
This is a repository copy of Analysis and Optimization of Message Acceptance Filter
Configurations for Controller Area Network (CAN).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/125190/

Version: Accepted Version

Proceedings Paper:
Pölzlbauer, Florian, Bate, Iain John orcid.org/0000-0003-2415-8219 and Davis, Robert Ian
orcid.org/0000-0002-5772-0928 (2017) Analysis and Optimization of Message Acceptance
Filter Configurations for Controller Area Network (CAN). In: International Conference on
Real-Time Networks and Systems. ACM , pp. 247-256.

https://doi.org/10.1145/3139258.3139266

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1145/3139258.3139266
https://eprints.whiterose.ac.uk/id/eprint/125190/
https://eprints.whiterose.ac.uk/

Analysis and Optimization of Message Acceptance Filter
Configurations for Controller Area Network (CAN)

Florian Pölzlbauer
Virtual Vehicle Research Center,

Austria
florian.poelzlbauer@v2c2.at

Robert I. Davis
University of York, UK
& Inria, Paris, France
rob.davis@york.ac.uk

Iain Bate
University of York,

UK
iain.bate@york.ac.uk

ABSTRACT

Many of the processors used in automotive Electronic Control
Units (ECUs) are resource constrained due to the cost pressures
of volume production; they have relatively low clock speeds and
limited memory. Controller Area Network (CAN) is used to connect
the various ECUs; however, the broadcast nature of CAN means
that every message transmitted on the network can potentially
cause additional processing load on the receiving nodes, whether
the message is relevant to that ECU or not. Hardware filters can
reduce or even eliminate this unnecessary load by filtering out
messages that are not needed by the ECU. Filtering is done on the
message IDs which are primarily used to identify the contents of the
message and its priority. In this paper, we consider the problem of
selecting filter configurations to minimize the load due to undesired
messages. We show that the general problem is NP-complete. We
therefore propose and evaluate an approach based on Simulated
Annealing. We show that this approach finds near-optimal filter
configurations for the interesting case where there are more desired
messages than available filters.

CCS CONCEPTS

· Networks → Network resources allocation; Network
design and planning algorithms; Network performance

analysis; · Computer systems organization → Real-time
system specification;

KEYWORDS

controller area network (CAN), message acceptance filter,
optimization, simulated annealing, automotive, real-time

ACM Reference format:

Florian Pölzlbauer, Robert I. Davis, and Iain Bate. 2017. Analysis and

Optimization of Message Acceptance Filter Configurations for Controller

Area Network (CAN). In Proceedings of RTNS ’17, Grenoble, France, October

4ś6, 2017, 10 pages.

https://doi.org/10.1145/3139258.3139266

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS ’17, October 4ś6, 2017, Grenoble, France

© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5286-4/17/10. . . $15.00
https://doi.org/10.1145/3139258.3139266

1 INTRODUCTION

Controller Area Network (CAN) is a multi-master serial data bus
[3] with real-time capabilities [10, 11]. CAN is a broadcast bus, thus
each message that is transmitted on the network can be received
by every node connected to it. Each node then needs to decide if
the message is relevant for it or not. This is done by examining the
message ID, which uniquely identifies each message. Effectively,
each node needs to perform filtering of all incoming messages, and
then process only those messages relevant to it.

If a high number of messages are broadcast over the network,
but only a small number of them are relevant to a particular node,
then software-based filtering can become a substantial source of
unnecessary runtime overhead. The high number of message
receive interrupts and the execution of code for software-based
filtering cause significant processor load; particularly for
processors running at relatively low clock speeds. In order to
tackle this problem, CAN-controllers are equipped with hardware
based message acceptance filters. When configured appropriately,
these filters can block most or all of the messages which are not
relevant to the node. Since filtering is done via hardware, the ECU
only processes relevant messages avoiding unnecessary overhead.
If the hardware filter configuration is not perfect, then some
undesired messages will still pass through. In general, a
multi-stage approach is typically needed, involving (i)
hardware-based message filtering, (ii) software-based message
filtering, and finally (iii) message processing.

Hardware-based filtering is useful for any CAN-node, but is
particularly important for low performance nodes that are
connected to a heavily utilized network, and for gateway nodes
which are connected to multiple networks. Clearly the goal is to do
as much filtering as possible in hardware, as it comes with no
processing cost. A perfect hardware filter configuration is one
where no subsequent software filtering is needed and no desired
messages are discarded. This raises an interesting and challenging
engineering task: How best to configure the hardware-based
message acceptance filters? To the best of our knowledge, this
problem has not been addressed by the research community.

With CAN, as well as uniquely identifying the message, the
message ID is also used as the priority for bus arbitration [10].
This dual purpose complicates the problem of ID assignment and
message filtering. In some systems, for example based on Volcano1,
designers have full control over the configuration of all message IDs.
In this case the two key problems of ID assignment and message
filtering can be considered together. An effective way of doing this
is to partition the message ID field into two sections, with the most
significant bits (that are transmitted first) reserved for the unique
message priority, and the least significant bits used for filtering.

1See https://www.mentor.com/products/vnd/in-vehicle_software/

https://doi.org/10.1145/3139258.3139266
https://doi.org/10.1145/3139258.3139266
https://www.mentor.com/products/vnd/in-vehicle_software/

RTNS ’17, October 4ś6, 2017, Grenoble, France Florian Pölzlbauer, Robert I. Davis, and Iain Bate

With 29-bit IDs, 11 bits could be used for a unique message priority,
with the remaining 18 bits used as an address field to indicate which
nodes on the network need to receive the message (1 bit per node).
With this scheme, perfect filtering can be supported for up to 18
nodes, which is sufficient for most automotive applications2. With
11-bit IDs the problem is more acute, since with typical numbers of
messages (circa 100) there are too few bits left for effective filtering.

The ideal scenario of complete freedom to set the IDs of all
messages is in any case rarely seen in practice [7]. The use of
legacy software, ECUs transmitting messages with predefined IDs
(for logistical reasons), and the allocation of message IDs reflecting
only the ECU supplier and data content mean that in many systems
the message IDs are fixed. This leaves the problem of determining,
for each individual ECU, the best filter configuration, given the
fixed set of messages transmitted on the network and the subset of
those messages which it needs to receive. This is the problem that
we address in this paper.

We focus on two related questions: 1. How to assess the quality
of a filter configuration? 2. How to find an optimal filter
configuration? By answering these questions, we make the
following contributions: (i) We bring the CAN message acceptance
filter problem to the attention of the real-time community. (ii) We
formally define the problem, and its complexity. (iii) We provide a
metric for determining the quality of filter configurations. (iv) We
provide a method for finding optimal or near-optimal filter
configurations.

