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We illustrate that singleCcell Raman microspectroscopy, coupled with deuterium isotope 

probing (RamanCDIP), provides a cultureCindependent and nonCdestructive approach to probe 

metabolic pathways of carbon substrates at the singleCcell level. We find a distinguishable CC

D vibration band at 2070 C 2300 cm
C1

 in singleCcell Raman spectra (SCRS) when Escherichia 

coli used deuterated glucose and Pseudomonas sp. used deuterated naphthalene as sole 

carbon sources. The intensity of the CCD band is proportional to the extent of deuteration in 

carbon source, and as low as 5% deuteration can be distinguished by analysis of SCRS. It 

suggests that RamanCDIP could be used to semiCquantitatively and sensitively indicate 

metabolisms of deuterated carbon source in microbes. A lower lipid conversion rate of 

deuterated naphthalene compared to that of deuterated glucose was observed, presumably 

owing to different anabolic pathways and membrane alteration. Apart from CCD band shift 

from CCH, SCRS also reveal several isotopic shifts of phenylalanine band of which the 

positions correlate well with a computational model. A reduction in phenylalanine 

deuteration in Pseudomonas sp. compared to that in E. coli is due to dilution effect of 

deuterated carbon source via different phenylalanine pathways in Pseudomonas sp.. 

Collectively, we demonstrate that RamanCDIP can not only indicate metabolic activity using 

deuterated carbon sources, but also reveal different metabolic pathways by analysing SCRS. 

Harnessing such lowCcost and versatile deuterated substrates, RamanCDIP has the potential to 

probe a wide range of metabolic pathways and functions at the single cell level. 

 

 

!�"#��$�% Raman microspectroscopy, single cell, pathway, stable isotope, carbon source, 

deuterium, metabolism 
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Microorganisms play important roles in almost all ecosystems including natural environment 

and human body; and are extremely abundant and versatile on earth. New generations of 

sequencing technologies usually provide phylogenetical diversity and metagenomic profiling 

of microbial communities, but metabolic functions of individual microbes and their 

molecular mechanism are often elusive owing to the limited culturability and complexity of 

microbial communities
1,2

. Complementary to genomic approaches, stable isotope probing 

(SIP) and molecular biological methods enables functional and metabolic studies of microbes 

by a cultivation–independent way
3
. By exposing microbes to isotopically labelled substrates 

designed to mimic as closely as their naturally more abundant counterpart, it provides a direct 

link between microbial identities and their functions without altering the natural substrate 

pool. SIP has been extensively used in combination with mass spectrometry (MS) and 

nuclear magnetic resonance (NMR) spectroscopy to identify and quantify metabolites with 

high sensitivity
4
. However, these bulk analyses of cell populations obscure at times the high 

heterogeneity within microbial communities. Secondary ion mass spectrometry (SIMS), 

although known to provide high sensitivity and singleCcell resolution, is limited in application 

by its destructive and expensive nature.  

Among SIPCrelated techniques, the combination of singleCcell Raman microCspectroscopy 

and SIP enables nonCdestructive functional studies of microorganisms labelled with stable 

isotopes at a singleCcell level
2
. SingleCcell Raman spectra (SCRS) are regarded as 

biochemical fingerprints of single cells, which provide a snapshot of the intrinsic complex 

phenotypes
5
. Following the first observation of phenylalanine Raman band shifts in 

13
CC

glucose labelled bacterial cells
5
, various isotopeClabelled substrates have been used to exploit 

the potential of singleCcell functions
2,6C10

. Manen et al. reported RamanCSIP detection of 

isotopeClabelled protein using DClabelled phenylalanine, tyrosine and methionine in single 

HeLa cells
11

. By using a mixture of 
12

CC and 
13

CC glucose, Li et al. observed the Raman shifts 

of phenylalanine and thymine in the carbon flow from bacterial prey to its predators
12

. Berry 

et al. developed a universal RamanCSIP method using D2O to measure general metabolic 

activities of single microbial cells
13

. Stiebing et al. visualised lipid uptake and storage within 

single macrophages using deuterated fatty acids
14

. Providing a high variety of possible 

isotopic substrates, RamanCSIP has the potential to probe cell activity and cellular 

metabolism of a broad range of important biomolecules including proteins, lipids, 

carbohydrates and nucleic acids.  
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It has been found that Raman microspectroscopy gives sensitive detection of the 

incorporation of deuterium in single cells
8,13

, as a significant Raman shift in carbonC

deuterium (CCD) vibration from CCH exhibits a clear and strong band at the ‘silent zone’ in 

