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ABSTRACT

We have developed a higher order perfectly matched layer
(PML) formulation to improve the absorption performance
for finite-difference time-domain seismic modeling. First, we
outlined a new unsplit “correction” approach, which allowed
for traditional, first-order PMLs to be added directly to existing
codes in a straightforward manner. Then, using this framework,
we constructed a PML formulation that can be used to construct
higher order PMLs of arbitrary order. The greater number of
degrees of freedom associated with the higher order PML allow
for enhanced flexibility of the PML stretching functions, thus
potentially facilitating enhanced absorption performance. We
found that the new approach can offer increased elastodynamic

absorption, particularly for evanescent waves. We also discov-
ered that the extra degrees of freedom associated with the higher
order PML required careful optimization if enhanced absorption
was to be achieved. Furthermore, these extra degrees of freedom
increased the computational requirements in comparison with
first-order schemes. We reached our formulations using one
compact equation thus increasing the ease of implementation.
Additionally, the formulations are based on a recursive integra-
tion approach that reduce PML memory requirements, and do
not require special consideration for corner regions. We tested
the new formulations to determine their ability to absorb body
waves and surface waves. We also tested standard staggered grid
stencils and rotated staggered grid stencils.

INTRODUCTION

The finite-difference time-domain (FDTD) modeling techniques
are commonly used to simulate elastodynamic wave propagation
for the purposes of seismic exploration. Absorbing boundary con-
ditions (ABCs) are typically placed at domain edges to prevent
boundary reflections from contaminating results. The ABC’s per-
formance dictates how far it can be placed from the modeling areas
of concern without causing reflections. Therefore, a highly effective
ABC can be placed in close proximity to the modeling area of in-
terest, thus significantly reducing the computational workload.
Damping zones (Cerjan et al., 1985), continued fraction conditions

(Guddati and Lim, 2006), optimized boundary conditions (Peng and
Toksoz, 1995), viscous boundaries (Lysmer and Kuhlemeyer, 1969;
Kouroussis et al., 2011), paraxial conditions (Higdon, 1986), and
nonlocal operators (Hagstrom and Hariharan, 1998) approaches have
been attempted to absorb outgoing seismic waves. Although these

techniques generally performedwell for waves arriving perpendicular
to the boundary, their performance was reduced for waves impinging
at low angles of incidence. This is undesirable for 2D/3D seismic
wave modeling because the wave patterns are composed of large var-
iations in the incidence angle.
Berenger (1994, 1996) introduces a “perfectly matched layer”

(PML) technique to absorb electromagnetic waves (i.e., Maxwell’s
equations) using a series of finite layers, each with identical material
properties to the modeling domain, to gradually damp outgoing
waves. It offered high performance and was capable of absorbing
waves independent of the arrival angle. Chew and Weedon (1994)
quickly extend this PML formulation to include a stretching of real
and imaginary spatial coordinates, thus offering the potential for
additional absorption.
Using a similar implementation to the electromagnetic wave ap-

proach, Chew and Lui (1996) adapt the PML condition to offer
absorption for seismic waves. Since then, several approaches have
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been used to implement PML conditions for elastodynamic prob-
lems (Hastings et al., 1996; Basu and Chopra, 2004; Basu, 2009).
One drawback of such approaches was that reflections were en-
countered at grazing incidences. This was because although the
PML reflection coefficient was theoretically zero before discretiza-
tion, after discretization it was not zero. Analytical expressions were
used to overcome this for the electromagnetic case; however, due to
the increased complexity of the underlying elastodynamic equa-
tions, this was more challenging (Collino and Tsogka, 2001).
An alternative approach for electromagnetics was to modify the

complex coordinate stretching function within the PML (Kuzuoglu
and Mittra, 1996; Roden and Gedney, 2000). This C-PML, or com-
plex frequency shifted (CFS)-PML, was a more attractive option for
the elastodynamics case and therefore was further explored by Festa
and Vilotte (2005). The theory behind this method was that it would
offer much improved absorption for waves propagating at low
grazing angles (i.e., for long distances within the PML region).
The CFS-PML proved popular and has since been developed for
poroelastic (Martin et al., 2008) and anisotropic media (Bécache
et al., 2003).
Early CFS-PML conditions were implemented using an artificial

splitting of velocity and stress fields, in a similar manner to some of
the early non-CFS-PML conditions including Chew and Weedon
(1994). This splitting procedure made PML implementation in tra-
ditional FDTD codes challenging because two different sets of
equations were required for each PML and non-PML region. In ad-
dition, such implementations were not well posed mathematically
(Abarbanel and Gottlieb, 1997).
To avoid field splitting, convolution terms (Komatitsch and Mar-

tin, 2007), auxiliary differential equations (ADEs) (Martin et al.,
2010), and integration approaches (Drossaert and Giannopoulos,
2007) were also investigated. Because convolution is generally re-
garded as computationally inefficient, recent focus has shifted to
ADE and integral term implementations.
Martin et al. (2010) outline a nonconvolutional ADE PML

approach in which a fourth-order Runge-Kutta scheme is used in con-
junction with eighth-order Holberg space discretization. This formu-
lation was shown to have high accuracy and to be stable for up to
100,000 time steps. Additionally, Martin et al. (2010) investigate the
potential to extend this ADE-PML condition to higher order PMLs
but conclude that no significant performance benefit was capable.
Zhang and Shen (2010) built on the work of Martin et al. (2010)

and outline a similar ADE-PML fourth-order Runge-Kutta scheme
that resulted in a complete set of first-order differential equations.
This meant that the same FDTD implementation could be used to
solve the ADE C-PML equations and the interior-domain equations.
An alternative approach to avoid field splitting is outlined by

Drossaert and Giannopoulos (2007) through the use of recursive
integration (RI)-PML. This technique used an extended trapezoidal
rule to integrate the PML time derivatives thus negating the require-
ment to split fields or use an ADE formulation. The RI-PML ap-
proach required an equal amount of memory in comparison with
split-field formulations and slightly less memory than the ADE
approach.
One of the shortcomings of using the new CFS-PML was that

although it offered improved absorption for low-incident waves,
the application of the underlying filter reduced the absorption per-
formance of the PML for waves arriving at high incidences (i.e., at
90° angles).

In an attempt to maximize absorption for low- and high-incidence
waves for electromagnetic wave modeling, Correia and Jin (2005)
propose higher order PML formulations. These formulations used a
combination of non-CFS and CFS stretching functions. They find
that enhanced performance was achievable because the non-CFS
component aided in the absorption of high-incident waves whereas
the CFS component aided the absorption of the low-incident waves.
This paper extends the PML implementation described by Gian-

nopoulos (2012) to the seismic wave equation using an RI-PML
approach. It does so based on a new and improved “correction
PML” implementation approach, which is also outlined. The higher
order PML has the potential to utilize a greater number of degrees
of freedom in comparison with the traditional first-order PML con-
dition, thus offering greater absorption. Improved absorption is
desirable because it allows for reduced domain sizes, which is par-
ticularly important for 3D problems (Laghrouche and Le Houédec,
1994; Kouroussis et al., 2014). This potential for increased absorp-
tion is highlighted through several comparisons with alternative
first-order PML conditions. It should be noted that although the new
PML is termed “higher order,” this has no bearing on its compat-
ibility with space and time discretization.