1.1 Organization

The remainder of the paper is organized as follows: Section 2
introduces the system model, explains how hardware-based
message acceptance filtering works, and provides a brief review of
the hardware filters provided by different CAN controllers. Section
4 describes a quantitative metric that can be used to assess the
quality of a given filter configuration. Section 5 considers the
problem of optimizing the filter configuration. The general
problem is shown to be NP-complete, optimal solutions are
provided for special cases, and a generic approach based on
simulated annealing is proposed. Section 6 evaluates the proposed
approach on synthetically generated message sets, and on an
industrial case study. Section 7 concludes with a summary and
directions for future work.

2 MESSAGE FILTERING

2.1 System Model

We assume that the system comprises a set of ECUs or nodes
connected via a CAN bus. Each node can broadcast messages
which can be received by all other nodes on the network. Each
messagem is characterized by its unique message ID (which is 11
or 29 bits long), its period or minimal inter-arrival time Tm ,
deadline Dm , and its payload data which determines the maximum
length of the message. The payload data comprises a set of signals
which need to be received by one or more nodes. In general, each
node has a subset of messages that it needs to receive, referred to
as desired messages, and a subset of messages that it is not
interested in, referred to as undesired messages.

2While many vehicles have upwards of 50 ECUs, these are typically connected in
smaller groups via multiple CAN buses and other networks.

Within its CAN-controller each node has a set of buffers, which
can be configured to either transmit or receive CAN messages. In
the literature and CAN controller documentation, these buffers are
often referred to as łmessage objectsž. Typically, each receive buffer
has a hardware-based message acceptance filter that can be set. We
model this by assuming that each node has f acceptance filters.
Each broadcast message can either pass through one (or more) of
the filters, or is blocked by them. The messages which pass through
the filters raise a receive interrupt or set a bit in a control register,
and are then processed by the node. Note that depending on the
filter settings, messages of more than one ID can be received by
the same buffer. Similarly, a single message may pass through more
than one filter, in which case it is only received in one of the buffers,
according to some implementation dependent policy.

2.2 Hardware-based Filtering

The hardware-based acceptance filteringworks as follows: The ID of
an incoming message is compared against the specified acceptance
filter pattern. If the ID matches the filter pattern, the message passes
through, and is stored in the receive buffer. If the ID does not
match the filter pattern, the message is blocked. The filter pattern
comprises two registers per filter: The mask specifies which bits
of the ID are considered, and the tag specifies the corresponding
ID-values that are allowed to pass.

The filter logic is shown in the pseudo-code below; however,
note that the actual implementation is by shift registers and logic
gates in hardware.

if (ID AND mask) == (tag AND mask)

pass = true

else

pass = false

end

Table 1 gives a simple example. By specifying the acceptance
filter pattern 0001100xx00, only messages with message IDs 192,
196, 200, or 204 will pass through the filter, and arrive in the receive
buffer. All other messages will be blocked. Note that an x in the
filter pattern means that the bit value at that bit position does not
matter, also referred to as łdon’t carež.

Field Value (Bin.) (Dec.)

mask 111 1111 0011

tag 000 1100 0000

filter 000 1100 xx00

pass ID 000 1100 0000 192

pass ID 000 1100 0100 196

pass ID 000 1100 1000 200

pass ID 000 1100 1100 204

Table 1: Example of message acceptance filtering

Further examples that explain how acceptance filtering works
can be found in [30] on page 45, or in [1] on page 246.

For the sake of simplicity, we use the term filter as a synonym for
acceptance filter and filter pattern in the rest of the paper. Further,
we make use of the abstract filter pattern notation (with 0, 1, and
x) instead of the specific mask and tag values.

Analysis and Optimization of Message Acceptance Filter Configurations for CAN RTNS ’17, October 4ś6, 2017, Grenoble, France

2.3 CAN-controller Filter Implementations

While the basic principle of CAN message acceptance filtering is
the same for all CAN-controllers, there are differences in
implementation and number of available filters.

The most effective implementation is where each message buffer
has its own dedicated mask and tag.

ATMEL’s AT90CAN128 [1] is a low-power 8-bit microcontroller,
its CAN-controller has 15 message buffers, and each one has its
own mask. Infineon’s CAN-controllers (called MultiCAN) [18] offer
several variants on XC16, TriCore and AURIX processors. This
CAN-controller implementation also has a dedicated mask for each
message buffer.

In contrast, there are some CAN-controllers which share a global
mask between message buffers (instead of having a dedicated mask
for each buffer). This limits flexibility and efficiency. Note each
buffer still has its own tag.

Freescale’s MPC555 [14] is a 32-bit microcontroller. It has 2 CAN-
modules (called TouCAN). Mitsubishi’s M32R microcontroller also
has 2 CAN-modules, while Renesas’ M16C [25] microcontroller
has 1 CAN-module. All of these CAN modules have 16 message
buffers; however, they only have 3 masks. One global mask (for
buffers 0 to 13), and 2 local masks (for buffers 14 and 15 respectively).
National’s CR16 [21] microcontroller has 1 CAN-module with 15
message buffers. It has 2 masks. One global mask (for buffers 0 to
13) and one local mask (for buffer 14).

Note that the message buffers can be configured to transmit or
receive messages. Thus for example if 7 out of 15 message buffers
are used to transmit messages, then that leaves at most 8 message
buffers for received messages.

Motorola’s CAN-controller (called msCAN) offers a single 32-bit
filter. However, the filter can be configured flexibly: 1x 32-bit, or
2x 16-bit, or 1x 16-bit and 2x 8-bit, or 4x 8-bit. The 32-bit option
is suitable for 29-bit message IDs, and the 16-bit option for 11-
bit message IDs. When using the 8-bit option, only a subset of
the message ID bits can be utilized for filtering, making finding
an effective filter pattern more difficult; however, on the positive
side, more filters are available. The M68HC08 family [15] uses
one msCAN module, while the M68HC12 and S08 [17] use two
msCAN modules. Motorola’s msCAN Filter Configuration Tool [16]
automates the task of finding a suitable filter size (32, 16, or 8
bits) and filter values, based on the specification of all broadcast
messages and desired messages. However, it does not consider any
timing information, such as the transmission period. The tool’s
internal algorithms are not publicly available, and unfortunately
the tool is no longer available either.

This brief review only covers a subset of available
CAN-controllers. However it shows that almost all of them fall
into one of two categories: łdedicated maskž CAN-controller
(where each buffer has its own dedicated mask) or łshared maskž
CAN-controllers (where a mask is shared between several buffers).

3 RELATED WORK

Schedulability analysis for CAN was first developed in the mid
1990’s, with the flaws in that early work later corrected in
2007 [10]. This analysis provides guarantees that CAN messages
will meet their deadlines, including under a prescribed error model,
i.e accounting for re-transmissions when there are errors on the
bus.