SCRS which has no detectable Raman bands in most, if not all, cells growing with naturally 

abundant elements (e,g, 
1
H, 

14
N, 

16
O and 

12
C)

2
. Deuterated carbon sources can be synthesised 

by hydrogenCdeuterium exchange reactions in the presence of D2O, which is not only much 

more costCeffective than 
13

CCsubstrates, but also able to make complex substrate or mixed 

compounds
15C17

. Hence, RamanCSIP with deuterated carbon source might be a costCeffective 

and sensitive approach to link cell to their carbon metabolism.  

In this study, we applied RamanCDIP (deuterium isotope probing) to study the assimilation of 

specific deuterated carbon substrates such as glucose and naphthalene into lipid and protein 

compounds in single microbial cells. We used a mixture of glucose/glucoseCd12 or 

naphthalene/naphthaleneCd8 to probe various anabolic pathways of carbon sources and semiC

quantify the biosynthesis of fatty acids and phenylalanine in single cells of E. coli and P. 

putida. Given its ability to probe metabolic metabolism, we believe RamanCSIP can provide 

cultureCindependent insights in understanding the complex physiological systems of 

microbial communities. 

)*�)���)& ��	�)� �'&	

���
�����	 �
�����+	 ���
���	 ���$�
����+	 ��$	 ������$	 
����,��-	For all strains tested, media 

were supplemented with carbon sources containing different ratios of DCglucose (Sigma Co, 

UK, D9434) to DCglucoseCd12 (Sigma Co, UK, 616338) in water, or naphthalene (Sigma Co, 

UK, 84679) to naphthaleneCd8 (Sigma Co, UK, 176044) dissolved in dimethyl sulfoxide 

(DMSO). Pure cultures of Escherichia coli DH5α were grown aerobically overnight with 150 

rpm shaking at 37 °C in M9 minimal medium with 10 mM glucose as the sole carbon source. 

Cultures of Pseudomonas putida strains UWC1 and G7 were grown aerobically for 72 hours 

with 150 rpm shaking at 30 °C in M9 medium with 10 mM naphthalene or glucose as the sole 

carbon source. OD600 were measured during cultivation with deuterated carbon sources. 

Pseudomonas fluorescens WH2 contains pWH2CNah plasmid carrying the naphthaleneC

degradation operon and the plasmid was transferred via conjugation from P. fluorescens 

WH2 to P. putida UWC1 (Table 1). Briefly, P. fluorescens WH2 and P. putida UWC1 were 

grown in LB medium overnight at 30
 
°C. One hundred �L of each were mixed and added on 

a 0.22 µm membrane filter (47 mm diameter, Millipore UK) placing on a LB agar plate, 
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followed by incubation at 30 °C for 16 hours. The bacterial biofilm grown on the filter was 

taken out and resuspended in 5 mL of PBS by vortex. Transconjugants bearing the 

naphthaleneCdegradation plasmid pWH2CNah were selected in M9 minimal medium with 100 

µg/mL rifampicin and naphthalene as the sole carbon source. As P. putida UWC1 cannot 

assimilate naphthalene but is rifampicin resistant (Table 1); and P. fluorescens WH2 doesn’t 

resist rifampicin, only the transconjugants can grow on the selective plates. Colony PCR was 

performed to amply 16SCrRNA of the transconjugants using primers 63f and 1387r
18

. The 

transconjugants Pseudomonas putida UWC1 (pWH2CNah
+
) were confirmed by DNA 

sequencing of the PCR product. 

�����������	�����	����
��	
�����	����������
�	��$	����"���-	Samples were diluted to a 

concentration of ~ 1000 cells mL
C1

 and spotted onto an aluminiumCcoated slide. Individual 

cells were observed under a 100×/0.9 microscope objective. Individual singleCcell spectra 

were acquired using an HR Evolution confocal Raman microscope (Horiba JobinCYvon) 

equipped with a 532 nm neodymiumCyttrium aluminium garnet laser and 300 grooves/mm 

diffraction grating. The 1 Rm
2
 laser spot was used on single cells with a 4.7 mW laser power. 