IMPLEMENTING PML THROUGH
A CORRECTION TECHNIQUE

To derive the new time-domain correction PML, it was first nec-
essary to work in the frequency domain before transferring back to
the time domain and then using the trapezoidal rule to solve the
resulting integral. Therefore, using a stretched coordinate system,
the 2D (3D formulation shown in Appendix A) frequency-domain
elastodynamic velocity-stress equations (based on the original time-
domain equations as outlined by Virieux, 1986; Graves, 1996) took
the form

jω ~vx ¼ b

�
1

sx

∂ ~σxx
∂x

þ 1

sz

∂ ~σxz
∂z

�
; (1)

jω ~vz ¼ b

�
1

sx

∂ ~σxz
∂x

þ 1

sz

∂ ~σzz
∂z

�
; (2)

jω ~σxx ¼ ðλþ 2μÞ 1
sx

∂ ~vx
∂x

þ λ
1

sz

∂ ~vz
∂z

; (3)

jω ~σzz ¼ ðλþ 2μÞ 1
sz

∂ ~vz
∂z

þ λ
1

sx

∂ ~vx
∂x

; (4)

and

jω ~σxz ¼ μ

�
1

sx

∂ ~vz
∂x

þ 1

sz

∂ ~vx
∂z

�
; (5)

where the frequency-domain velocity and stress components are de-
noted by ~v and ~σ, respectively; ω represents circular frequency; λ
and μ are the lamés coefficients; and b is the buoyancy. The coor-
dinate axes are defined by x and z, and sx and sz are the PML
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stretching functions (in the x- and z-directions, respectively), which
served to absorb outgoing waves:

sui ¼ κui þ
dui

αui þ jω
. (6)

In equation 6, dui , κui , and αui are the attenuation coefficients used
to describe the loss within the PML region. The subscript u is used
to denote the staggered grid component, e.g., stress/velocity, and the
subscript i is used to describe the direction of attenuation (u ∈ ½u; v�
and i ∈ ½x; z�). Additionally, the variable transform j ¼ ffiffiffiffiffiffi

−1
p

and
ψu are defined as

ψu ¼
1 − su
su

¼ 1

su

�
1 − su
1

�
¼ 1

su
− 1 (7)

or

1

su
¼ ð1þ ψuÞ. (8)

Rearranging equations 1–5 in terms of ψu gives

jω ~vx ¼ b

�
ð1þ ψxÞ

∂ ~σxx
∂x

þ ð1þ ψ zÞ
∂ ~σxz
∂z

�
; (9)

jω ~vz ¼ b

�
ð1þ ψxÞ

∂ ~σxz
∂x

þ ð1þ ψzÞ
∂ ~σzz
∂z

�
; (10)

jω ~σxx ¼ ðλþ 2μÞð1þ ψxÞ
∂ ~vx
∂x

þ λð1þ ψ zÞ
∂ ~vz
∂z

; (11)

jω ~σzz ¼ ðλþ 2μÞð1þ ψ zÞ
∂ ~vz
∂z

þ λð1þ ψxÞ
∂ ~vx
∂x

; (12)

and

jω ~σxz ¼ μ

�
ð1þ ψxÞ

∂ ~vz
∂x

þ ð1þ ψ zÞ
∂ ~vx
∂z

�
. (13)

A comparison between equations 1–5 and 9–13 reveals that the
stretched velocity/stress equations were analogous to an addition of
field-dependent variables. To display this with greater clarity, equa-
tions 9–13 are rearranged and rewritten as

jω ~vx ¼ b

�
∂ ~σxx
∂x

þ ∂ ~σxz
∂z

�
þ bð ~Jxx þ ~JxzÞ; (14)

jω ~vz ¼ ~b

�
∂ ~σxz
∂x

þ ∂ ~σzz
∂z

�
þ bð ~Jxz þ ~JzzÞ; (15)

jω ~σxx ¼ ðλþ 2μÞ ∂ ~vx
∂x

þ λ
∂ ~vz
∂z

þ ððλþ 2μÞ ~Mxx þ λ ~MxzÞ;
(16)

jω ~σzz ¼ ðλþ 2μÞ ∂ ~vz
∂z

þ λ
∂ ~vx
∂x

þ ððλþ 2μÞ ~Mzz þ λ ~MzxÞ;
(17)

and

jω ~σxz ¼ μð∂ ~vz
∂x

þ ∂ ~vx
∂z

Þ þ μð ~Mzx þ ~MxzÞ; (18)

where ~J is a field-dependent variable used to correct the velocity
components and ~M is a field-dependent variable used to correct
the stress components. Then ~J and ~M are given by

~Jxu ¼ ψu
∂ ~σxu
∂u

(19)

and

~Mxu ¼ ψu
∂ ~vv
∂u

; (20)

with u; v ∈ fx; zg and u ≠ v.
From equations 14–18, it is clear that the velocity and stress val-

ues of the stretched coordinates in the PML region (i.e., where
ψu ≠ 0) could be calculated through an addition of equations 19
and 20 to the previously calculated velocity and stress values. Thus,
for an existing FDTD script, the field-dependent variables could be
added to the regions in which absorption was required.
To do so, first, the original update equations are computed as if

there is no PML present (i.e., rigid boundary condition), using ar-
bitrary time-stepping techniques such as those described in Virieux
(1986) and Graves (1996). Then, the cells within the PML regions
are updated by adding the correction terms to the original values as
previously calculated. This can be seen as “correcting” the original
update terms to account for the presence of the PML. In compari-
son, for traditional noncorrection PML schemes such as those by
Komatitsch and Martin (2007), the stress and velocity values are
calculated at the same instance for the interior domain and the
PML regions. This can impact the ease of implementation.
Therefore, the key benefits of the new first-order correction PML

are as follows:

1) When adding PML to an existing code, no revisions to the origi-
nal code need to be made.

2) PML corner regions do not require any special consideration.
3) Programming complexity is significantly reduced.

It should be noted that equations 14–18 were cast in the fre-
quency domain. To calculate the equivalent time-domain equations,
recursive integration is required. The following section describes
this process for the development of a higher order PML, using this
correction approach. Therefore, the resulting equations needed to

FDTD seismic wave absorption T3
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calculate the first-order time-domain correction terms are described
by equations 62–66.

DEVELOPMENT OF A HIGHER
ORDER PML

The new correction PML (equations 14–18) facilitated straight-
forward implementation of the PML stretching functions because its
formulation did not require any modification of the underlying
FDTD update scheme. This made it well suited to provide a foun-
dation for implementing arbitrary stretching functions. Therefore, it
was used to provide an efficient and straightforward PML formu-
lation for Nth-order stretching.