Message acceptance filtering is highly dependent on the
message ID assignment. In industrial applications, message ID and
thus priority assignment has often followed an ad-hoc approach,
with message IDs allocated based on the ECU supplier and the
type of signals contained in the message. This has led to priority
assignments that leave automotive networks unschedulable at bus
utilizations of more than about 30-35% [4], when more appropriate
priority assignment would allow bus utilizations of around 80% [8]
before any deadlines are missed.

Academic research into priority assignment for CAN has mainly
focused on optimal priority assignment policies, with Audsley’s
OPA algorithm [2, 22] proved optimal for systems using priority

queues [10], and deadline minus jitter priority assignment proved
optimal with some common constraints on the sets of messages [7].
Further work has explored the issues that can arise if the priority-
based arbitration mechanism is circumvented, for example by the
use of non-abortable transmit buffers [20], or FIFO queues [8, 9]. In
practical applications, using an optimal priority assignment policy
is not in itself enough, since the ordering generated could leave
the system only just schedulable, and thus vulnerable to deadline
misses in the event that there is an increase in errors on the bus.
Work on robust priority ordering [5, 6] addresses this problem by
generating a priority ordering that is not only optimal, but also
tolerates the maximum amount of additional interference (i.e. is
robust as well). Later work provides a robust priority assignment
for new messages added to a system where existing message IDs
are fixed [7], addressing flaws in previous work in this area [26].

One might expect that a system that is robust would also be
extensible, i.e. most able to accommodate additional messages;
however, this is not necessarily the case [23]. Recent work in this
area [24] provides an extensibility metric for CAN, and a message
ID assignment which optimizes extensibility by assigning IDs
according to ID-bands, aligned with timing requirements.

Other related works aim to provide holistic solutions for task
allocation, signal to message mapping and priority assignment
using Mixed Integer Linear Programming (MILP) [28, 29].

We note that none of the above works onmessage priority and ID
assignment considers the impact on message acceptance filtering.
In this paper, we consider the problematic case where message
IDs have already been fixed without consideration for message
filtering. As far as we are aware there is no prior work addressing
this specific problem.

4 MESSAGE FILTER QUALITY

In this section, we focus on how to quantify the quality of a given

filter configuration. We make use of the following notation:Mall

is the complete set of m messages which are broadcast over the

network. Mdes is the subset those messages which must be
received by the node of interest. F is the node’s filter configuration,
consisting of f filters. We need to determine (i) if the filter
configuration is feasible, and (ii) a measure of its quality.

By applying the acceptance rules of the filter configuration F on

the set of broadcast messagesMall the result is the set of messages
Mpass that pass through the filters, and the set of messages

Mblock
= Mall \ Mpass that are blocked by the filters. By

comparing these sets against the set of messagesMdes that must
be received, we obtain two further subsets:

RTNS ’17, October 4ś6, 2017, Grenoble, France Florian Pölzlbauer, Robert I. Davis, and Iain Bate

MU B
= Mblock ∩Mdes is the set of messages that are blocked by

the filters, but are needed by the node (i.e. unintended block), and

MU P
= Mpass \Mdes is the set of messages that pass through the

filters, even though they are not needed by the node
(i.e. unintended pass). Based on these sets, we can analyse the filter
configuration as follows. First we make a classification with
respect to feasibility. The filter configuration is infeasible if there is

at least one unintended blocked message (i.e. MU B
, ∅). It is

feasible if there are no unintended blocked messages

(i.e.MU B
= ∅). Further, we say that the configuration is perfect if

there are no unintended blocked messages, and no unintended

pass messages either (i.e.MU B
= ∅ andMU P

= ∅).
Clearly, the aim is to achieve perfect message filtering. However,

due to the limited number of available filters and the way in which
the filters work, this may not be possible in all cases. Thus, we
propose a measure of the quality of a feasible filter configuration in
terms of its imperfection, i.e. considering the set of unintended pass

messages MU P . Since each message is transmitted with a given
period or minimum inter-arrival time, we normalize by Tm .

QoF =
MU P

sec .
=

∑

MU P

1

Tm
(1)

This imperfection metric measures how many unintended pass
messages per second are received, even though we would rather
they were blocked. These messages cause undesired receive
interrupts and additional processing load. The lower the
imperfection is, the better the filtering. Ideally, imperfection
becomes zero (i.e. perfect filtering).

5 DESIGNING OPTIMAL FILTERING

In this section, we focus on optimizing the filter configuration
(i.e. obtaining a filter configuration that is both feasible and
minimizes the imperfection metric QoF). First we consider the
complexity of the problem, then we provide solutions for some
special cases, and finally propose an approach to solving the
general problem.

5.1 Problem Complexity

The number of possible filter configurations is exponential in the
length (len) of the message IDs and the number of filters f . Since
each filter bit can effectively take one of 3 values (0, 1, x) where x

represents łdon’t carež, there are 3
(len ·f) possible filter

configurations. This value quickly becomes large, thus exhaustive
enumeration of all possible filter configurations is intractable for
realistic sized problems. (For example with 11-bit IDs and 3 filters,
there are over 1015 possible configurations).

We now show that the general problem of filter selection is
NP-complete via reduction to the SET COVER problem [19].

The SET COVER problem is as follows. Given a Universe of
elements X = {1, 2, . . . ,n} and a collection S = {S1, S2, . . . , Sm } of
m subsets of X whose union equals X , determine if there is a set
covering of size k (i.e. k or fewer sets from S) whose union is X .

The filter selection problem is as follows. Given a set of desired

messages Mdes
= {M1,M2, . . . ,Mn } and at least one undesired

messageMu , with IDs given by bit patterns of lengthm, determine
if there is a selection of at mostk filters (selecting bits in themessage

IDs as must-match 1, must-match 0 or don’t-care) that permit all
desired messages to be received but exclude the undesired message.

Theorem 5.1. The filter selection problem is NP-complete.

Proof. We prove the theorem via reduction to the SET COVER
problem which is known to be NP-complete [19].

First, we note that a solution to the filter problemmay be trivially
checked by a deterministic algorithm in polynomial time. For each
desired message we check against the selected filters to ensure that
it can be received via at least one of them, and for the undesired
message we check that it cannot be received via any of the selected
filters. The filter selection problem is thus in the NP complexity
class.

Given an instance of the SET COVER problem, we construct an
instance of the filter selection problem as follows. Each element in
the set X maps to a message with that index in the set of desired

messagesMdes
= {M1,M2, . . . ,Mn }. Hence there is a one-to-one

mapping between elements in X and desired messages. Each subset
Si in S maps to a unique bit position i in the message IDs. (There are
m bits in the message IDs, equal to the cardinality of the collection
S). All desired messages with indices in Si have a 1 in bit position
i , all other messages, both desired and undesired, have zeros in
bit position i . Note this completely defines the IDs of all messages,
with the undesired message having all bits in its ID set to zero.