The spectra were acquired in the range of 500 to 3500 cm
C1

 and the acquisition time was 10 s 

per spectrum. 30 single cells were analysed in each sample. All spectra were processed using 

LabSpec 5 (Horiba) with baseline correction and normalisation. Intensity of each band was 

quantified by calculating area under curve with baseline subtraction. 

SCRS were used to quantify intracellular deuterium content originating from deuterated 

carbon sources. The CCD (2070 C 2300 cm
C1

) and CCH (2800C3030 cm
C1

) band areas were 

calculated by integrating singleCcell spectra. The ratio of CCD / (CCD + CCH) was used to 

indicate the extent of deuterium incorporation from deuterated carbon source 
8,13

. 

�������
���	 �,	 �����	 ,��.�������	 �,	 ����"��������-	 The equilibrium geometry of the 

palmitic acid molecule was calculated at the B3LYP/6 31G** level of theory using 

GAUSSIAN09. The conformer obtained had Cs point group symmetry, with the aliphatic 

backbone lying in the single mirror plane. Wavenumbers of RamanCactive vibrations were 

then calculated for various substitution patterns on the molecular backbone, including allCH 

and allCD forms, the distinct singleCD substitutions in the allCH form, the distinct singleCH 

substitutions in the allCD form, and full deuteration along half the length of the backbone, 

starting from either methyl or carboxylic termini. Examples of calculated Raman spectra are 

shown in Figure S3.	
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Raman wavenumbers of phenylalanine were then calculated at the same level for 32 possible 

isotopomers obtained by H/D substitution on the phenyl ring. The ‘ring breathing’ vibration 

at 1017 cm
C1

 in the ‘all H’ structure was identified as the match for the experimental peak at 

1004 cm
C1

, as it was the only intense peak in that region of the spectrum. The data from each 

of the 32 structures was then grouped by %D in the ring (i.e., 0, 20, 40, 60, 80 and 100%, 

depending on whether there were 0, 1, 2, 3, 4 or 5 D on the ring), and further grouped by 

mirror symmetry to account for the approximately free rotation about the ringCbackbone bond. 

�)�(� �	�&�	����(���'&	

���������	
��
�
�����	��
��
��	������	��
�����
�	��	�
���	���
���
��	������	
�����
�	

Both E. coli DH5α and P. putida UWC1 are able to use glucose as the sole carbon source
19

. 

Figure 1a and 1b show SCRS of E. coli DH5α and P. putida UWC1 grown overnight in 

glucose as sole carbon source with different percentages of fully deuterated glucoseCd12. With 

the presence of deuterated glucose, a distinguishable Raman band appeared in the region 

between 2070 and 2300 cm
C1

 in SCRS, and this broad band was attributed to CCD stretching 

vibrations
2,13

. The intensity of this CCD band was enhanced while that of the CCH band at 

2800 – 3100 cm
C1

 was reduced with increasing percentage of deuterated glucoseCd12 in the 

growth media. This spectral pattern demonstrates exchanges of intracellular H by D due to 

metabolism of deuterated carbon sources (Fig. S2). 

Pseudomonas fluorescens WH2 and P. putida G7 are two bacteria capable of utilising 

naphthalene as sole carbon and energy source. The naphthaleneCdegradation trait is conferred 

by plasmid pWH2CNah in P. fluorescens WH2
9
 and NAH7 in P. putida G7

20
. P. putida 

UWC1 received pWH2CNah plasmid by conjugation with P. fluorescens WH2, obtaining the 

ability to metabolise naphthalene. Figure 1c and 1d show SCRS of P. putida UWC1 (pWH2C

Nah
+
) and P. putida G7 (NAH7) grown in naphthalene as the sole carbon source with 

different percentages of fully deuterated naphthaleneCd8. Similar to deuterated glucoseCd12 

metabolism shown above, the intensity of the CCD band proportionally increased with 

increasing percentage of deuterated naphthaleneCd8 in the growth medium. Controls of P. 

putida UWC1 (pWH2CNah
+
) without naphthalene and P. putida UWC1 with 100% 

naphthaleneCd8 displayed a flat and ‘silent’ CCD region between 2070 and 2300 cm
C1

 in SCRS 

and no increase in OD600 after incubating for 72 hours (Fig. S1), ruling out any solvent effect 

or abiotic HCD exchanges in the cells.  
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Deuterium and hydrogen are chemically identical as deuteration has negligible effect on atom 

size, molecular shape, equilibrium bond length or stiffness
21

, apart from small vibrational 

effects. Deuteration does however influence Raman positions for spectral modes in which the 

