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Abstract—THz coplanar waveguides were fabricated on quartz
wafers with integrated epitaxially transferred low temperature
grown gallium arsenide photoconductive switches. THz radiation
was excited on-chip and transmitted through a tapering of the
coplanar waveguide structure where it was focused down to
∼ 1.66µm. Theoretical modelling of the device confirms high
E-field confinement and concentration.

I. INTRODUCTION AND BACKGROUND

PLASMONIC devices are among the most promising for

the control and focusing of THz radiation. The THz

electric field couples to charge density oscillations in a metal

allowing the effective transmission of THz radiation on metal

waveguides on subwavelength length scales [4]. Possible ap-

plications include near-field imaging [1] and spectroscopy [5],

while subwavelength control of THz radiation is a necessary

step along the road to many potential integrated THz systems.

In this paper, tapered coplanar waveguides (CPWs), are both

modelled and fabricated. THz pulse propagation through a

CPW with total width of ∼ 1.66µm is demonstrated exper-

imentally.

II. MODELLING

HFSS simulations were conducted for a tapered CPW. The

starting width from ground plane to ground plane in the CPW

was 50 µm, with the centre track having a width of 30 µm

and gaps of 10 µm to the ground plane on each side, before

being linearly tapered to a width of 1.66 µm over a distance of

500µm. The centre track-to-gap ratio was maintained at 3:1 to

avoid impedance discontinuities. Cross sections of the electric

field were plotted at regular points along the tapered CPW,

and the field intensity profiles extracted. The confinement area

was defined as the area where the field is within an order of

magnitude of the maximum value. Confinement area and the

average field in this area are plotted against taper width in

Fig. 1.

III. FABRICATION

300 nm of low temperature grown Gallium Arsenide (LT-

GaAs) was grown on a Gallium Arsenide substrate at a

temperature of 205◦C with a 100 nm release layer of AlAs in-

between. It was annealed at a temperature of 550◦C in order

to increase its dark resistivity [3]. Black wax was melted on

to protect the LT-GaAs surface and the edges were cleaned

using a non-selective fast sulphuric acid etch ensuring that

the AlAs boundary layer was fully exposed. A slow HF acid

etch was then performed for ∼24 hours at 3◦C to separate the

Fig. 1. The confinement area and the average field strength in that confinement
area of each of the field distributions produced by HFSS is shown.

Fig. 2. The transmitted power as modelled in HFSS and as calculated from
changes in the FFT of transmitted pulses.

LT-GaAs and black wax from the GaAs substrate. The LT-

GaAs was then transferred onto a quartz substrate, ensuring

that there was a thin film of water between the LT-GaAs and

the quartz. Next, the device was heated at 80◦C for two hours

to allow the water film to evaporate without boiling while

also softening the black wax to allow for conformal adhesion.

The black wax was then removed in trichloroethylene. Finally

the device was baked at 250◦C at a pressure of 30 mBar for

15 hours to ensure total dehydration and improve LT-GaAs

adhesion to the substrate.

Electron beam lithography was used to define a narrow

taper region with optical lithography used to define the rest

of the waveguide and photoconductive switches. In both cases

Ti/Au was evaporated, with thicknesses of (5/100)nm for the

1



Fig. 3. A straight tapered CPW. Fig. 4. Tapered CPW with curved
delay section.

EBL step, and (5/150)nm for the optical lithography step. An

example device is shown in figure 3 where the transition from

optical lithography to EBL can be seen at the top and bottom

of the image. The dimensions of the waveguide were designed

to be as close as possible to the theoretical model. However,

the necessity of transitioning from an optical lithography layer

to an EBL layer means that the overlap region will have two

layers of Ti/Au, and also that any misalignment will result in

deviations from the model design.

IV. RESULTS

A sliding switch method was used to measure THz pulse

generated current at different points along the tapered waveg-

uide. The transmitted power S21 was calculated for 1 THz; it

shares a similar functional form with the model as shown in

Fig. 2. This was measured for two devices, with similar results

seen for both, though for the second device, the measured

results deviated from the model in the overlap region between

the EBL and optical layers. This is presumed to be due to

slight alignment errors in the fabrication process.

To confirm that the THz pulse was confined to the waveg-

uide, and not transmitted through substrate modes or direct

(in-air) coupling, a CPW was also made with a curved section

that added at most 110 µm perpendicular to the track length

(figure 4). Previously measured Au CPWs-on-quartz gave

pulse velocities of 1.69× 108ms−1, so this additional length

of waveguide should delay the pulse by at least 500 fs.

The device was mounted on a stage that allowed measurable

variation in the z direction, and this was used to vary the

position of the probe laser pulse along the CPW. THz time

domain scans were taken at 100 µm increments, and the

position of the pulse peak noted. This can be seen in Fig.

5. There is a clear discontinuity in the peak location around

the middle of the waveguide where the extra curved section

lies. This demonstrates that the THz pulse was confined to the

CPW, and did not simply couple across. HFSS models confirm

this confinement through the curved region. The reciprocal of

the slope of the data before and after the discontinuity gives

a pulse velocity of (1.54± 0.02)× 108ms−1, which is slower

than previously measured devices, possibly due to the effect

of the sheet of high permittivity GaAs. In previous devices,

Fig. 5. The THz peak position plotted against the laser probe pulse z position
on the CPW. The change in peak position at the centre is clearly visible.

the GaAs was etched away everywhere but the switches. This

removes its influence on the transmitted pulse, but does not

allow the use of the sliding switch method of measurement.

For constant pulse velocities in the extra loop , the largest

discontinuity that could be expected was 724fs , however the

change in the time delay was found to be 1± 0.1ps. This

is likely due to a slower pulse velocity in the tapered region

compared to a untapered waveguide, caused either by focusing

effects [6] or by increased interaction with the GaAs as the

field is confined in this region.

V. CONCLUSION

Transmission of THz radiation through tapered CPWs was

demonstrated experimentally and modelled in HFSS. Trans-

mitted powers follow a similar functional form between the

model and experiment. The high field confinement, associated

with the ability to guide THz radiation via lithography defined

waveguides opens the possibility of direct sensing or excitation

of submicron electronic/spintronic devices.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge funding from EPSRC .

REFERENCES

[1] M. Awad, M. Nagel, and H. Kurz. Tapered Sommerfeld wire terahertz
near-field imaging. Citation: Applied Physics Letters Phys. Lett. J. Appl.

Phys, 94(98):51107–14910, 2009.
[2] D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang. Local

electric field enhancement during nanofocusing of plasmons by a tapered
gap. Physical Review B, 75(3):035431, jan 2007.

[3] I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H.
Linfield, A. G. Davies, and M. Missous. High resistivity annealed
low-temperature GaAs with 100 fs lifetimes. Applied Physics Letters,
83(20):4199, nov 2003.

[4] D. M. Mittleman. Frontiers in terahertz sources and plasmonics. Nature

Publishing Group, 7, 2013.
[5] C. Russell, C. D. Wood, A. D. Burnett, L. Li, E. H. Linfield, A. G. Davies,

and J. E. Cunningham. Spectroscopy of polycrystalline materials using
thinned-substrate planar Goubau line at cryogenic temperatures. Lab on

a Chip, 13(20):4065, 2013.
[6] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi.

Guiding of a one-dimensional optical beam with nanometer diameter.
Optics Letters, 22(7):475, apr 1997.

2