We note that without loss of generality the only filters that
need to be considered in solving an instance of the filter selection
problem, constructed from an instance of SET COVER in the way
described above, are those with a single bit set to must-match 1
and don’t-care for all other bits. If no bits are set to must-match
1, then the undesired message will be received. Setting more than
one bit to must-match 1, e.g. bits i and j would result in receiving
messages matching elements in the intersection of the two sets
(Si ∩Sj)which confers no advantage over receiving either all of the
messages matching elements in Si or all of those matching elements
in Sj . With a single bit i set to must-match 1, setting any other bit
to must-match zero cannot include any further desired messages.
Thus without loss of generality, we restrict the available filters to
the set F = {F1, F2, . . . , Fn } where Fi indicates must-match 1 in bit
position i and don’t-care for all other bits. Note the precise one-to-
one mapping between Fi and Si . Filter Fi with a must-match 1 in
bit position i and don’t-care for all other bits receives only those
desired messages with indices matching elements in Si .

Now assume we have a black box that can solve the filter
selection decision problem. Via the above construction, we may
use this black box to solve the SET COVER decision problem.
Correctness of this approach needs to be shown for both if and
only if cases.

If case: For an instance of the SET COVER problem for which the
answer is yes, there exists a sub-collection S ′ ⊆ S of cardinality k
that covers X . Mapping this instance to the filter selection problem,
then S ′ implies that there is an equivalent collection of filters F ′ ⊆ F

of cardinality k that enables all desired messages to be received,
without receiving the undesired message. The black box, which can
solve all filter selection problems, therefore gives the answer yes.

Only if case: If the black box returns yes, then there exists a sub-
collection of filters F ′ ⊆ F of cardinality k that enables all desired
messages to be received. This implies that there is an equivalent
sub-collection S ′ of cardinality k that covers X . Similarly, if there is

Analysis and Optimization of Message Acceptance Filter Configurations for CAN RTNS ’17, October 4ś6, 2017, Grenoble, France

no such sub-collection of filters F ′ ⊆ F of cardinality k , then there
is no such sub-collection S ′ of cardinality k that covers X .

We have shown that our algorithm solves the SET COVER
problem using the black box for the filter selection problem. Since
the construction takes polynomial time, and we have shown that
the filter selection problem is in the NP complexity class, we
conclude that the filter selection problem is NP-complete □

We reduced a simplified version of the filter selection problem
to SET COVER, showing that the former is also NP-complete. The
more general filter selection problem, with more than one
must-match bit per filter, and optimization of the weighted sum of
undesired messages which are received is at least as hard. While
the decision problem of SET COVER is NP-complete, the
optimization problem (finding the smallest cardinality k which
achieves coverage) is NP-hard. Given the direct mapping to the
filter selection problem, we expect that its optimization is also
NP-hard.

5.2 Special Cases

The filter configuration problem comes in three variants, depending
on the relationship between the number of available filters and the
number of desired messages.

Case f = 1: There is only a single filter available. For this special
case Algorithm 1 constructs an optimal feasible filter configuration.
It sets the filter digit in position i to 0 if the bits in position i of IDs
of all desired messages are 0. Similarly, if they are all 1, then it sets
the filter digit to 1. Otherwise it sets the filter digit to x.

Algorithm 1: Optimal Solution for f = 1

Input:Mdes /* desired messages */
1 foreach ID-digit do

2 if ∀mi ∈ Mdes the ID-digit is 0 then
3 filter-digit = 0

4 else if ∀mi ∈ Mdes the ID-digit is 1 then
5 filter-digit = 1
6 else
7 filter-digit = x
Output: F /* feasible filtering */

Theorem 5.2. For the restricted case of a single filter, Algorithm 1

is optimal.

Proof. We prove the theorem by showing that any changes to
the filter pattern obtained by Algorithm 1 either make the filter
configuration infeasible (i.e. block some desired messages) or allow
additional undesired messages to be received. We consider each
digit of the filter obtained by Algorithm 1 in turn.

Case filter-digit = 0: Changing this digit to 1 would exclude some
desired messages, making the configuration infeasible. Changing
it to x is unnecessary to allow all desired messages to be received
and could potentially allow through undesired messages.

Case filter-digit = 1: Changing this digit to 0 would exclude some
desired messages, making the configuration infeasible. Changing
it to x is unnecessary to allow all desired messages to be received
and could potentially allow through undesired messages.

Case filter-digit = x: Changing this digit to 0 or 1 would exclude
some desired messages, making the configuration infeasible.

Since no changes to the filter configuration obtained by
Algorithm 1 can improve the imperfection metric QoF, the filter
configuration is optimal □

Case f ≥ |Mdes |: The number of available filters equals or
exceeds the number of messages that must be received. For this
special case, Algorithm 2 constructs a perfect filter configuration.
It sets each filter equal to the unique ID of one desired message.

Algorithm 2: Optimal Solution for f ≥ |Mdes | Filters

Input:Mdes /* desired messages */

1 foreachmi ∈ Mdes do
2 fi = ID(mi)
Output: F /* perfect filtering */

Theorem 5.3. For the special case of at least as many filters as

desired messages, Algorithm 2 provides an optimal filter configuration

which achieves perfect filtering.

Proof. Since Algorithm 2 uses a specific filter for each desired
message which enables only that message to pass, and all
messages on CAN have unique IDs, then there are no unintended
messages that pass, and thus the filter configuration is perfect and
the imperfection metric QoF zero □

We note that Algorithm 2 has one minor drawback: It uses as
many filters as there are desired messages. As we later show, it is
sometimes possible to construct a perfect filter configuration using
fewer filters.

Case 1 < f < |Mdes |: The number of available filters is smaller
than the number of desired messages that must be received. This is
the general case. Here, we aim to find a feasible filter configuration
which minimizes the imperfection metric. We know that the
problem is NP-complete, thus we propose the use of a
meta-heuristic search-based solution, specifically Simulated
Annealing (SA). We initially considered two different approaches,
both using SA:

Direct: We set the pattern in each of the f filters directly. The
downside of this approach is that it explores many patterns that are
not useful, i.e. that do not allow through some desired messages. In
fact most of the possible filters configurations are like this.

Two-step: We first divide the set of desired messagesMdes into
f groups, and allocate each group to one filter. Based on this
allocation, we then derive the pattern for each filter by applying
Algorithm 1. The benefit of this approach is that each local filter
pattern is optimal. This does not,however, guarantee a globally
optimal solution.

Preliminary experiments showed that the two-step approach is
much more effective, we therefore tackle the problem in that way.

