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Abstract

Aim: The aim was to assess the sensitivity of butterfly population dynamics to variation in weather

conditions across their geographical ranges, relative to sensitivity to density dependence, and

determine whether sensitivity is greater towards latitudinal range margins.

Location: Europe.

Time period: 1980–2014.

Major taxa studied: Butterflies.

Methods: We use long-term (35 years) butterfly monitoring data from > 900 sites, ranging from

Finland to Spain, grouping sites into 28 latitudinal bands. For 12 univoltine butterfly species with

sufficient data from at least four bands, we construct population growth rate models that include

density dependence, temperature and precipitation during distinct life-cycle periods, defined to

accommodate regional variation in phenology. We use partial R2 values as indicators of butterfly

population dynamics’ sensitivity to weather and density dependence, and assess how these vary

with latitudinal position within a species’ distribution.
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Results: Population growth rates appear uniformly sensitive to density dependence across species’

geographical distributions, and sensitivity to density dependence is typically greater than sensitivity

to weather. Sensitivity to weather is greatest towards range edges, with symmetry in northern and

southern parts of the range. This pattern is not driven by variation in the magnitude of weather vari-

ability across the range, topographic heterogeneity, latitudinal range extent or phylogeny. Significant

weather variables in population growth rate models appear evenly distributed across the life cycle

and across temperature and precipitation, with substantial intraspecific variation across the geo-

graphical ranges in the associations between population dynamics and specific weather variables.

Main conclusions: Range-edge populations appear more sensitive to changes in weather than

those nearer the centre of species’ distributions, but density dependence does not exhibit this pat-

tern. Precipitation is as important as temperature in driving butterfly population dynamics.

Intraspecific variation in the form and strength of sensitivity to weather suggests that there may

be important geographical variation in populations’ responses to climate change.
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1 | INTRODUCTION

Understanding how environmental factors regulate population dynamics is

a fundamental question in ecology, and one of particular importance in

the context of climate change (Bellard, Bertelsmeier, Leadley, Thuiller, &

Courchamp, 2012). Establishing the importance of climatic factors in driv-

ing population dynamics, relative to others such as density dependence, is

crucial for predicting how populations will be affected by climate change.

Climate appears to play a role in regulating populations, as both occu-

pancy and distribution limits are often well explained by climate (Boucher-

Lalonde, Morin, & Currie, 2014; Gaston, 2003), and recent distributional

shifts are often associated with changing climatic conditions (e.g., Lenoir,

G�egout, Marquet, de Ruffray, & Brisse, 2008; Poloczanska et al., 2013).

These relationships are frequently used to project the impacts of climate

change on species’ distributions and community structure (Urban et al.,

2016). Shifts in phenology, associated changes in biotic interactions, and

direct effects also suggest that many species’ population dynamics are

responding to climate change (CaraDonna, Iler, & Inouye, 2014).

Despite these general arguments supporting the role of climate in

driving coarse-scale population distributions and dynamics, studies that

attempt directly to link relatively shorter-term weather to inter-annual

population dynamics have generated variable conclusions. The ability

of weather to explain variation in vital rates, as well as the strength of

these effects, has ranged from strongly regulating (Boggs & Inouye,

2012; Forchhammer, Stenseth, Post, & Landvatn, 1998; Gullett, Evans,

Robinson, & Hatchwell, 2014) through to being of relatively limited

importance relative to other factors, such as density dependence, with

weather variables sometimes having negligible explanatory power

(B�ancil�a, Ozgul, Hartel, Sos, & Schmidt, 2016; Nowicki, Bonelli, Barbero,

& Balletto, 2009). The reasons for these differences in sensitivity

remain unclear. One potential explanation is systematic spatial variation

in the relative importance of weather in regulating populations

(Sandvik, Coulson, & Sæther, 2008). Population dynamics are driven by

many factors that act at varying spatial and temporal scales and involve

different processes in different portions of the species’ range (Beale,

Brewer, & Lennon, 2014; Gaston, 2003). If climatic factors limit species

distributions, then one might expect that weather variables are more

important determinants of population growth rates at range edges than

elsewhere in a species’ distribution (Garcia et al., 2000), especially if

there is a rapid decline in the suitability of conditions towards the edge

of a species’ fundamental niche. In contrast, towards the range centre,

factors such as intra- and interspecific competition may be of relatively

greater importance, overriding the influence of weather effects

(Bjørnstad & Grenfell, 2001). Position within the species’ range may

thus be an important determinant of a given population’s sensitivity to

weather events. Conversely, if populations across a species’ range are

highly adapted to local weather regimes then all populations, regardless

of their range position, will exhibit similar sensitivity to local weather

fluctuations (Myers-Smith et al., 2015).