Stretching function definitions

For the 2D case, six correction terms were required to describe
the attenuation of all velocity and stress field variables (three Juu for
velocity terms and three Muu for stress terms). Despite this, for
brevity, only the derivation of Jxz (i.e., the correction term required
to partly describe the stretching of the velocity components) is
outlined. All other correction terms (Juu and Muu) can be found
analogously.
First, equations 7 and 19 were combined, which leads to

~Jxu ¼
�
1

su
− 1

�
∂ ~σxu
∂u

. (21)

Then, considering only the vertical components (i.e., u ¼ z) and
rearranging resulted in

∂ ~σxz
∂z

¼ sz

�
~Jxz þ

∂ ~σxz
∂z

�
. (22)

Additionally, for the Nth order, stretching the overall stretching
function is defined as

su ¼
YN
i¼1

sui . (23)

This means that the overall stretching function is the product of all
other stretching functions from 1 toN. When combined with equa-
tion 22, this yields

∂ ~σxz
∂z

¼
�YN

i¼1

szi

��
~Jxz þ

∂ ~σxz
∂z

�
; (24)

where N ∈ ½R�, meaning that potentially the combination of
an infinite number of stretching functions could be calculated.
Despite this, it is possible to define the stretching functions
needed to describe the overall stretching function, using only three
sets of i:

1) one stretching function for the first-order stretch ði ¼ 1Þ
2) one stretching function for the final-order stretch ði ¼ NÞ
3) one stretching function for all the stretching functions between

the first and last ð1 < i < NÞ

To calculate these three stretching functions, a set of functions
Ψ xzi is defined for i ∈ ½1; N − 1� as

Ψ xzi ¼
� YN

m¼iþ1

szm

��
~Jxz þ

∂ ~σxz
∂z

�
. (25)

Using equations 24 and 25 to eliminate ~Jxz leads to

∂ ~σxz
∂z

∕Ψ xzi ¼ szi . (26)

Therefore, the first-order stretching function (i ¼ 1) is equivalent to

Ψ xz1 ¼
1

sz1

∂ ~σxz
∂z

. (27)

Then, combining equations 22 and 27 allows for the calculation of
equation 28. This is used to describe the stretching function be-
tween the first and the final stretching function (i ∈ ½2; N − 1�):

Ψ xzi ¼
1

szi
Ψ i−1. (28)

Last, combining equations 22 and 28 results in the final stretching
function (i ¼ N):

�
~Jxz þ

∂ ~σxz
∂z

�
¼ 1

szN
Ψ xzN−1

. (29)

Domain transformation

The stretching functions 27–29 are defined using frequency-do-
main terms. To implement them within a time-domain finite-differ-
ence model, they have to be reformulated in the time domain.
To facilitate this transformation, first, stretching function 6 is sub-

stituted into 26, giving

κz1Ψ xz1 þ
dz1

αz1 þ iω
Ψ xz1 ¼

∂ ~σxz
∂z

. (30)

With the intention of solving for Ψ xz1 , both sides are multiplied
by ðαz1 þ iωÞ as

ðαz1κz1 þ dz1ÞΨ xz1 þ iωκz1Ψ xz1 ¼ αz1
∂ ~σxz
∂z

þ iω
∂ ~σxz
∂z

.

(31)

To prime equation 31 for transformation, it is rearranged and sim-
ilar terms are grouped together as

Ψ xz1 ¼
1

κz1

∂ ~σxz
∂z

þ 1

iω

�
αz1
κz1

∂ ~σxz
∂z

−
ðαz1κz1 þ dz1Þ

κz1
Ψ xz1

�
.

(32)

The relationship 1
iω

~AðWÞ ¼ ∫ t
0AðtÞδt is then used to make the

transform trivial. The post transformation stretching function is
equivalent to the time domain integral:

T4 Connolly et al.
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Ψ xz1 ¼
1

κz1

∂σxz
∂z

þ
Z

t

0

αz1
κz1

∂σxz
∂z

−
ðαz1κz1 þ dz1Þ

κz1
Ψ xz1δt.

(33)

Application of the extended trapezoidal rule

The time integral (equation 32) is not yet ready to be imple-
mented within an FDTD scheme. For PML applications, the
high-accuracy and low-memory requirements associated with using
the trapezoidal integration rule (Drossaert and Giannopoulos, 2007)
have made it an attractive choice. Therefore, this is the ap-
proach taken.
The higher order PML can be implemented in any staggered grid

FDTD formulation. For the purpose of this derivation, its imple-
mentation was assumed to be within a velocity-stress grid that
was staggered in space and time. Therefore, if “t” is time, when
t ¼ n, the velocity components were first calculated, and then,
the PML regions are updated.
It should be noted that all field quantities are assumed to be zero

for t ≤ 0. Also, the index notation Ja2a1 is used, where a1 defines the
index for spatial discretization and a2 denotes the index for time
discretization. Consequently, the application of the extended trap-
ezoidal rule results in

Ψ
nþ1

2
xz1 ¼ 1

κz1

∂σnþ
1
2

xz

∂z

þ
Xn¼1

p¼0

�
αz1Δt
κz1

∂σpþ
1
2

xz

∂z
−
ðαz1κz1 þ dz1ÞΔt

κz1
Ψ

pþ1
2

xz1

�

þ Δt
2

αz1
κz1

∂σnþ1∕2
xz

∂z
−
Δt
2

ðαz1κz1 þ dz1Þ
κz1

Ψnþ1∕2
xz1 . (34)

This is rearranged and then solved for Ψnþ1∕2
xz1 , giving

Ψnþ1∕2
xz1 ¼ 2þ Δtαz1

2κz1 þ Δtðαz1κz1 þ dz1Þ
∂σnþ1∕2

xz

∂z

þ 2κz1
2κz1 þ Δtðαz1κz1 þ dz1Þ

Xn¼1

p¼0

�
αz1Δt
κz1

∂σpþ1∕2
xz

∂z

−
ðαz1κz1 þ dz1ÞΔt

κz1
Ψpþ1∕2

xz1

�
. (35)

The summation term on the right side is then replaced by Φn−1∕2
xz1 as

Φxz1 ¼
Xn−1
p¼0

�
αz1Δt
κz1

∂σpþ1∕2
xz

∂z
−
ðαz1κz1 þdz1ÞΔt

κz1
Ψpþ1∕2

xz1

�
. (36)

Physically, this holds the approximation to the integral at the pre-
vious time step. Computationally, this variable is updated after the
stresses, velocities, and their corresponding correction terms, but at
the same time instance. Therefore,

Ψnþ1∕2
xz1 ¼ 2þ Δtαz1

2κz1 þ Δtðαz1κz1 þ dz1Þ
∂σnþ1∕2

xz

∂z

þ 2κz1
2κz1 þ Δtðαz1κz1 þ dz1Þ

Φn−1∕2
xz1 ; (37)

where Φnþ1∕2
xz1 is defined as

Φnþ1∕2
xz1 ¼ Φn−1∕2

xz1 þ αz1Δt
κz1

σnþ1∕2
xz

∂z
−
Δtðαz1κz1 þ dz1Þ

κz1
Ψnþ1∕2

xz1 .