5.3 Generic Solution: Simulated Annealing

We use Simulated Annealing to solve the filter configuration

problem for 1 < f < |Mdes |. SA has several benefits: It rarely gets
stuck in local optima, thus it is likely that it will find the global
optimum. It is relatively easy to understand, and thus it is likely
that engineers will accept it. Further, it is relatively easy to adapt
to a specific problem, since there are only a few specific
parameters that need to be tuned. Finally, it is effective in solving

RTNS ’17, October 4ś6, 2017, Grenoble, France Florian Pölzlbauer, Robert I. Davis, and Iain Bate

complex problems, as has already been demonstrated for several
problems in the real-time systems domain (e.g. task allocation
[12, 13, 27] and network configuration [23]).

SA starts with an initial candidate solution. It then uses the
neighbor-move function to transform this solution into a
new/different solution. For each generated solution, the solution’s
quality is evaluated via the cost function. If the new solution
improves the quality, it becomes the new starting point for
subsequent exploration. If not, it may still be chosen according to
an ever decreasing probability. This ensures that the search does
not get stuck in a local optima. After some time, the search reaches
its termination criteria (specified in terms of a maximum number
of iterations, or quality improvements below a certain threshold),
and returns the best solution found.

In order to apply SA to the filter configuration problem, we
need to encode the optimization criteria into the cost function, and
implement an appropriate neighbor-move function.

5.3.1 Cost Function. The cost function measures the quality of
a filter configuration. We encode it as a weighted sum as follows:

cost =

∑
costi ·wi∑

wi
→ min (2)

The individual cost terms encode the constraints and
optimization goals. We normalize each cost term so that it takes
values from 0.0 to 1.0, where 0.0 represents the optimum.

cost1 =
MU B

Mdes
(3)

cost2 =
MU P /sec .

(Mall \Mdes)/sec .
(4)

cost1 measures the number of unintended blocked messages, and
normalizes them by the number of desired messages. It is
responsible for avoiding infeasible filter configurations. cost2
measures the number of unintended pass messages per second,
and normalizes them by the number of intended blocked messages
per second. It is responsible for optimizing the filter quality. Note
that both cost terms are dimensionless quantities.

The weights of the cost terms were set during a manual tuning
phase. During that phase we tried several different weights, and
evaluated which ones led to a good results. The weights chosen
were:w1 = 100 andw2 = 3. These are our recommendations, they
could be set differently by engineers using this solution; however,
such changes should be made with care, as they can impact the
search performance and the quality of the best solution found.

5.3.2 Neighbour-Move Function. The neighbour-move function
transforms one filter configuration into another. We used a simple
transformation based on moving one desired message from one

filter to another. A desired message is chosen at random fromMdes ;
a filter is chosen at random from the set of filters to which the
message is not currently assigned; the message is then assigned
to that filter. Once the neighbour-move has transformed the filter
configuration, Algorithm 1 is applied to derive a feasible pattern for
each filter. Note only the two filters that have a modified allocation
of messages need be re-evaluated.

5.3.3 SA Parameters. We used the following SA parameters:
initial temperature = 0.05, cooling-factor = 0.95, iterations at same

temperature = 100, max iterations = 10,000. (These parameters were
set after a manual tuning phase). In addition, we improved the
search time via a problem specific exit criteria; once SA finds a
perfect filter configuration, there is no need to search any further,
thus the search terminates.

Algorithm 3: Simulated Annealing

Input: t /* initial temperature */
Input: scur /* initial solution */

1 ccur = cost(scur) /* initial cost */
2 repeat
3 iterAtT = 0
4 repeat
5 iter++
6 iterAtT++
7 /* generate new solution */
8 snew = neighbour(scur)
9 cnew = cost(snew)

10 /* accept move? */
11 if cnew < cbest then
12 /* cost is improved */
13 scur = snew
14 else
15 /* cost is not improved */

16 if e
ccur −cnew

t > random(0, 1) then
17 scur = snew
18 /* remember best solution */
19 if cnew < cbest then
20 cbest = cnew
21 sbest = snew
22 until iterAtT == iterAtTmax;
23 t = t * coolingFactor
24 until iter == iterMax;

Output: sbest /* best solution found */

5.4 Engineering Heuristic and Initial Solution

To the best of our knowledge, there are no approaches to solving
the general filter configuration problem that are available in the
literature. For the purposes of comparison, we make use of a
heuristic approach which, in the absence of the method proposed
in this paper, could be used in the form of a simple engineering
solution. The approach is as follows. First, the desired messages
are sorted by message ID. Next the desired messages are assigned

in order to the available filters, so that ⌈|Mdes |/f ⌉ messages are
assigned to each filter. Due to the initial ordering, the messages
assigned to each filter may have similar IDs (improving the filter
quality). A feasible filter pattern is then derived for each filter
using Algorithm 1. In the evaluation that follows, we indicate this
heuristic solution by H. We also use it as the initial starting point
for SA. In that way SA dominates the heuristic, since it always
returns a solution that is at least as good.

6 EVALUATION

In this section we evaluate the performance of the proposed
approaches for various scenarios. We use synthetic examples,
which are randomly generated. Message IDs are 11-Bit (i.e.
standard format), and their values are randomly chosen from 0 to
2047 (uniformly distributed). Message periods are randomly
chosen from 10 ms to 1000 ms according to a log-uniform

Analysis and Optimization of Message Acceptance Filter Configurations for CAN RTNS ’17, October 4ś6, 2017, Grenoble, France

distribution. The set of messages Mdes that must be received by

the node are a randomly chosen subset of the messagesMall that
are broadcast on the network. We examine scenarios with 25 to 100
broadcast messages, from 5 to 40 desired messages, and from 1 to
16 filters. We assume that each message has the maximum length
(i.e. 8 data bytes). Only those message sets that were schedulable at
a bus speed of 1Mbit/sec were included in the evaluation.

Our evaluation criteria focus on the best solutions that are found
by the different approaches. The perfect rate indicates the proportion
of examples where a perfect filter configuration was found. Filter
quality is the optimization goal, and is encoded as 1 − cost2, thus
1.0 represents an optimal solution. All values shown (points on the
graphs) are the average over 100 examples for that specific scenario.

6.1 One Filter

First, we examine the case where only a single filter is available
(f = 1). This is relevant for low-cost CAN-controllers. Algorithm 1
will (by definition) always construct a feasible filter, and with some
luck this might be a perfect filter; however, this solely depends on
themessage IDs. This problem is themost constrained, whichmakes
it hard to obtain a feasible filter with good filter quality. Figure 1
illustrates how often a perfect filter configuration is obtained. We
observe that perfect filtering can only be achieved for a very small
number of desired messages, and becomes virtually impossible for
a larger number.

Figure 1: Perfect Filtering with 1 Filter

Figure 2 illustrates the filter quality (1− cost2). Here, we observe
that filter quality significantly worsens with an increasing number
of desired messages. Once we reach 10 desired messages, the filter
is ineffective; it is letting all of the broadcast messages pass.

