκ. (A2)

The above derivation applies equally well if η is replaced
by ζ and k by k̃, so we also have

1

(2π)3

∫

R3

(k̃ · u)(k̃ · v)
2ω̃

e−ik̃·u(τ−τ ′) d~k

= − ζ(u, v)

4π2ζ(u, u)2

∫ ∞

0

κ3e−iκ(τ−τ ′) dκ, (A3)

for any ζ-timelike 4-vector u. (Alternatively, one can
make a change of variables to reduce the left-hand side
to another instance of (A2).)

Appendix B: The normal ordered energy density

acting on the vacuum

Let f be a smooth compactly supported real-valued
function. We aim to exclude the possibility that
:ρ̂(f):Ω = 0 unless f vanishes identically – a result
analogous to an instance of the Reeh–Schlieder theorem,
needed for our argument in Sect. V A on the existence
of states in which the expectation value of the quantized
energy density is negative. Writing :ρ̂(f):Ω out, we find

:ρ̂(f):Ω = − ε(e)−1

2(2π)6
(
χabcd − 2γ̇aneχ

ebcd − 2γ̇cneχ
abed

)

×
∫∫

R3×R3

k[avb]k
′
[cv

′
d]√

4ωω′
f̂(k + k′)a∗(~k)a∗(~k′)

× d~k d~k′ Ω+ other terms,

where the other terms lie in orthogonal subspaces of the
2-particle subspace, generated by creation operators such

as ã∗(~k)a∗(~k′) or ã∗(~k)ã∗(~k′).
One calculates

:ρ̂(f):Ω = −ε(e)−1

(2π)6

∫∫

R3×R3

r(~k,~k′)f̂(k + k′)

× a∗(~k)a∗(~k′) d~k d~k′ Ω+ other terms,

where r(~k,~k′) is given by

4
√
ωω′r(~k,~k′)

= η−1(v′, k)
(
η−1(v, n)(k′ · γ̇) + η(k′, n)(v · γ̇)

)

+ η−1(v, k′)
(
η−1(v′, n)(k · γ̇) + η(k, n)(v′ · γ̇)

)

− η−1(v, v′)
(
η−1(k′, n)(k · γ̇) + η(k, n)(k′ · γ̇)

)

− η−1(k, k′)
(
η−1(v′, n)(v · γ̇) + η−1(v, n)(v′ · γ̇)

)

− η−1(v, k′)η−1(v′, k) + η−1(k, k′)η−1(v, v′)
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and the ‘other terms’ have a similar form. Let k = k′.
Then, using η−1(k, k) = 0, η−1(v, k) = 0, η−1(v, v) = 1,

r(~k,~k) = −η−1(k, n)(k · γ̇)
2ω

.

Noting that k · γ̇ > 0 and η−1(k, n) < 0, we find r(~k,~k) >
0. Therefore there is a nonempty open set N ⊂ R3 × R3

on which infN r > 0.
It is clear that

‖ :ρ̂(f):Ω‖2 ≥ 2

(2π)6

∫∫

N

|r(~k, ~k′)|2|f̂(k + k′)|2 d~k d~k′,

and it follows that :ρ̂(f):Ω = 0 only if f̂ vanishes al-

most everywhere on {k + k′ | (~k, ~k′) ∈ N}, which has
nonempty interior in R4. As f is compactly supported,

f̂ is analytic, and we may conclude that it (and hence f)
vanishes identically.

Appendix C: The dual Lagragian for massive

momenta

To derive the intrinsic normalization factor ℵUC for the
curves employed in Sect. V B, we follow [30]. We derive
the dual Lagrangian determining the trajectories of par-
ticles and observers with massive momenta via the Leg-
endre map from the dispersion relation. In our case the
dispersion relation is defined by the Fresnel polynomial
of the crystal

P (k) = |η|−1/2G(k) = η−1(k, k)ζ−1(k, k) = m4,

see 22. Since this calculation is rather involved, we per-
form the derivation only up to third order in the crystal
parameter ξ.

The starting point is the Helmholtz action for free par-
ticles satisfying the massive dispersion relation

S[x, k, λ] =

∫ (
k · ẋ− λ ln

(
P ( k

m )
))

dτ,

where variation with respect to λ enforces the dispersion
relation P(k) = m4. By successive variation with respect
to k and λ, it is possible to remove the dependence of the
action on k and λ to obtain an action which determines
the motion of massive point particles and the proper time
of observer clocks

S[x] = m

∫
P ∗(ẋ) dτ,

where P ∗ is a one-homogeneous function with respect
to ẋ.

In [30] it was shown that

P ∗(ẋ) = P (k(ẋ))−
1
4 .

The term k(ẋ) is the inverse of the Legendre map

ẋa(k) =
1

4

∂ka
G(k)

G(k) =
1

2

ka

η−1(k, k)
+

1

2

(ζ−1)abkb
ζ−1(k, k)

=
ka

η−1(k, k)
+

(
ξ2(k · U)2 − (k ·X)2

)
ka

2η−1(k, k)2

+

(
(k ·X)Xa − ξ2(k · U)Ua

)

2η−1(k, k)
+O(ξ4)

which we expanded up to ξ2 (the term of order ξ3 van-
ishes). Up to this order, the inverse of the Legendre map
is given by

ka(ẋ) =
ẋa

η(ẋ, ẋ)
+

(
η(ẋ, X)2 − ξ2η(ẋ, U)2

)
ẋa

2η(ẋ, ẋ)2

+

(
ξ2η(ẋ, U)Ua − η(ẋ, X)Xa

)

2η(ẋ, ẋ)
+O(ξ4).

Using this expression, we find

P ∗(ẋ) =
√
η(ẋ, ẋ) +

ξ2η(ẋ, U)2 − η(ẋ, X)2

4
√
η(ẋ, ẋ)

+O(ξ4).

Thus an observer curve γ is uniaxial crystal electrody-
namics proper time parametrized if and only if P ∗(γ̇) =
1.

For the worldline (37) along which we study the point-
split energy density in Sect. VB we find

P ∗(γ̇) = ℵUC

(
1 +

ξ2

4
(1 + sinh2 α sin2 β)

)
+O(ξ4)

and thus the normalization factor must be

ℵUC = 1− ξ2

4
(1 + sinh2 α sin2 β) +O(ξ4). (C1)
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