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Abstract. Multi-dimensional effects such as vortex generation and heat losses from the gas to 

the wall of the reactor chamber have been an issue to obtaining a reliable RCM data. This vortex 

initiates a flow in the relatively cold boundary layer, which may penetrate the core gas. This 

resulting non-uniformity of the core region could cause serious discrepancies and give unreliable 

experimental data. To achieve a homogenous temperature field, an optimised piston crevice was 

designed using CFD modelling (Ansys fluent). A 2-Dimensional computational moving mesh is 

assuming an axisymmetric symmetry. The model adopted for this calculation is the laminar flow 

model and the fluid used was nitrogen. To get the appropriate crevice volume suitable for the 

present design, an optimisation of the five different crevice volume was modelled which resulted 

to about 2-10% of the entire chamber volume. The use of creviced piston has shown to reduce 

the final compressed gas temperature and pressure in the reactor chamber. All the crevice 

volumes between 2-10% of the chamber volume adequately contained the roll up vortexes, but 

the crevice volume of 282 mm3 was chosen to be the best in addition to minimising the end gas 

pressure and temperature drop. The final pressure trace from experiment shows a reasonable 

agreement with the CFD model at compression and post compression stage.  

 

1. Introduction 

Rapid Compression Machine (RCM) is an essential tool when investigating auto-ignition delay time and 

chemical kinetics of hydrocarbon fuels. It has an advantage of producing longer compression time of 

more than 20ms. Its accessibility to study combustion at conditions relevant to engines and gas turbines 

than other reactor facilities such as flow reactor, jet stirred reactor and shock tubes. Detailed combustion 

kinetic mechanism could be validated using an RCM experiments [1-5]. This help provides a better 

understanding of the ignition phenomena that is very pertinent to improving the performance efficiency 

and emission characteristic of engines[6].  

One of the challenges confronting the use of RCM’s designs is  the complex fluid dynamics features 

exist in the reaction chamber.  These feature result from the piston motion; a roll up vortex is formed 

creating a non-uniform temperature profile in the chamber [7-11]. The gases in the relatively cold 

boundary layer mix with the hot core gas resulting in a distribution of temperatures. This hinders the 

homogeneity of the core region where combustion kinetics is bound to exist. The mixing of cold 

boundary gases with the core gas in the chamber has a negative impact on experimental data since it 

causes thermal stratification within the charge making it difficult to interpret results and giving 

misleading results. To adequately study the combustion kinetic in RCM, it should be designed to 

minimise fluid motion effect that could lead to a discrepancy in data. And the effect of heat loss should 

also be taken into account to define the reaction chamber temperature through a simple model 

adequately. The model is based on a common assumption that there is an adiabatic core in the RCM, 

which means the temperature can be calculated.  In this context, the ‘Core Area’ is referred to the region 

where the bulk gases exist in the reactor chamber and are not influenced by heat loss.  The temperature 
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distribution with the combustion chamber is typically controlled with the use of a crevice on the edge 

of the piston, which suppresses vortex formation [9, 11, 12]. This ideal first was initiated by Park[13] 

and further developed by Lee and  Hochgreb[14]. The improvement was made on Park’s design by 

changing the overall geometry of the crevice as well as increasing the original cross-sectional volume 

of the crevice.  It was also proven that their piston crevice was adequate to suppress the roll up vortex 

generated in their RCM. Further computational fluid dynamics work has been used to study the physic 

of the roll up vortex structure, formation, temperature homogeneity[8]  and also have been characterised 

by experiment[15] and computational investigations[12, 16-19]. The design of the crevice depends on 

the boundary layer thickness, which itself depends on the conditions during compression [12].  

In this work, CFD study has been performed to determine the right piston crevice design that would 

conveniently contain the roll up vortexes and maintain a homogenous environment that would be 

conducive for autoignition study in the present RCM. The CFD work aimed to determine a piston crevice 

volume that would maintain a uniform temperature profile, minimise the compressed gas pressure and 

temperature in the reactor chamber. 