Based on these experiments, we conclude that with a single filter,
it is unlikely that high quality or perfect filtering can be achieved
once there are more than approx. 5 desired messages. (Obviously
this is dependent on the actual IDs of the broadcast and desired
messages). This means that ECUs with a CAN-controller with only
a single filter are likely to have to filter many messages in software,
and thus incur additional runtime overheads.

6.2 More Filters than Desired Messages

When the number of filters equals or exceeds the number of desired

messages (f ≥ |Mdes |) then Algorithm 2 will (by definition) always

Figure 2: Filter Quality with 1 Filter

construct a perfect filter configuration. Therefore evaluating this
case and Algorithm 2 is of little interest.

6.3 Fewer Filters than Desired Messages

Next, we evaluate the performance of the SA-based solution for the
general case, where the number of available filters is smaller than

the number of desired messages (1 < f < |Mdes |). For comparison
purposes, we also employed the engineering heuristic, described in
section 5.4 (marked as H on the graphs).

Figure 3 illustrates how the number of filters and the number of
broadcast messages impacts filter quality for a fixed number of

desired messages (|Mdes | = 20). We observe that as the number of
filters increases from 2 to 16, then as expected the filter quality
improves. Filter quality is also better for fewer broadcast messages.
These trends hold for both SA and the heuristic; however, SA
achieves significantly better filter performance.

Figure 5 illustrates how filter quality is impacted by the number
of desired messages. In this case, the number of broadcast messages
is set to 100, and we vary the number of available filters and the
number of desired messages. Here, as expected the filter quality
worsens as the number of desired messages increases. Again SA
finds significantly better filter configurations than the heuristic.

Finally, Figure 7 illustrates sensitivity with respect to the number
of available filters. Here, we set the number of broadcast messages to
100, and varied the number of desired messages and available filters.
We observe that as the number of filters increases, so does the filter
quality. Again, SA finds significantly better filter configurations
than the heuristic. Notably, SAwith 2 filters has similar performance
to the heuristic with 4 filters, and again for 4 versus 8 filters.

6.4 Shared Global Filter Mask

Some CAN-controllers (e.g. the CAN modules on Freescales’s
MPC555, Mitsubishi’s M32R, Renesas’ M16C, and Nationale’s CR16
microcontrollers) use a global filter mask that is shared between
several message buffers, with one or two message buffers having
separate local masks. Such systems are often configured with
(f − 1) message buffers (using the global mask) set to receive only
1 message each, and one message buffer (using a local mask) set to
receive all the remaining desired messages.

In order to evaluate the effect of a shared global mask, we
implemented this approach using SA via an alternative

RTNS ’17, October 4ś6, 2017, Grenoble, France Florian Pölzlbauer, Robert I. Davis, and Iain Bate

Figure 3: Filter Quality using f Filters (1 < f < |Mdes |) for 20

desired messages

Figure 4: Filter Quality using f Filters (1 < f < |Mdes |) for 20

desired messages, using f-1 approach

Figure 5: Filter Quality using f Filters (1 < f < |Mdes |) for 100

broadcast messages

Figure 6: Filter Quality using f Filters (1 < f < |Mdes |) for 100

broadcast messages, using f-1 approach

Figure 7: Filter Quality using f Filters (1 < f < |Mdes |) for 100

broadcast messages

Figure 8: Filter Quality using f Filters (1 < f < |Mdes |) for 100

broadcast messages, using f-1 approach

In the above figures we only examine scenarios where the number of filters is smaller than the number of desired messages (1 < f < |Mdes |).

Once the number of filters equals or exceeds the number of desired messages (f ≥ |Mdes |) then the filtering is always perfect (i.e. filter

quality = 1.0); however, we do not plot these scenarios here. This is why some lines in Figures 5-8 do not span the entire x-axis.

Analysis and Optimization of Message Acceptance Filter Configurations for CAN RTNS ’17, October 4ś6, 2017, Grenoble, France

neighbour-move function. This ensures that for f − 1 filters only 1
message is assigned. We also implemented a modified heuristic

that assigns |Mdes | − (f − 1) messages to one filter, and the
remaining f − 1 messages individually to the remaining filters.

Figures 4, 6, and 8, on the right hand side of the previous page,
show the results for a repeat of the experiments shown in
Figures 3, 5, and 7, but assuming a shared global filter mask. While
the overall trends from the previous experiments hold, the overall
filter quality is significantly worse, indicating an inherent loss of
performance compared to having an individual filter mask for each
message buffer. We conclude that it is preferable to have one filter
(mask and tag) per message buffer, rather then needing to share a
mask between buffers. A single global mask becomes detrimental
to filter performance once the number of desired messages exceeds
the number of receive buffers.

6.5 Industrial Case Study

Evaluation based on synthetic examples shows that the proposed
SA-based solution is effective in finding optimal or near-optimal
message filtering. In this section, we demonstrate its practicality
by applying it to an industrial case study.

The system is a HVAC (heating, ventilation and air conditioning)
controller for a lightweight battery electric vehicle. The vehicle
was developed in the EU-funded project Epsilon3. We used an
AT90CAN128 micro-controller [1] which has 15 message buffers; 4
of which were used for transmitting messages, leaving 11 that could
be used for receiving messages. In total 55 messages are broadcast
on the network, out of which the HVAC node must receive and
process 11 messages, marked as łdesired = yesž in Table 2.

Since the number of desired messages matches the number of
available receive buffers, the engineers originally configured the
system such that each of the buffers receives a single message,
the same as Algorithm 2 does, thus resulting in a perfect filter
configuration. Since this is somewhat uninteresting, we investigated
whether perfect filtering can be achieved using fewer filters (receive
buffers). We therefore reduced the number of filters from 11 down
to 1 in steps of 1, and applied the SA algorithm at each step. We
repeated each experiment 100 times, so that we could also examine
how often perfect filtering was obtained. Figure 9 shows the results.
With 3 filters, good filter quality is obtained, with for example only
48 undesired messages/sec requiring software filtering, compared to
227 desiredmessages/sec received, and 1407messages/sec broadcast
in total. With 7 filters perfect filtering can be achieved. Table 3
shows one such perfect filter configuration using 7 filters. With this
configuration, 4 filters (message buffers) would be left for future
proofing the HVAC-controller, for example allowing for further
messages to be transmitted.

The CAN receive interrupt handler execution time is between
220 and 610 cycles (13.75 µs and 38.13 µs at 16MHz), not including
software filtering. Assuming an average execution time of approx.
500 cycles (31.25 µs) with software filtering, then the overhead of
filtering out all of the 1180 undesired messages/sec in software is
approx. 36.9 ms. Using 3 hardware filters, the number of undesired
messages/sec can be reduced to 48, implying overheads of just 1.5
ms. By comparison, receiving the 227 desired messages/sec takes
approx. 7.1 ms of processing time.