(38)

Calculating the Nth-order correction terms

The next step toward deriving an expression for Jnþ1∕2
xz is to

eliminate Ψnþ1∕2
xz1 from the update of Φnþ1∕2

xz1 . This is done using
equations 35 and 38 and results in

Φnþ1∕2
xz1 ¼ 2κz1 − Δtðαz1κz1 þ dz1Þ

2κz1 þ Δtðαz1κz1 þ dz1Þ
Φnþ1∕2

xz1

−
2dz1Δt

ð2κz1 þ Δtðαz1κz1 þ dz1ÞÞκz1
∂σnþ1∕2

xz

∂z
. (39)

Upon inspection of equation 39, it is found that for i ∈ ½2; N − 1�,
Ψ xzi could be calculated in an analogous manner to Ψ xz1 , which
results in

Ψnþ1∕2
xzi ¼ 2þ Δtαzi

2κzi þ Δtðαziκzi þ dziÞ
Ψnþ1∕2

xzi−1

þ 2κzi
2κzi þ Δtðαziκzi þ dziÞ

Φn−1∕2
xzi . (40)

Correspondingly, the previous time integrals Φxzi for i ∈ ½2; N�
are updated as

Φnþ1∕2
xzi ¼ 2κzi þ Δtðαziκzi þ dziÞ

2κui þ Δtðαziκzi þ dziÞ
Φn−1∕2

xzi

−
2σziΔt

ð2κzi þ Δtðαziκzi þ dziÞÞκzi
Ψ nþ1∕2

xzi−1 . (41)

Last, using the same methodology as that to arrive at equation 40,
equations 29 and 40 are used to create an overall formulation for
Jnþ1∕2
xz as

Jnþ1∕2
xz ¼ 2þΔtσzN

2κzN þΔtðαzNκzN þdzN Þ
Ψ nþ1∕2

xzN−1

þ 2κzN
2κzN þΔtðαzNκzN þdzN Þ

Φn−1∕2
xzN −

∂σnþ1∕2
xz

∂Z
. (42)

From a computational point of view, it should be noted that Ψ xzi
and Jxz could be updated within the PML correction loop. This
means that they do not have to be stored in the computer memory,
thus minimizing the memory requirements.
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Implementation of Nth-order stretching

Although a formulation for Jnþ1∕2
xz has now been calculated, it is

not yet in an efficient form to facilitate computation. Further analy-
sis reveals that Ψ xzi is merely a function of ∂σxz1∕∂z,Φxz1 , and Ψ xzi .
This means that all Ψ xzi could be eliminated from equation 42.
The result is written using a single formula describing the correc-
tion term Jxz at the current time step. This formulation is finally
capable of calculating the stretching functions for a PML of arbi-
trary order:

Jnþ1∕2
xz ¼

��YN
q¼1

RAzq

�
− 1

�
∂σnþ1∕2

xz

∂z

þ
Xn−1
i¼1

�� YN
q¼iþ1

RAzq

�
RBziΦ

n−1∕2
xz

�

þ RBzNΦ
n−1∕2
xzN ; (43)

where i ∈ ½2; N − 1�.
Similarly, due to the same relationship between Ψ xzi , ∂σxz1∕∂z,

and Φxz1 , Ψ xzi is eliminated from the summation memory variable.
This yields

Φnþ1∕2
xzi ¼ REziΦ

n−1∕2
xzi − RFzi

��Yi−1
q¼1

RAzq

�
∂σnþ1∕2

xz

∂Z

þ
Xi−1
m¼1

� Yi−1
q¼mþ1

RAzq

�
RBzmΦ

n−1∕2
xzm

�
; (44)

where i ∈ ½2; N − 1�. The RAzi, RBzi, REzi, RFzi are defined
by

RAzi ¼
2þ Δtαzi

2κzi þ Δtðαziκzi þ dziÞ
;

RBzi ¼
2κzi

2κzi þ Δtðαziκzi þ dziÞ
;

REzi ¼
2κzi − Δtðαziκzi þ dziÞ
2κzi þ Δtðαziκzi þ dziÞ

;

RFzi ¼
2σziΔt

ð2κzi þ Δtðαziκzi þ dziÞÞκzi
. (45)

Note that only Jnþ1∕2
xz and Φnþ1∕2

xzi requires updating within the com-
putational time loop. To implement them with the PML scheme,
they are calculated and updated at each time step and then added
to the original FDTD field variables (i.e., equations 14–18). The
RAzi, RBzi, REzi, and RFzi are not time dependent and therefore
could be calculated before the commencement of the integration
scheme. Note that due to the nature of the PML, the material
properties within the PML regions do not require modification
and remain identical to those within the non-PML domain. Addi-
tionally, the PML corner regions do not require any additional
equations or consideration, thus significantly increasing the ease
of programming.

First-order implementation

Equation 43 describes the calculation of the correction term to
implement a PML of arbitrary order. If N ¼ 1, this formulation re-
duced to a first-order (O1) PML. Note that the first-order PML uses
only a single stretching function and mathematically was similar to
the one presented by Drossaert and Giannopoulos (2007), albeit
with the aforementioned advantages. The formula results in

Jnþ1∕2
xz ¼ fRAz1

− 1g ∂σ
nþ1∕2
xz

∂z
þ RBz1

Φn−1∕2
xz1 ; (46)

followed by the update of Φnþ1∕2
xz1 as

Φnþ1∕2
xz1 ¼ REz1

Φn−1∕2
xz1 − RFz1

∂σnþ1∕2
xz

∂z
. (47)

Second-order implementation

Second-order (O2) PMLs have been shown to offer increased ab-
sorption performance in the field of electromagnetics. Notice that
two stretching functions are now required to describe the overall
PML attenuation. Inserting N ¼ 2 into the correction equation 43
results in

Jnþ1∕2
xz ¼ fRAz1

RAz2
− 1g ∂σ

nþ1∕2
xz

∂z
þ RAz2

RBz1
Φn−1∕2

xz1 þ RBz2
Φn−1∕2

xz2 ; (48)

which now depends on two updates, for Φxz2 and Φxz1 as

Φnþ1∕2
xz2 ¼ REz2

Φn−1∕2
xz2

− RFz2

�
RAz1

∂σnþ1∕2
xz

∂z
þ RBz1

Φn−1∕2
xz1

�
(49)

and

Φnþ1∕2
xz1 ¼ REz1

Φn−1∕2
xz1 − RFz1

∂σnþ1∕2
xz

∂z
. (50)

Note that although equations 46 and 48 take different forms de-
pending on the order N of the PML (i.e., first, second, : : : ,N), RAzi,
RBzi, REzi, and RFzi remains unchanged.