H/D atom is moving, and kinetics of reactions in which the H/D atom is involved. Therefore, 

we assume that, to some extent, cells are unable to distinguish between undeuterated carbon 

sources (glucose and naphthalene) and fully deuterated carbon sources (glucoseCd12 and 

naphthaleneCd8) in carbon metabolism. Figure 2 shows the growth curves of microbes in the 

presence of different percentages of deuterated carbon sources. The three P. putida strains 

UWC1, UWC1 (pWH2CNah
+
) and G7 were unable to distinguish deuterated and 

undeuterated glucose/naphthalene and exhibited no growth differences among conditions 

from 0 C 100% deuterated glucose and naphthalene (p > 0.01). There was no significant 

observable effect on the growth kinetics of E. coli grown in 0 C 100% deuterated glucose in 

the initial 6 hours (p = 0.058). Although 0 C 75% deuterated glucose conditions featured 

indistinguishable growth curves, 100% deuterated glucose exhibited a repressed stationary 

phase compared to other less deuterated glucose. It is unclear why it happened. 

Formation of a CCD bond in a deuterated carbon source is passed to NADP
+
 to form NADPD, 

which is then used to form a new CCD bond during reduction reactions to synthesise cellular 

building blocks (e.g. lipids) (Fig. S2). This CCD bond leads to a clearly distinguishable broad 

band at 2070 C 2300 cm
C1

 in SCRS. Figure 3 shows that the intensity ratio of CCD / (CCD + CC

H) in SCRS and the percentage of deuterated carbon source followed a linear relationship in 

all four cases, regardless of carbon source and bacterial species. It suggests that cells should 

statistically incorporate D from deuterated carbon source into cells, proportional to the 

percentage of deuterated carbon source in the medium. This result is in good agreement with 

our hypothesis that cells cannot distinguish deuterated carbon sources from their unlabelled 

counterparts. The SCRS demonstrate a sensitive D detection limit at as low as 5% deuterated 

glucose (p < 0.001) and 5% deuterated naphthalene (p < 0.01) (Fig. 3).  

Calculations on the palmitic acid molecule as a typical fatty acid (Fig. S3) were used to shed 

further light on the above spectral observations. In summary: the stretches of CCH / CCD 

bonds on the aliphatic backbone are found to be effectively decoupled from other molecular 

vibrations. Each D substitution in a CH2 or CH3 group of the backbone produces an extra 

contribution to the band in the CCD stretch region (~2150 – 2350 cm
C1

 in the calculated 

spectrum, corresponding to an overestimation by a few percent of the vibrational force 

constant) and removes intensity from the CCH stretch region (~2950 – 3150 cm
C1

 in the 
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calculated spectrum), as predicted by the √2 rule arising from reduced mass effects, and with 

the contribution of each CCH and CCD to band area being in approximately 2:1 ratio. The 

effects of D substitution are more or less independent of the number and position of 

substitutions on carbon atoms of the backbone. Thus, the spectral intensities could be used to 

estimate CCD/CCH ratios here and in similar aliphatic environments.  

Although lipids synthesis plays the most important part in the D incorporation at 2070 C 2300 

cm
C1

 as it contributes roughly 20C35% to the total cellular CCH content
13

, theoretically, CCD 

Raman band can include any possible CCD vibrations in lipids, proteins, nucleic acids and 

carbohydrates. Our results suggest that this process is a ubiquitous metabolic process which 

can be sensitively detected by SCRS. Taken together, a deuterated carbon source can be used 

as a universal indicator to probe carbon utilisation. 

���������	 ��������	 ��

���
	 ���
��
��
�
	 ��
����
	 ��	 ��

�	 ����
	 

��
���	 ����	��������
	

���
���
��	������	
�����
�	

In Figure 3, despite showing a linear relationship under both glucose and naphthalene 

conditions, the slopes of the lines are significantly different (p < 0.001). When the cells were 

grown in 100% glucoseCd12 as the sole carbon source, the ratio of CCD / (CCD + CCH) was 

21.7% in E. coli and 29.0% in P. putida UWC1. However, when 100% naphthaleneCd8 was 

used as the sole carbon source, the ratio decreased greatly, to 5.7% in P. putida UWC1 

(pWH2CNah
+
) and 3.5% in P. putida G7. As lipid biosynthesis contributes roughly 20C35% to 

the total cellular CCH content
13

, it plays a crucial part in the appearance of the broad CCD 

band through different lipid catabolic pathways degrading glucose or naphthalene (Fig. 4). 