 
2. Computational specification 

The RCM has a cylindrical combustion chamber of 40 mm bore. The combustion chamber is oriented 

with the piston moving horizontally and has a stroke of 142 mm. A transient 2-D computational mesh 

was used, axisymmetric symmetry was assumed, and the resolution increased near the walls.  Modelling 

was performed using Ansys Fluent. The actual machine was not truly symmetrical, because of the inlet 

manifold, air inlet port, and pressure transducers have modified  the geometry. No slip is assumed at the 

cylindrical wall boundary, a uniform wall temperature of 298  K  was also assumed.  The compression 

time was approximately 30.8 ms from an initial pressure of 1bar.  A mesh sensitivity study was carried 

out using four different angles for every time step.  The highest step size (δt) was 0.25 and subsequent 

time step was generated by dividing by a factor of 2 to get the following 0.0125, 0.0625, 0.03125 and 

0.015625. It is observed that time step greater than 0.03125 resulted in negative cell volume. To limit 

the computational time as well as avoiding convergence problems with the use of higher time step. A 

value of 0.03125 was used corresponding to the time-step size of 22.57µs for both compression stroke 

and post compression period was reported in all the CFD simulations. The thermal properties were 

generated from the NIST [20] database and specified as temperature dependent polynomials. The 

governing equations for the model are the conservation of energy,  momentum and mass.  The laminar 

flow model was adopted as it has been shown that it can adequately describe the experimental pressure 

history and velocity field inside a rapid compression machine [16, 21, 22]. The segregated implicit solver 

with pressure-implicit split-operator (PISO) algorithm [23] was used for pressure-velocity coupling. The 

pressure staggering option (PRESTO) was chosen as it prevents errors from the interpolation and 

pressuregradient assumptions on boundaries are prevented [24].   

This scheme works better for problems with high body forces (swirl) and the second order upwind 

discretization for density and momentum. The second order upwind scheme changes a differential 

equation into an algebraic equation by Taylor series. It is more preferred than the first order scheme 

because it is more accurate. However, is more computationally expensive. The Navier-Stokes equation 

is solved along with the energy and species transport equations for all species. This evaluates a set of 

equations dependent on the input in fluent is represented by the following equations based on the 2D 

modelling. 
𝝏𝝆

𝝏𝒕
  +  𝛁. (𝝆𝒖)   = 𝟎                                                                                       (1) 

                    
   𝝏𝒖

𝝏𝒕
  + (𝒖. 𝛁)𝒖 =   − 

𝟏

𝝆
𝛁𝒑 +  

𝝁

𝝆
𝛁𝟐𝒖 + 𝑭                                                   (2) 

𝝆 (
𝝏𝑬

𝝏𝒕
  + 𝒖. 𝛁𝑬) − 𝛁. (𝒌𝑯 𝛁𝑻)  + 𝒑𝛁. 𝒖 = 𝟎                                     (3) 
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Where u is the velocity field vector, T  is the temperature, p is the pressure, E is the internal energy, 

𝜌 is the density,𝜇 is the viscosity,𝐾𝐻 is the heat conduction coefficient and F is the force per unit mass.  

This equations 1, 2 and 3 are the continuity, momentum and, energy equation respectively. The above 

equation cannot be solve to give analytical result, but solved in a discretized form.  The Ansys fluent 

operate in a fashion by developing a result using the finite volume method and integrating the above 

equation to give the desired result.   

The velocity profile was derived from raw experimental pressure trace as employed by Mittal [25] 

shown in figure 1. The piston initially starts from rest and travels with a constant velocity at a point; it 

follows a constant speed before decelerating to rest at a constant rate. The section is divided into a three-

time period of the piston motion, which is illustrated in equation 4. This equation is relevant for the 

numerical calculation where the parameters are used to model the compression stroke of the RCM.  
         

       𝒕𝒄𝒐𝒎𝒑 =  𝒕𝒂𝒄𝒄𝒆𝒍  +  𝒕𝒄𝒐𝒏𝒔𝒕 + 𝒕𝒅𝒆𝒄𝒆𝒍      (4)                                                         

Where  𝒕𝒄𝒐𝒎𝒑 overall compression time, 𝒕𝒂𝒄𝒄𝒆𝒍   acceleration time, 𝒕𝒄𝒐𝒏𝒔𝒕 constant velocity time and  

𝒕𝒅𝒆𝒄𝒆𝒍  deceleration time. This profile is  used as the user define function in the CFD for describing the 

piston trajectory. 