PML stability

Although it is shown by Giannopoulos (2012) that second-order
PMLs can provide enhanced performance over first-order PMLs for
electromagnetic wave absorption, it is still unclear as to whether
PML orders greater than second provided any significant benefit.
Therefore, this work focuses primarily upon second-order imple-
mentation and testing.
The first-order stretching functions are written as

sclassical ¼ κ þ d
iω

(51)
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and

sCFS ¼ κ þ d
αþ iω

. (52)

The stretching function of a second-order PML depends on the
multiplication of two first-order stretching functions. Therefore,
considering equations 48 and 6, there are three possible permuta-
tions of the second-order stretching function:

sclassical‐classical ¼
�
κ þ d

iω

��
κ þ d

iω

�
; (53)

sclassical‐CFS ¼
�
κ þ d

iω

��
κ þ d

αþ iω

�
; and (54)

sCFS‐CFS ¼
�
κ þ d

αþ iω

��
κ þ d

αþ iω

�
. (55)

The sclassical−classical stretching function is found to offer poor per-
formance due its limited ability to absorb low-frequency waves and
possibly due to the large similarity between first- and second-order
stretching components. Therefore, it is discounted from the analysis
at an early stage.
The selection of stretching function parameters can have a sig-

nificant effect on a PML’s ability to attenuate wave energy. Careless
parameter selection can also lead to instability, especially as the
PML order increases. To meet the stability criterion, the real part
of the stretching function has to be greater or equal to one or
the PML caused a physical contraction of space rather than a
stretching of space. Similarly, the imaginary part has to be less than
or equal to zero or the PML region experiences a magnification of
amplitude rather than an attenuation. These relationships are ex-
pressed as

rO2 ≥ 1 (56)

and

IO2 ≤ 0. (57)

Different second-order (and Nth-order) stretching functions yield
different real and imaginary components. Therefore, equations 54
and 55 are analyzed to determine appropriate parameter selections
to meet the conditions outlined in equations 56 and 57. Despite this,
it should be noted that in cases in which the stability criteria are not
met, it does not necessarily guarantee that errors will be introduced
into the solution.

Classical-CFS stability criterion

Giannopoulos (2012) finds that for the absorption of electromag-
netic waves, optimum performance is achieved by combining
classical and CFS stretching functions (equation 54). It is postulated
that for some domains, by combining the classical PMLs ability to
absorb frequency-independent waves with the CFS-PMLs ability to
absorb low-frequency evanescent waves, greater performance was
achievable. For the elastodynamics case, the real and imaginary
components of the “classical-CFS” case are found to be

rO2 ¼ κ2 þ
d2α2

α22 þ ω2
−

d1d2
α22 þ ω2

(58)

and

IO2 ¼
d1κ2
ω

þ d2ω
α22 þ ω2

þ d1d2α2
ωðα22 þ ω2Þ . (59)

CFS-CFS stability criterion

The CFS-CFS PML approach had a greater number of degrees of
freedom in comparison with the RI-CFS-PML because additional α
and κ coefficients were used. In fact, the classical-CFS formulation
can be considered as a subset of the CFS-CFS formulation. There-
fore, the CFS-CFS PML is likely to provide enhanced absorption.
The real and imaginary parts of the CFS-CFS stretching function

are found to be

rO2 ¼ κ1κ2 þ
α2κ1d2
α22 þ ω2

þ α1κ2d1
α21 þ ω2

þ
�

α1α2
ðα21 þ jω2Þðα22 þ jω2Þ −

ω2

ðα21 þ jω2Þðα22 þ jω2Þ
�

(60)

and

IO2 ¼
κ1ωd2

ðα22 þ jω2Þ þ
d1ωκ2

ðα21 þ jω2Þ

−
�

α2ω

ðα21 þ ω2Þðα22 þ ω2Þ þ
α1ω

ðα21 þ ω2Þðα22 þ ω2Þ
�
d1d2.

(61)

Assuming that all PML coefficient values are chosen to be pos-
itive, the imaginary part of the stretching function would always be
fulfilled. Despite this, unlike the classical-CFS case, the stability of
the real part of the CFS-CFS stretching function is frequency de-
pendent. Therefore, to maintain stability, α1α2 > ω2 and κ2 ≥ 1.
Unlike the classical-CFS stretching function, α2 scaling has to be

considered relative to α1 scaling to ensure that the stability criteria
are met at every grid point within the PML region. If α1 and α2 are
scaled from a minimum at the threshold between PML and model-
ing space, to a maximum at the PML extremity, then it is more
straightforward to ensure that the stability condition is met.
Although the CFS-CFS stability criterion is slightly more chal-

lenging to meet, in comparison with the classical-CFS case, it offers
five more degrees of freedom to aid absorption.

NUMERICAL RESULTS

Example 1: Square 2D homogeneous full-space

Problem formulation

The performance of the new correction PML formulation in com-
parison with a traditional noncorrection approach is compared using
a square 2D homogeneous full space, as also used by Drossaert and

FDTD seismic wave absorption T7
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Giannopoulos (2007). The domain is 77.5 m in length in the x- and
z-directions with a cell size of 0.25 m (Figure 1). A rotated stag-
gered grid (RSG) stencil is used to describe the staggered nature of
the velocity and stress components. The central differencing time
integration scheme is second-order accurate in space and time.
The material properties are ρ ¼ 2000 kg∕m3, λ ¼ 500 MPa, and
μ ¼ 300 MPa. The central grid point (155,155) is excited using
a pulse in the shape of the second derivative of a Gaussian, with
frequency of 20 Hz. The receiver is offset from the upper left corner
by 5 m in both directions.

Model results — Correction RI-PML versus noncorrection
RI-PML

To compare the performance of the new correction PML, its per-
formance was tested against an alternative PML implementation,
using example 1. To create the alternative, first-order PML scheme,
we follow Drossaert and Giannopoulos (2007). To create the cor-
rection PML, equations 46 and 47 are used. A key difference in the
approaches is that the noncorrection formulation required direct
manipulation of the underlying velocity/stress update equations.
The correction PML equations does not require such manipulation
and takes the time-domain form:

vx ¼ b

�
∂σxx
∂x

þ ∂σxz
∂z

�
þ PMLvx ; (62)

vz ¼ b

�
∂ ~σxz
∂x

þ ∂σzz
∂z

�
þ PMLvz ; (63)

σxx ¼ ðλþ 2μÞ ∂vx
∂x

þ λ
∂vz
∂z

þ PMLσxx ; (64)

σzz ¼ ðλþ 2μÞ ∂vz
∂z

þ λ
∂vx
∂x

þ PMLσzz ; (65)