The glycolytic conversion of fatty acids from carbohydrates generates a common 

intermediate phosphoenolpyruvate (PEP) through both EmbdenCMeyerhofCParnas (EMP) and 

EntnerCDoudoroff (ED) pathways in E. coli
22

 and almost exclusively through the ED route in 

P. putida
23

. The aerobic degradation of naphthalene, however, proceeds in more steps 

involving twoCstage cleavages of aromatic rings in naphthalene
24

. The first cleavage stage 

produces a central intermediate – salicylate, which is further converted to catechol
25

. This is 

followed by the second stage which includes ring fission by either orthoCcleavage between 

the hydroxyl groups or metaCcleavage adjacent to one of the hydroxyls
25

. The resulting 

intermediates then get into central metabolism to produce TCA cycle intermediates such as 

acetylCCoA, succinylCCoA, oxaloacetate and pyruvate. Hence, the pathway to make key 

metabolites for fatty acids synthesis via naphthalene metabolism in microbes is involved in 

more anabolic steps than that via glucose metabolism (Fig. 4). A significant amount of D in 
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original naphthaleneCd8 substrate was gradually lost during the ringCcleavage reactions, which 

contributed to the lower intensity ratio of CCD / (CCD + CCH) observed in the cells grown 

with deuterated naphthalene than those grown with deuterated glucose in P. putida UWC1 

(Fig. 3). This pattern was not limited to P. putida UWC1 grown in deuterated glucose and 

naphthalene. It was also true in other strains such as E. coli DH5a grown in deuterated 

glucose and P. putida G7 grown in deuterated naphthalene (Fig. 3), which collectively 

validates the mechanistic explanation in Figure 4. Furthermore, it has been previously 

reported that the structure and composition of fatty acids changed in microorganisms grown 

with aromatic compounds as a sole carbon source
26

. An increase in the 

saturation/unsaturation ratio in naphthaleneCgrown cells compared to glucoseCgrown cells 

was found in P. putida, P. stutzeri, P. vesicularis and Pseudomonas sp. JS150
27,28

. This 

increase in membrane lipid saturation is consistent with the application of a previously 

postulated adaptive mechanism to compensate the fluidising toxicity on bacterial membranes 

caused by many aromatic compounds such as naphthalene, benzene, phenol and catechol
29,30

. 

It leads to less CCH bonds in lipids when cells were grown in naphthalene, further reducing 

CCD bonds observed in SCRS. In summary, the intensity ratio of CCD / (CCD + CCH) is 

dependent on the degree of cellular H/D exchanges which stems from different deuterated 

carbon sources, proceeds through various numbers of metabolic steps, and finally yields 

essential metabolites for lipid biosynthesis. 

���������	 ��������	 ��

���
	 ���
��
��
�
	 ��
����
	 ��	 �������������	 

��
���	 ����	

��������
	���
���
��	������	
�����
�	

In addition to the CCD spectral feature observed in SCRS at 2070 C 2300 cm
C1

, isotopic shifts 

were also observed at 1004 cm
C1

 which can be assigned to the aromatic amino acid 

phenylalanine
 
(Fig. 1 and Fig. 5). Figure 5 highlights the Raman shift around 1004 cm

C1
 in a 

magnified view between 940 – 1020 cm
C1

 in Figure 1. Here we observe the shifts from 1004 

cm
C1

 to 988, 976 and 962 cm
C1

 when cells were grown with deuterated glucose (Fig. 5). This 

is in a good agreement with a previous study of Geobacter metallireducens grown with 

deuterated acetate, observing a splitting pattern of phenylalanine Raman band
7
. However, the 

shifts were absent when cells were grown with deuterated naphthalene (Fig. 5). To 

understand the observed shifts of phenylalanine band, we calculated the equilibrium 

geometry and Raman frequencies for 32 possible isotopomers of phenylalanine depending on 

different D substitutions on the phenylalanine ring (Table S1). This results in a total of 4 

possible Raman positions of the H/D mixture at 1004, 989C990, 976 and 962C963 cm
C1

 (Table 
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S1, Fig. S4, and Fig. S5), which correlate well with the experimental band positions (Table 

S2). The theoretical calculation also offers a good explanation for the differences in isotopic 

shifts with respect to different D percentages. Owing to the form of the vibrational mode, in 

which the motion is a threeCfold asymmetrical breathing of three CCH (or CCD) units against 

the rest of the molecular framework, with little participation of the remaining ring CCH units. 