3http://www.epsilon-project.eu

Figure 9: Filter Quality for HVAC-controller

ID [hex] T [ms] desired ID [hex] T [ms] desired

0x00A 1000 0x2F2 100
0x010 1000 yes 0x300 1000
0x020 100 0x350 1000
0x060 100 0x3AC 100
0x06A 100 yes 0x400 100
0x06E 10 0x410 100
0x071 100 0x411 100
0x078 100 0x420 1000
0x07D 100 0x425 1000
0x081 1000 yes 0x565 500
0x08C 100 0x610 100
0x091 100 0x611 1000
0x096 500 0x612 100
0x100 10 0x613 1000 yes
0x101 10 0x614 1000
0x102 10 0x618 100
0x110 10 0x620 100 yes
0x120 10 0x6F0 1000 yes
0x130 10 0x6F8 1000
0x150 10 0x700 1000
0x160 1000 0x702 1000
0x161 1000 0x710 1000 yes
0x200 1000 0x711 1000
0x201 10 0x720 1000
0x210 10 yes 0x730 1000 yes
0x220 10 yes 0x770 1000 yes
0x2F0 10 0x771 1000
0x2F1 100

Table 2: Network Specification of Battery Electric Vehicle

(BEV) available for HVAC-Controller

filter 0x000010000 filter 11100x10000

ID 00000010000 (0x010) ID 11100010000 (0x710)

ID 01000010000 (0x210) ID 11100110000 (0x730)

filter 11xx1110000 filter x1000100000

ID 11011110000 (0x6F0) ID 01000100000 (0x220)

ID 11101110000 (0x770) ID 11000100000 (0x620)

filter 00001101010 filter 00010000001

ID 00001101010 (0x06A) ID 00010000001 (0x081)

filter 11000010011

ID 11000010011 (0x613)

Table 3: Perfect Filtering for HVAC-controller (using 7

rather than 11 Filters)

The SA algorithm requires knowledge of the IDs of both desired
messages and undesired messages. This presents a potential issue
when the system is extended later. New, previously unknown

http://www.epsilon-project.eu

RTNS ’17, October 4ś6, 2017, Grenoble, France Florian Pölzlbauer, Robert I. Davis, and Iain Bate

messages may be undesired from the perspective of a node whose
operation is unchanged; however, some of them may pass through
the node’s existing hardware filters, leading to additional processor
load. In general, this issue can only be avoided completely if a
separate filter is available for each desired message. Nevertheless,
the use of Algorithm 1 within the SA-based solution locally
optimizes each filter for the desired messages assigned to it. This
has the effect of minimizing the number undesired and unknown
messages that can pass through. As an example, with 3 filters, 1818
(91.2%) out of the 1993 unknown messages (i.e. unused IDs) are
blocked, while with 7 filters, 1991 (99.9%) are blocked. In future, we
aim to explore how filter configurations can be designed with
extensibility in mind.

7 SUMMARY AND CONCLUSIONS

In this paper we presented the problem of configuring CAN
message acceptance filters. We formally specified the problem,
provided a metric for determining the quality of a filter
configuration, analysed the problem complexity, and provided a
solution based on Simulated Annealing. Further, we provided
optimal algorithms for solving two specific special cases. A
large-scale evaluation, based on synthetic examples, showed the
effectiveness of the SA-based solution to the general problem, with
significant performance improvements over a simple engineering
heuristic. Finally, we demonstrated the practicality of the approach
via an industrial case study. Here we were able to achieve perfect
filtering using only 7 receive buffers and filters, compared to 11 in
the original implementation, thus providing headroom for future
upgrades in the form of extra transmitted or received messages.

The work in this paper considered the common industrial
constraint where message IDs are fixed. When there is freedom to
configure messages IDs, as in the case with Volcano4, then a
simple scheme can be employed to achieve perfect filtering in
hardware provided that 29-bit IDs are used, as discussed in Section
1. In future, we aim to look at the joint problem of message ID
assignment and filter configuration for systems that use 11-bit
identifiers. This problem is more challenging, since the solution
may need to compromise between a priority ordering that is
desirable for network schedulability and an ID assignment that
enables a high level of message filtering in hardware.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the financial support of the

łCOMET K2 - Competence Centres for Excellent Technologies Programmež

of the Austrian Federal Ministry for Transport, Innovation and Technology

(BMVIT), the Austrian Federal Ministry of Economy, Family and Youth

(BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of

Styria and the Styrian Business Promotion Agency (SFG), the ARTEMIS

Joint Undertaking project EMC2 (grant agreement nb 621429), the

European Union’s 7th Framework Programme project epsilon (grant

agreement no 605460), the EPSRC project MCCps (EP/P003664/1) and the

INRIA International Chair program. EPSRC Research Data Management:

No new primary data was created during this study.

REFERENCES
[1] ATMEL. 2008. AT90CAN128. (2008). Data-sheet: http://www.atmel.com/images/

doc7679.pdf.

4See https://www.mentor.com/products/vnd/in-vehicle_software/

[2] N.C. Audsley. 1991. Optimal priority assignment and feasibility of static priority
tasks with arbitrary start times. Technical Report YCS 164. Department of
Computer Science, University of York.

[3] Bosch. 1991. Controller Area Network Specification 2.0. (1991).
[4] D. Buttle. 2012. Real-Time in the Prime Time. In Euromicro Conference on Real-

Time Systems (ECRTS). Keynote.
[5] R.I. Davis and A. Burns. 2007. Robust Priority Assignment for Fixed Priority

Real-Time Systems. In IEEE Real-Time Systems Symposium (RTSS). 3ś14.
[6] R.I. Davis and A. Burns. 2009. Robust priority assignment for messages on

Controller Area Network (CAN). Real-Time Systems 41, 2 (2009), 152ś180.
[7] R.I. Davis, A. Burns, V. Pollex, and F. Slomka. 2015. On Priority Assignment

for Controller Area Network when some Message Identifiers are Fixed. In
International Conference on Real-Time Networks and Systems (RTNS). 279ś288.

[8] R.I. Davis, S. Kollmann, V. Pollex, and F. Slomka. 2013. Schedulability analysis for
Controller Area Network (CAN) with FIFO queues priority queues and gateways.
Real-Time Systems 49, 1 (2013), 73ś116.

[9] R.I. Davis and N. Navet. 2012. Controller Area Network (CAN) schedulability
analysis for messages with arbitrary deadlines in FIFO and work-conserving
queues. In IEEE International Workshop on Factory Communication Systems
(WFCS). 33ś42.

[10] R. I. Davis, A. Burns, R. Bril, and J. Lukkien. 2007. Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems
35, 3 (2007), 239ś272.

[11] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal. 2012. Understanding and using
the controller area network communication protocol: theory and practice. Springer
Science & Business Media.

[12] P. Emberson and I. Bate. 2008. Extending A Task Allocation Algorithm For
Graceful Degradation Of Real-Time Distributed Embedded Systems. In 29th Real-
Time Systems Symposium (RTSS). 270ś279.