 
 

 
 

Figure 1. Piston velocity profile for 4 bar driving pressure obtained from the  

experimental pressure trace 
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Table 1 shows the dimensions of the piston  crevice volume in mm. 

 

Table 1. Dimensions of the piston  crevice volume in mm 

 Crevice 

Volume (𝑚𝑚3) 

Clearance between 

piston and wall 

Inclined 

Angle. 

 

a 

 

 

 

b 

 

 

 

 

c 

Height 

of 

Crevice 

 

d 

 

 

1 282 0.2 15o      2.53 4 14 

2 564 0.2 15o     3.58 4 14 

3 846 0.2 15o     4.39 4 14 

4 1128 0.2 15o     5.06 4 14 

5 1143 0.2 15o     5.66 4 14 

       

 

 

Figure 2, shows a typical computational mesh at the end of the stroke for flat and crevice piston. The 

mesh shown to consist of 20,042  and 26,042 cells respectively, fine grids were used on the walls and 

piston face and coarse meshes in between the piston and the top dead centre (TDC) to adequately capture 

the fluid flow taking place in the chambers. Table 1, shows five different crevice volume that was 

considered in this study. 

 

      
  (a)           (b) 

Figure 2. 2D computational grid for Flat and Crevice piston. 

 

3.  Results 

3.1 Flat piston 

Figure 3, shows the compressed gas temperature contour and velocity profile at the end of compression 

and up to 17 ms post compression time. The use of flat piston produces a vortex which is demonstrated 

in the figure below. At the post-compression stage where ignition delay is bound to occur the vortex 

brought to settle in the core region of the chamber and found to be severe with time distorting the 

homogeneity of the temperature field in the chamber. 
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(b) 
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(c) 

 

Figure 3. Contour of velocity and temperature profile for Flat piston head at Ti = 298K, Pi = 0.7 bar. 

(a). Compression time at TDC (b). 9.2 ms after post compression time (c). 16.11 ms after post 

compression time. 

3.2 Crevice piston 

The piston crevice with 2% of the entire chamber volume, 282𝑚𝑚3, was the best at suppressing the 

boundary layer and providing uniform temperature field with a minimum drop in compressed gas 

temperature and pressure.  Figure 4, presents the contour temperature profile for different crevice 

volume from (a-e). All the crevice volumes used contained the vortex but tends to have a reduced 

compressed gas temperature/pressure as the crevice volume is increased from 282 – 1410 mm3. Figure 

5, shows the isometric view of the crevice piston that was finally machined for the present RCM. 

Figure 6(a), shows the final compressed gas pressure at the current condition and in comparison 

with the experimental pressure trace. There seems to be an agreement between the CFD model and the 

experiment. Matching pressure traces gives an estimated compressed gas temperature as shown in Figure 

6(b).  

 
(a) 
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(c) 
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(d) 

 
(e) 

         

Figure 4. Shows the contour of the compressed gas temperature profile for piston crevice head with 

angled channel. (a) volume = 282 mm3 (b) volume  = 564 mm3 (c) Volume = 846 mm3 (d) Volume = 

1128 mm3 (e) volume 1410 mm3 
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Figure 5. shows (a). The diagram of the crevice region of the piston (b). An isometric view of the 

angle channel design showing the crevice volume. 

 

 
    (a)             (b) 
 

Figure 6. (a) Comparison of Experimental pressure trace with the CFD Model (b) End of compressed 

gas temperature corresponding to PC =15 bar, TC = 615 K. 

 

4. Conclusion 

The CFD modelling demonstrated that the use of flat piston generates a roll-up vortex, which could 

distort the temperature uniformity of the chamber. The results showed that proper machining a crevice 

on the peripheral surface of the piston could control the vortex build up from the walls of the chamber 

and maintain the temperature homogeneity of the chamber. The simulation has shown that piston crevice 

with about 2% of the entire reaction chamber volume was the best for the present RCM. The model 

result from CFD was machined and tested experimentally. At both compression and post compression 

period,  the model was in agreement with the experimental pressure trace.  
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