Substitutions at only three sites on the phenyl ring (sites 1, 3 and 5) are found to affect the 

position of the vibration (Fig. S4). The bands at 1004 cm
C1

 correspond to structures where 

sites 1, 3 and 5 are H, and so can occur when some D is present in the sample. The bands at 

989C990 cm
C1

 occur when any of the sites 1, 3 and 5 are D. The bands at 976 cm
C1

 occur when 

any two of the sites 1, 3 and 5 are D, and therefore only present at higher D/H ratios. The 

bands at 962 correspond to structures where sites 1, 3 and 5 are D, and hence can only appear 

at D/H ratios above 60%, which correlates nicely with the observation that the bands at 962 

cm
C1

 were only present under conditions with 75% and 100% deuterated glucose (Fig. 5a and 

5b). The wavenumber shifts of 3%, 6% and 9% are consistent with the effect of changing the 

mass of the small units vibrating harmonically against a rigid framework, where each active 

D contributes additively to the higher effective mass for the vibration, and hence gives rise to 

a square root dependence in mode wavenumbers. 

We then quantified the degree of D incorporation by calculating the ratio of total D to total H 

and D as following, in which � represents the area under the curve centred at a defined 

wavenumber: 

Total	
�

� + �
=
�	
�	�
�� +

2
3
	× 	�	�
	�
�� +

1
3
	× 	�	�		�
��

�	�
	�
�� + �	�		�
�� + �����	�
��
 

A high variability of the cellular D content at the same level of deuterated carbon source was 

observed between carbon sources and between species. In Figure 6, linearity is found 

between D percentage and cellular D uptake under the conditions with glucose. However, E. 

coli grown in 100% deuterated glucoseCd12 displays a much higher D incorporation (58.1%) 

than P. putida UWC1 in the same carbon source (28.3%). This can be explained by the less 

efficient utilisation of glucose in P. putida compared to E. coli (Fig. 7a and 7b). The 

catabolism of glucose in E. coli DH5α has been proven mainly via the EMT pathway and the 

phosphotransferase (PTS) system, in which glucose is phosphorylated to glucoseC6P and 

eventually converted to phosphoenolpyruvate (PEP) for the synthesis of aromatic amino acids 

via the shikimate pathway
31

 (Fig. 7a). In contrast, it is reported that bacteria of Pseudomonas 
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spp. catabolise glucose almost exclusively through the ED pathway
32,33

 (Fig. 7b). This 

pathway in P. putida involves three simultaneous subCpathways starting with glucose, 

gluconate or 2CketoCgluconate that converge at the level of 6Cphosphogluconate (6PG)
34

. 6PG 

is further converted to a key intermediate 2CketoC3CdeoxyC6Cphosphogluconate (KDPG) and 

continues to the production of PEP. The interconversion and cellular transportation of 

glucose, gluconate and 2CketoCgluconate in three convergent pathways might largely 

contribute to the D loss observed in SCRS of Pseudomonas bacteria grown with deuterated 

glucose. On the other hand, when deuterated naphthalene was used as the sole carbon source, 

no shifts of the phenylalanine band at 1004 cm
C1

, presumably caused by D incorporation, was 

detected in P. putida UWC1 (pWH2CNah
+
) and P. putida G7 cells (Fig. 5c and 5d). These 

cells were unable to directly convert naphthalene into shikimate pathway intermediates 

before entering central metabolism cycle (Fig. 7c). D in naphthalene was largely lost during 

the twoCphase ring cleavage processes and further diluted in the TCA cycle before D was 

used to form phenylalanine. Therefore, D in naphthaleneCd8 was largely lost due to many 

dilution steps in naphthalene pathway (Fig. 7c), whilst D is less diluted and remained in 

intermediate metabolites to make phenylalanine in glucose metabolic pathway (Fig. 7a and 

7b). Our results suggest that RamanCDIP could indicate relative numbers of dilution steps in 

metabolic pathways by analysing isotopic shifts of the phenylalanine band in SCRS. 