σxz ¼ μ

�
∂vz
∂x

þ ∂vx
∂z

�
þ PMLσxz ; (66)

with the correction coefficients calculated in the PML zones as

PMLvx ¼ bðJxx þ JxzÞ; (67)

PMLvz ¼ bðJxz þ JzzÞ; (68)

PMLσxx ¼ ðλþ 2μÞMxx þ λMxz; (69)

PMLσzz ¼ ðλþ 2μÞMzz þ λMzx; (70)

PMLσxz ¼ μðMzx þMxzÞ. (71)

The Jxu andMxu are calculated as described by equations 19 and
20. The regions for the calculation of the PML correction terms
could also be written as

PMLui ≠ 0 for x ∈ ½0−1.25; 76.25−77.5�; (72)

z ∈ ½0−1.25; 76.25−77.5�; (73)

PMLui ¼ 0 for x ∈ ½1.25−76.25�; and (74)

z ∈ ½1.25−76.25�. (75)

For both tests, the PML is five cells thick, and for simplicity, first-
order classical stretching functions (equation 51) are compared (i.e.,
κmax ¼ 1 and αmax ¼ 0). The dmax is calculated in accordance with
Collino and Tsogka (2001), and d is scaled quadratically with dmax

located at the extremity of the computational grid. The calculation
of dmax is shown in equation 76, where VP is the compressional
wave velocity, L is the PML depth, and R is the reflection coeffi-
cient (1 × 10−5) (Collino and Tsogka, 2001). It should also be noted
that the RSG was found to make the implementation of both the
PMLs more straightforward than other grid types due to the colo-
cation of velocity components and the colocation of stress compo-
nents as

dmax ¼
3vp
2 L

log
1

R
. (76)

Figure 2 shows the resulting traces for both schemes. It was
found that the performance of both PMLs was so similar that
the trace time histories were not useful for enabling comparison.
Therefore, the difference between each trace at each time step
was also plotted and is shown in Figure 3. It can be seen that
the error was on the order of 1 × 10−15, with a maximum of
2 × 10−15. Last, a commonly used error metric (equation 77)
was used to calculate the difference between traces. Figure 4 shows
that the resulting error is in the region of –300 dB as

1.25 m

Receiver

Source

1.25 m

1.
25

 m
1.

25
 m

75 m

75
 m

3.
75

 m

3.75 m

Figure 1. Example 1 schematic.
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Errordbjni;j ¼ 20log10
kEcorrectionjni;j −Enoncorrectionjni;jk

kEnoncorrectionmax
ji;jk

. (77)

Note that Ecorrectionjni;j represents the correction PML trace at a
point in time n and at spatial location i; j. The Enoncorrectionjni;j rep-
resents the noncorrection PML solution, and Enoncorrectionmax

is the
maximum amplitude of the noncorrection PML trace. When plot-
ted, this allows for a better visual interpretation of the errors at each
point in time.
Therefore, it is concluded that the new correction implementation

performed nearly identically to the original noncorrection PML.
The discrepancies are in the range of 1 × 10−15 or −300 dB, which,
although theoretically they should have been zero, were insignifi-
cant and most likely generated by numerical precision errors (e.g.,
rounding errors associated with the computer, etc.).

Example 2: Rectangular 2D homogeneous full-space

Problem formulation

Elongated rectangular domains can reduce the absorption perfor-
mance of PMLs. Therefore, two PML comparisons are undertaken.
First, the new first-order recursive integration correction PML is
compared with an alternative PML implementation based on a con-
volution approach. Second, the new higher order correction PML is
compared with a first-order correction PML approach.
The grid used for comparison is identical to that outlined in

Komatitsch and Martin (2007) and Martin et al. (2010) with
101 × 641 square cells and 10-m spacing between grid points in
both directions (Figure 5). The homogeneous material is character-
ized by pressure wave velocity cp ¼ 3300 ms−1, S-wave velocity
cs ¼ 1905 ms−1, and density ρ ¼ 2800 kgm−3. The computational
scheme is second-order accurate in space and time with a constant
time step of δt ¼ 0.001s. The staggered grid stencil follows that
outlined by Virieux (1986) and is bounded on all sides by a
PML region 10 cells thick.
An 8-Hz excitation with the form of a first derivative of a Gaus-

sian was used to excite the velocity components in the horizontal
and vertical directions at coordinate (79, 427). Receivers one, two,
and three were placed at (20,413), (70,227), and (81,27), respec-
tively. Physically, receiver 1 was located closest to the source
and receiver 3 located furthest away. At each receiver, horizontal
and vertical velocity time histories were recorded.

Example 2 (test 2.1): Correction RI-PML
versus C-PML

For the domain shown in Figure 5, Martin et al. (2010) find
a set of high-performance absorption coefficients. Values for
κmax and αmax are shown in equations 78 and 79 (ω ¼
excitation frequency), and α is scaled linearly with a maximum
at the edge of the computational grid (Festa and Vilotte, 2005).
The dmax and the profile for d are calculated using the recommen-
dations outlined in Collino and Monk (1998). Therefore, the same
coefficients are for the first-order correction PML, based on a re-
cursive integration approach and for the C-PML:
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Figure 2. Example 1: Trace history.
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Figure 3. Example 1: Trace error time history.
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Figure 4. Example 1: Error time history.
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κmax ¼ 7 ðαmax ¼ ωπÞ. (78)

Figure 6 shows that the resulting traces for both PML conditions
were similar. Therefore, once again, to facilitate a more detailed
comparison of performance, a log-based metric is introduced. Note
that this time, the error is calculated for the performance of each
PML compared with a reference solution, rather than directly be-
tween the PML formulations:

Errordbjni;j ¼ 20 log10
kEjni;j − Eref jni;jk
kErefmax

ji;jk
. (79)

Although the error plots (Figure 7) allow for easier comparison be-
tween traces, there are still large similarities between results. At some
points, the CPML is found to perform marginally better, but at other
points, the correction PML exhibits slightly higher accuracy. This is
evident at all receivers. Therefore, it is concluded that the correction
PML offers very similar performance to the CPML implementation.
Despite this, due to the recursive integration scheme used for the RI-
PML, it offers a solution with reduced memory requirements.