[13] P. Emberson and I. Bate. 2010. Stressing Search with Scenarios for Flexible
Solutions to Real-Time Task Allocation Problems. IEEE Transaction on Software
Engineering 36, 5 (2010), 704ś718. https://doi.org/10.1109/TSE.2009.58

[14] Freescale. 2000. MPC555. (2000). Data-sheet: http://www.nxp.com/assets/
documents/data/en/data-sheets/MPC555UM.pdf.

[15] Freescale. 2000. msCAN for HC08. (2000). Data-sheet: http://www.datasheetlib.
com/datasheet/850324/an2010_motorola-semiconductor.html.

[16] Freescale. 2000. Using The Motorola msCAN Filter Configuration Tool.
(2000). Application-note: http://www.datasheetlib.com/datasheet/850324/
an2010_motorola-semiconductor.html.

[17] Freescale. 2005. msCAN for S08. (2005). Data-sheet: https://www.nxp.com/
files-static/training_pdf/29041_S08_MSCAN_WBT.pdf.

[18] Infineon. 2015. Controller Area Network Controller (MultiCAN).
(2015). Application-note: http://www.infineon.com/dgdl/
Infineon-MultiCAN-XMC4000-AP32300-AN-v01_00-EN.pdf?fileId=
5546d4624e765da5014ed91d6be32110.

[19] R. M. Karp. 1972. Reducibility among Combinatorial Problems. Springer US,
85ś103. https://doi.org/10.1007/978-1-4684-2001-2_9

[20] D. A. Khan, R. I. Davis, and N. Navet. 2011. Schedulability analysis of CAN with
non-abortable transmission requests. In IEEE Emerging Technologies & Factory
Automation (ETFA). 1ś8.

[21] National. 2002. CR16. (2002). Data-sheet: http://www.farnell.com/datasheets/
46979.pdf.

[22] N.C. Audsley. 2001. On priority assignment in fixed priority scheduling. Inform.
Process. Lett. 79, 1 (2001), 39ś44.

[23] F. Pölzlbauer, I. Bate, and E. Brenner. 2013. On Extensible Networks for Embedded
Systems. In IEEE International Conference and Workshops on the Engineering of
Computer Based Systems (ECBS). 69ś77.

[24] F. Pölzlbauer, R. I. Davis, and I. Bate. 2016. A Practical Message ID Assignment
Policy for Controller Area Network that Maximizes Extensibility. In 24th
International Conference on Real-Time Networks and Systems (RTNS).

[25] Renesas. 2006. M16C. (2006). Data-sheet: http://www.symmetron.ru/suppliers/
renesas/pdf/rej09b0101_16c29hm.pdf.

[26] K. W. Schmidt. 2014. Robust Priority Assignments for Extending Existing
Controller Area Network Applications. IEEE Transactions on Industrial Informatics
10, 1 (2014), 578ś585. https://doi.org/10.1109/TII.2013.2266636

[27] K. W. Tindell, A. Burns, and A. J. Wellings. 1992. Allocating Hard Real-time
Tasks: An NP-hard Problem Made Easy. Real-Time Syst. 4, 2 (May 1992), 145ś165.
https://doi.org/10.1007/BF00365407

[28] Q. Zhu, Y. Yang, E. Scholte, M. D. Natale, and A. Sangiovanni-Vincentelli. 2009.
Optimizing Extensibility in Hard Real-Time Distributed Systems. In 15th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS). 275ś284.
https://doi.org/10.1109/RTAS.2009.37

[29] Q. Zhu, H. Zeng, W. Zheng, M. DI Natale, and A. Sangiovanni-Vincentelli.
2012. Optimization of task allocation and priority assignment in hard real-
time distributed systems. ACM Transactions on Embedded Computing Systems
(TECS) 11, 4 (2012), 85.

[30] W. Zimmermann and R. Schmidgall. 2008. Bussysteme in der Fahrzeugtechnik:
Protokolle und Standards (3 ed.). Vieweg+Teubner.

http://www.atmel.com/images/doc7679.pdf
http://www.atmel.com/images/doc7679.pdf
https://www.mentor.com/products/vnd/in-vehicle_software/
https://doi.org/10.1109/TSE.2009.58
http://www.nxp.com/assets/documents/data/en/data-sheets/MPC555UM.pdf
http://www.nxp.com/assets/documents/data/en/data-sheets/MPC555UM.pdf
http://www.datasheetlib.com/datasheet/850324/an2010_motorola-semiconductor.html
http://www.datasheetlib.com/datasheet/850324/an2010_motorola-semiconductor.html
http://www.datasheetlib.com/datasheet/850324/an2010_motorola-semiconductor.html
http://www.datasheetlib.com/datasheet/850324/an2010_motorola-semiconductor.html
https://www.nxp.com/files-static/training_pdf/29041_S08_MSCAN_WBT.pdf
https://www.nxp.com/files-static/training_pdf/29041_S08_MSCAN_WBT.pdf
http://www.infineon.com/dgdl/Infineon-MultiCAN-XMC4000-AP32300-AN-v01_00-EN.pdf?fileId=5546d4624e765da5014ed91d6be32110
http://www.infineon.com/dgdl/Infineon-MultiCAN-XMC4000-AP32300-AN-v01_00-EN.pdf?fileId=5546d4624e765da5014ed91d6be32110
http://www.infineon.com/dgdl/Infineon-MultiCAN-XMC4000-AP32300-AN-v01_00-EN.pdf?fileId=5546d4624e765da5014ed91d6be32110
https://doi.org/10.1007/978-1-4684-2001-2_9
http://www.farnell.com/datasheets/46979.pdf
http://www.farnell.com/datasheets/46979.pdf
http://www.symmetron.ru/suppliers/renesas/pdf/rej09b0101_16c29hm.pdf
http://www.symmetron.ru/suppliers/renesas/pdf/rej09b0101_16c29hm.pdf
https://doi.org/10.1109/TII.2013.2266636
https://doi.org/10.1007/BF00365407
https://doi.org/10.1109/RTAS.2009.37

	Abstract
	1 Introduction
	1.1 Organization

	2 Message Filtering
	2.1 System Model
	2.2 Hardware-based Filtering
	2.3 CAN-controller Filter Implementations

	3 Related Work
	4 Message Filter Quality
	5 Designing Optimal Filtering
	5.1 Problem Complexity
	5.2 Special Cases
	5.3 Generic Solution: Simulated Annealing
	5.4 Engineering Heuristic and Initial Solution

	6 Evaluation
	6.1 One Filter
	6.2 More Filters than Desired Messages
	6.3 Fewer Filters than Desired Messages
	6.4 Shared Global Filter Mask
	6.5 Industrial Case Study

	7 Summary and Conclusions
	References