�����
���
	��	���������	��	��
������	

����
	��	�
���	���
���
��	������	
�����	

RamanCDIP has advantages over other analytical technologies of SIP in terms of its nonC

destructive nature, high isotopic sensitivity (detection limit at ~5% deuteration) and singleC

cell level detection. Its nonCdestructive nature offers possibilities for downstream singleCcell 

sorting and omics (e.g. single cell genomics) analysis
2,35

. When combining with metabolic 

studies, it has the potential to provide a cultureCindependent approach to probe metabolic 

activity at the singleCcell level in complex microbial communities. In SIP practice, 
13

CC

labelled or 
15

NClabelled derivatives of substrates are generally expensive and a lot of them are 

not commercially available, which limits their use in RamanCSIP studies. This problem can 

be overcome by using much less expensive deuterated carbon substrates, as these deuterated 

compounds can be synthesised more efficiently and more cost effectively by H/D exchange 

reactions in D2O environment
16

. The relatively low cost and high versatility of DClabelled 

substrates allows a wider applicability to make a broad range of complex deuterated 

substances including natural products, medicines, and deuterated mixtures containing 
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multiple chemicals. RamanCDIP using these DClabelled substrates is therefore invaluable in 

the functional studies of microbial cells in their natural habitats at the singleCcell level. 

�'&��(��'&�	

We demonstrate that RamanCDIP is able to probe metabolic pathways at the singleCcell level 

using deuterated carbon sources. By culturing microbes in deuterated glucose and 

naphthalene, we observed an isotopic Raman shift from CCH to CCD and the intensity of the 

CCD band can be used as an indicator of microbial carbon utilisation. The differences in 

cellular D uptake were due to different metabolic pathways of glucose and naphthalene. It is 

found that the isotopic Raman shifts at phenyl ring vibration are related to dilution steps of 

deuterated substrates in different metabolic pathways. A mathematical model was developed 

to calculate the D content in phenylalanine and its variation was dependent on different 

metabolic pathways. This study unveils the potential of RamanCDIP in the metabolic and 

functional study of microbial cells using lowCcost and versatile DClabelled substrates. 
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Details on control Raman spectra, control growth kinetics, biological mechanism, 

phenylalanine structure and computational calculations included in supplementary figures 

(Figure S1CS5) and tables (Table S1CS2). 
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 ����	4-	Strains and plasmids used in this study 

�
����<������$	 �������
���	 ��,������	

Escherichia coli DH5α F
=
 φ80lacZ∆M15 ∆(lacZYA=argF)U169 

recA1 endA1 hsdR17(rk= , mk
+
) phoA supE44 

thi=1 gyrA96 relA1 λ
=
 

Invitrogen 

UK 

Pseudomonas putida UWC1 Mutant of Pseudomonas putida KT2440; 

Rip
R
, Rifampicin resistant, able to glucose as 

sole carbon source 

19,36
 

Pseudomonas putida G7	 Naphthalene degradation bacterium with 

plasmid NAH7, cannot use glucose as sole 

carbon source 

20
 

Pseudomonas fluorescens 

WH2	

Naphthalene degradation bacterium with 

plasmid pWH2CNah 

9
 

Pseudomonas putida UWC1 

(pWH2CNah
+
) 

Transconjugant of Pseudomonas putida 

UWC1 bearing the pWH2CNah plasmid from 

Pseudomonas fluorescens WH2 

This study 

pWH2CNah Naphthalene degradation plasmid of 

Pseudomonas fluorescens WH2 

9
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1�����	 4. SingleCcell Raman spectra (SCRS) of (a) E. coli DH5α and (b) P. putida UWC1 

grown in glucose with different ratios of deuterated glucoseCd12. (c) P. putida UWC1 (pWH2C

Nah
+
) and (d) P. putida G7 grown in naphthalene with different ratios of deuterated 

naphthaleneCd8. The characteristic CCD Raman band centred at 2170 cm
C1

 is highlighted and it 

increases in intensity with increasing deuteration of the carbon source in all cases. Each 

spectrum is an average of 30 singleCcell Raman spectra and the shaded area represents the 

standard deviation of the spread in singleCcell measurements. 
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1�����	 2. Growth curves were created by OD600 measurements of cultures of (a) E. coli 