Example 2 (test 2.2): First-order PML versus
second-order PML

A practical approach to optimization

An advantage of using a higher order PML in comparison with a
first-order PML was that there were a greater number of parameters
that could be altered to optimize absorption. A challenge associated
with these extra degrees of freedom is that each one has to be care-
fully chosen to maximize absorption and meet stability criteria. This
task can be time-consuming.
For example, first considering the stretching function associated

with the original first-order classical PML (equation 51), it has only
two modifiable degrees of freedom: dmax and the polynomial scaling
order for d. This makes the optimization process relatively straight-
forward. In comparison, the alternative CFS-PML stretching function
has seven degrees of freedom, including dmax, κmax, αmax, and poly-
nomial scaling of d, κ, α. Additionally, assuming that d and κ are
always scaled with a maximum at the edge of the computational grid,
but α could be scaled in either direction, this creates one extra degree
of freedom. This degree of freedom describes the scaling direction.
Then, considering higher order stretching functions, it is clear

that the number of degrees of freedom would increase even further.
For example, regarding a second-order PML, the classical-CFS
PML stretching function (equation 54) has nine degrees of freedom
and the CFS-CFS stretching function (equation 55) has 14 degrees

of freedom. Therefore, it becomes clear that the optimization task
required for the overall stretching function is onerous. If
Ndof ¼ number of degrees of freedom within a stretching function,
then the total number of dof’s needed to describe a PML made up
from a number Classicaln of classical stretching functions and a
number CFSn of CFS stretching functions is

Ndof ¼ 2Classicaln þ 7CFSn. (80)

The aim of this work is to present the new formulations for the
first-order correction PML and the higher order PML. It is also to
show that the higher order PML formulation was capable of offering
absorption benefits over traditional first-order approaches. Despite
this, it is not intended to investigate approaches to the optimization
of higher order PML coefficients — instead, as an initial inves-
tigation, a trial-and-error approach to optimization is used exclu-
sively (for all examples presented in this work). PML coefficient
optimization is an active and ongoing area of research, and as such,
it is anticipated that new developments will allow for the efficient
optimization of PML coefficients, thus increasing the performance
and competitiveness of higher order formulations in comparison
with the first-order PMLs.
Therefore, an attempt is made to show that the higher order PML

is capable of outperforming first-order schemes when minimizing
the number of degrees of freedom required for optimization. This is
achieved by using test examples from the literature in which the
original authors already determine the optimum first-order param-
eters. These parameters are then combined with a second set of CFS
parameters to create a second-order CFS-CFS stretching function.
This means that the higher order PML performance could be inves-
tigated when optimizing only a reduced number of coefficients. It
also provides a conclusive method to test whether the second-order
PML offered enhanced performance over the first-order PML.

Second-order PML versus first-order PML

To test the ability of a higher order PML scheme to outperform its
first-order counterpart, the example outlined by Martin et al. (2010)
is also used. The original optimized stretching function coefficients
as outlined by Martin et al. (2010) are used to describe the first-or-
der CFS stretching component. This is then combined with another
CFS stretching function, as described by equation 55 to create a
second-order CFS-CFS stretching function. The time-domain equa-
tions are identical to those presented in equations 62–66; however,
the correction PML terms (i.e., Jxu) are modified to include the sec-
ond-order CFS-CFS stretching function (equations 48 and 55).
The second set of CFS parameters are as follows:

dmax2
¼ dmax1

30
; (81)

κmax2
¼ 1.5; (82)

αmax2
¼ 2 dmax1

. (83)

It should also be noted that d2 and κ2 are scaled using second-order
polynomials and that α2 was scaled linearly.
Figure 8 shows the resulting error plots. Both of the first-order

CFS formulations produce nearly identical results, and it is found

80
0 

m
10

0 
m

6200 m
100 m 100 m

10
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m

Receiver 1

Receiver 2
ecruoS3 revieceR

Figure 5. Example 2: Model schematic (rotated 90°).
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Figure 6. Trace comparisons: RI-PML versus C-PML. (a) νx receiver 1, (b) νz receiver 1, (c) νx receiver 2, (d) νz receiver 2, (e) νx receiver 3,
and (f) νz receiver 3.
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that the overall error increases as the receiver distance is increased.
Concerning the O2 CFS-CFS implementation, performance at
receivers vx1 and vz1 is improved slightly but as distance increased,

the performance benefit increases rapidly in comparison with the
O1 scheme. Receivers vx3 and vz3 show marked improvement with,
on average, between 10 and 20 dB less error.
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Figure 7. Error comparisons: RI-PML versus C-PML. (a) νx receiver 1, (b) νz receiver 1, (c) νx receiver 2, (d) νz receiver 2, (e) νx receiver 3,
and (f) νz receiver 3.
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The furthest-away receivers are subject to a greater number of
evanescent waves in comparison with the closest receivers. PML
schemes typically have degraded performance under such condi-

tions, but the additional degrees of freedom associated with the
O2 PML allow it to maintain higher levels of performance in com-
parison with both the CFS stretching functions.
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Figure 8. Error comparisons: First-order PML versus second order PML. (a) νx receiver 1, (b) νz receiver 1, (c) νx receiver 2, (d) νz receiver 2,
(e) νx receiver 3, and (f) νz receiver 3.
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Because the close receivers experienced only a low percentage of
evanescent waves, the first-order CFS is also capable of high-per-
formance absorption. Therefore, there is not much scope for im-
provement by adding an additional stretching function.
It should be noted that attempts were also made to improve ab-

sorption performance using the classical-CFS stretching function.
Despite this, for this particular full-space model, no significant per-
formance benefits were found.
Investigations were also performed to compare the computa-

tional performance between the first- and second-order PMLs.
Simulations were performed using MATLAB, running on a laptop
PC with a 2.66-GHz processor and 4 GB of RAM. The computa-
tional time taken for the first-order test case to run was 91 s,
whereas the second-order test case took 140 s. Therefore, when
considering the deployment of a higher order PML, it is important
that the potential absorption benefit justifies the increase in com-
putational resource. One possible application is the use of a hybrid
(01–02) PML in which all model edges except those subject to a
large percentage of evanescent waves are subject to a first-order
PML, whereas the remaining sides are terminated using a second-
order PML. Depending on the domain under consideration, this
potentially has the ability to offer increased absorption with mini-
mized run times.
Another consideration is that programming the extra equations/

fields associated with the higher order PML requires additional time
and effort. Thus, it must also be considered whether this extra effort
is better spent modifying an existing first-order implementation
(e.g., increasing the physical thickness of the PML), rather than pro-
gramming a higher order PML.
Therefore, in conclusion, due to the increased performance, par-

ticularly at large offsets, the second-order PML offers additional
absorption in comparison with its first-order alternative. Despite
this, the second-order PML requires additional computational re-
sources and programming effort.

Example 3: A rectangular 2D homogeneous
half-space

Test 3.1: Second-order PML versus first-order PML

For relatively near-surface seismic applications such as earth-
quake engineering, it is common to perform simulations in the pres-
ence of a free-surface boundary condition. Such models generate
wavefields that are more complex than full-space models. These
wavefields include surface waves in the form of exponentially
decaying Rayleigh waves, which can present challenges for ABCs
(Zeng et al., 2011).