DH5α and (b) P. putida UWC1 grown in M9 with different ratios of deuterated glucoseCd12, 

(c) P. putida UWC1 (pWH2CNah
+
) and (d) P. putida G7 grown in M9 with different ratios of 

deuterated naphthaleneCd8. E. coli DH5α using 100% glucoseCd12 displays a similar log 

growth phase but an inhibited stationary phase compared to other deuterated conditions. All 

OD600 of P. putida UWC1, P. putida UWC1 (pWH2CNah
+
) and P. putida G7 before and after 

incubation show no significant difference (p > 0.01) among conditions with 0% to 100% 

naphthaleneCd8.  
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1�����	 ;. Comparison of the percentage of D content in carbon source with the band 

intensity ratio of CCD / (CCD + CCH) in SCRS of E. coli DH5α and P. putida UWC1 grown in 

glucose, and of P. putida UWC1 (pWH2CNah
+
) and P. putida G7 grown in naphthalene, with 

different percentages of glucoseCd12 or naphthaleneCd8. All conditions show a linearity 

between carbon source D percentage and cellular D incorporation. However, bacterial cells 

grown with naphthalene have a significant lower D incorporation compared to cells grown 

with glucose (p < 0.001). 
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1�����	 6. Fatty acids metabolic pathways starting from (a) deuterated glucose and (b) 

deuterated naphthalene. In both pathways, deuterated carbon source degradation leads to 

production of deuterated fatty acids and is therefore responsible for the shift from CCH (2800 

C 3030 cm
C1

) to CCD (2070 C 2300 cm
C1

). Pathway (b) shows dilution of D in naphthalene 

catabolism during degradation of the aromatic ring. 

  

� �

�

�

��

�

�

Naphthalene

Citrate

AcetylCCoA
��� �

�

�����

MalonylCCoA
�� �

�

����

�

���

Fatty acids

� ���

�� �

��� �

� ���

�� ��

��� ��

Glucose

���

� �

���

Phosphoenolpyruvate (PEP)

	

ATP

ADP
pyruvate kinase

���

� �

��

Pyruvate

� �

�����

�

���

Oxaloacetate

��

AcetylCCoA

�� �

�

�����

�

�

��� ���

���

� ���

Citrate

�

�

�

�

MalonylCCoA

� �

�

����

�

���

Fatty acids

AcetylCCoA

�� �

�

�����

�

�

� ��

��

�

��

�

�

1, 2CDihydroxynaphthalene

���

��

�

�

�

�

Salicylate

��

��

�

�

�

�

Catechol

���

�

�

���

�

�

4COxalocrotonate

orthoC/metaC 

ring fission

Ring cleavage

���

�

�

��

4CHydroxyC2Cketovalerate

���� ���

�

Pyruvate

AcetylCCoA

���

�

�

�����

��

��� ���

���

��� ���

�

(a) (b)

Page 18 of 22

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19 

 

 

1�����	8. Enlarged view of phenylalanine shifts from 1004 cm
C1

 to 988, 976 and 962 cm
C1

 in 

the Raman spectra with respect to different ratios of deuterated growth glucoseCd12 or 

naphthaleneCd8. Each spectrum is an average of 30 singleCcell Raman spectra. 
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1�����	5. Comparison of D content in phenylalanine band of SCRS of E. coli DH5α and P. 

putida UWC1 grown in glucose, and P. putida UWC1 (pWH2CNah
+
) and P. putida G7 grown 

in naphthalene with respect to different percentages of deuterated glucoseCd12 or naphthaleneC

d8. Both glucose conditions show a linearity between carbon source D percentage and cellular 

D incorporation. However, no D incorporation is observed in bacterial cells grown with 

naphthalene. 
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 1 
 2 

1�����	7. Phenylalanine metabolic pathway of (a) E. coli grown in glucose, (b) P. putida UWC1 grown in 3 

glucose, and (c) P. putida UWC1 (pWH2CNah
+
)	 grown in naphthalene. Pathway (b) shows the three 4 

simultaneous subCpathways in Pseudomonas using deuterated glucose, which might contribute to the 5 

observed less D incorporation compared to E. coli. Pathway (c) suggests little D incorporation from 6 

deuterated naphthalene degradation due to dilution of D during the twoCphase ring breaking processes and in 7 

the TCA cycle. 8 
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