To test the ability of the higher order PML to absorb surface
waves, a near-surface model was replicated from Drossaert and
Giannopoulos (2007). This elongated domain had dimensions of
3750 × 250 m with cell size of 2.5 m and a time step of 3.2 ms.
The source and receiver were placed 2125 m apart to test the ability
of the PML to absorb evanescent waves subject to large grazing
angles.
The free surface was achieved by setting the density and S-wave

velocity of the five cells above the free surface close to zero. An
RSG, with second-order accuracy in space and time, was used to
describe the velocity and stress discretization. The use of the
RSG facilitated a straightforward implementation of the free
surface because only density values had to be averaged across
the interface. Excitation was provided by a Gaussian-shaped im-
pulse (center frequency 1.5 Hz) in the vertical direction. The
material properties of the medium were ρ ¼ 2000 kg∕m3, λ ¼
600 MPa, and μ ¼ 300 MPa.
The PML zones truncated three sides of the grid, with the vertical

sides terminating at the free surface as shown in Figure 9. The op-
timal PML coefficients for the domain, as previously found
by Drossaert and Giannopoulos (2007) are σmax ¼ 234.2, κmax ¼
25, and αmax ¼ 10. All attenuation parameters are scaled using
a second-order polynomial function; however, αmax is scaled
inversely, meaning it has a value of zero at the extremity of the
grid. Once again, a large reference model is used to assess PML
performance.
A stretching function with form sCFS‐CFS is used with parameters

dmax2
¼ 50 dmax1

; (84)

κmax2
¼ 1; (85)

αmax2
¼ 800. (86)

Note that α2 is scaled linearly, also with a minimum at the extremity
of the grid. The value of d2 is scaled in the same manner as d1.
Figure 10 shows the resulting vertical velocity error for the

surface receiver. It was found that the maximum error occurred

Free surface

22
5 

m
12

.5
 m

2125 m
12.5 m 12.5 m

SourceReceiver

Figure 9. Example 3: Model schematic.
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Figure 10. Example 3: Error.

T14 Connolly et al.

D
ow

nl
oa

de
d 

02
/2

0/
18

 to
 1

29
.1

1.
22

.5
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



approximately at 6.5 s with the first-order PML generating an error
of −11.5dB. In comparison, the second-order PML reduced this
error by −11.5 dB to a total of −23 dB. At the time steps before
the maximum error, the second-order PML was found to offer a
slight improvement in performance, whereas after the maximum er-
ror, it was found to offer a slight decrease in absorption. Despite
this, the overall error was lower and the error profile was flatter
indicating an overall improvement in performance.

CONCLUSIONS

Two new unsplit PML formulations were presented for the ab-
sorption of seismic wave energy.
The initial was a first-order “correction” approach that used cor-

rection terms to adjust the traditional FDTD update equations, thus
simulating PML attenuation. Because the correction PML did not
require any modification of the traditional FDTD update equations,
it greatly reduced the programming complexity of PML implemen-
tation. The advantages of using a correction PML over traditional
PML implementations were found to be as follows:

1) It increased the ease of PML implementation.
2) It could be added to existing codes without making any changes

to the underlying update equations.
3) It offered seamless absorption in model corner regions without

any special consideration.
4) It had identical absorption performance to traditional PML im-

plementations.
5) It allowed for the implementation of arbitrary stretching func-

tions, thus making the implementation of higher order PMLs
straightforward.

6) Its recursive integration approach required less memory storage
than alternative approaches, thus reducing computational re-
quirements.

More importantly, in addition to the correction PML, a formu-
lation to create higher order PMLs, of arbitrary order, was pre-
sented. To assess the ability of the new PML formulation to
increase absorption, two examples were outlined. One example
was an elongated rectangular full space and the other an elongated
rectangular half-space. The key findings were as follows:

1) Second-order PMLs offer an increased number of degrees of
freedom in comparison with first-order schemes, thus facilitat-
ing superior absorption performance.

2) Higher order PMLs require careful attenuation coefficient selec-
tion to maximize absorption and maintain PML stability.

3) Higher order PMLs require additional computational resources
in comparison with first-order schemes. This additional compu-
tational cost must be carefully considered when selecting an ap-
propriate PML formulation.
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APPENDIX A

HIGHER ORDER PML’S FOR A GENERAL
3D CASE

For a staggered scheme in which velocity components are up-
dated at t ¼ n and stress components at t ¼ nþ 1∕2, the calcula-
tion of velocity for the entire grid is as follows:

vni ¼ vn−1i þ bδtðJnii þ Jnij þ JnikÞ; (A-1)

where δt is the time step size and i; j; k ∈ ½x; y; z�. The PML veloc-
ity correction terms Jii; Jij; Jik are calculated using

Jnij ¼
��YN

q¼1

RAjq

�
− 1

�∂dnij
∂j

þ
XN−1

p¼1

�� YN
q¼pþ1

RAjq

�
RBjqΦ

n−1
ij

�
þRBjNΦ

n−1
ijN

; (A-2)

where N is the order of the PML and p ∈ ½1; N�. The previous time
integral Φn

ijp
is obtained through

Φn
ijp

¼ REjpΦ
n−1
ijp

− RFjp

��Yp−1
q¼1

RAjq

� ∂dnij
∂j

þ
Xp−1
m¼1

� Yp−1
q¼mþ1

RAjq

�
RBjmΦ

n−1
ijm

�
. (A-3)

Similarly, stresses at t ¼ nþ 1∕2 can then be calculated using

dnþ1∕2
ij ¼ dnþ1∕2

ij þ δtCijklðMnþ1∕2
ii þMnþ1∕2

ij þMnþ1∕2
ik Þ;

(A-4)

with the correction terms found using

Mnþ1∕2
ij ¼

��YN
q¼1

RAjq

�
− 1

�∂vnþ1∕2
j

∂j

þ
XN−1

p¼1

�� YN
q¼pþ1

RAjq

�
RBjqΦ

n−1∕2
ij

�
þRBjNΦ

n−1∕2
ijN

;

(A-5)

and the previous time integral

Φnþ1∕2
ij ¼ REjpΦ

n−1∕2
ijp

− RFjp

��Yp−1
q¼1

RAjq

� ∂vnþ1∕2
j

∂j

þ
Xp−1
m¼1

� Yp−1
q¼mþ1

RAjq

�
RBjmΦ

n−1∕2
ij

�
. (A-6)
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For all Jnij and Mnþ1∕2
ij ,

RAzp ¼ 2þ Δtαzp
2κzp þ Δtðαzpκzp þ dzpÞ

;

RBzp ¼ 2κzp
2κzp þ Δtðαzpκzp þ dzpÞ

;

REzp ¼ 2κzp − Δtðαzpκzp þ dzpÞ
2κzp þ Δtðαzpκzp þ dzpÞ

;

RFzp ¼ 2dzpΔt
ð2κzp þ Δtðαzpκzp þ dzpÞÞκzp

. (A-7)

Beyond the PML region d ¼ 0, α ¼ 0, κ ¼ 1, resulting in
RA ¼ 1, RB ¼ 1, RE ¼ 1, and RF ¼ 0. This causes Jii; Jij; Jik
to reduce to ∂dnij∕∂z and Mii;Mij;Mik to reduce to ∂vnþ1∕2

j ∕∂z.
Therefore, stress and velocity equations automatically revert to
the original stress derivatives.
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