A number of studies have found latitudinal gradients in sensitivity to

weather, but these include positive latitudinal gradients (Chen, Welsh, &

Hamann, 2010; Forchhammer, Post, Stenseth, & Boertmann, 2002;

Sæther et al., 2003), negative gradients (Forchhammer et al., 2002;

Sæther et al., 2008) and a mix of the two (Sandvik et al., 2008; Sæther

et al., 2008). The biological basis for this variation in latitudinal trends in

sensitivity to weather is unclear (Chen et al., 2010), but could arise

through a given latitude meaning different things for different species. A

given latitude will be close to the range edge for some species but closer

to the range centre for others, and by failing to place the latitudinal posi-

tion in the context of the species’ overall range, this is overlooked. Con-

sequently, variation in latitudinal patterns in weather sensitivity may still

be consistent with the hypothesis that range position is associated with

sensitivity to weather conditions. To date, few studies have directly

examined whether sensitivity to weather is greater in populations at

range margins relative to those closer to the range centre. Those studies

that have been conducted have, however, primarily found heightened
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sensitivity towards northern range edges and high altitudes (Ettinger,

Ford, & HilleRisLambers, 2011; Myers-Smith et al., 2015).

Variation in organism fitness over environmental gradients is not

necessarily symmetrical. Species’ performance typically declines more

steeply above the thermal optimum than below (e.g., Ara�ujo et al.,

2013; Deutsch et al., 2008). Additionally, Sunday et al. (2014) found

that upper thermal tolerances are frequently exceeded at the warm

range edge, whereas at the cool range edge a larger thermal safety mar-

gin exists between lower thermal tolerances and environmental temper-

atures. As a consequence, at the trailing range margin, temperature may

be a relatively more important determinant of population dynamics than

at the leading range edge. Alternatively, range-wide patterns of sensitiv-

ity may be more complex, with weather effects displaying strong con-

text dependence (Keith et al., 2008) or being masked by different

mechanisms, including differential responses to temperature and precip-

itation, operating in different parts of the range (Beale et al., 2014).

Variation in weather sensitivity across a species’ range has impor-

tant implications. Firstly, weather associations observed in a single or a

few population(s) are unlikely to be representative of the overall spe-

cies’ response, which limits the ability of single population studies to

generate general conclusions about the species’ response across its

entire range. Secondly, It further suggests that the response to climate

change will not be uniform across the range and, if sensitivity does

indeed increase towards range margins, responses will be greater in

peripheral regions than in the range centre. Failing to account for these

influences therefore limits our ability to understand and predict species

persistence and range dynamics under climate change. This suggests a

need for additional empirical studies assessing how sensitivity of popu-

lation growth rates to weather varies across species’ distributions.

Here, we assess how population growth rates of 12 univoltine but-

terfly species vary in sensitivity to weather across their European distri-

butions. We use data from five long-term European butterfly

monitoring schemes from 987 sites over five countries along a latitudi-

nal gradient from Spain to Finland, running from 1980 to 2014. Specifi-

cally, we model how population growth rate varies as a function of

temperature and precipitation variables measured over periods corre-

sponding to different life stages, in order to capture spatiotemporal

variation in phenology, and assess how the sensitivity of population

growth rates to these weather terms changes with latitudinal position

within the species’ range. We compare and contrast this with the latitu-

dinal pattern in strength of density dependence to assess whether

apparent patterns in weather sensitivity are associated with converse

patterns in sensitivity to density dependence. Our central hypothesis is

that sensitivity to weather increases towards species’ geographical lati-

tudinal range edges, and we further ask whether there is evidence of

asymmetry in sensitivity across this range.

2 | METHODS

2.1 | Butterfly and climate datasets

We use annual site-level indices of abundance gathered from the but-

terfly monitoring schemes of five European Countries: Finland,

Germany, the U.K., The Netherlands and Spain. The duration of cover-

age for each scheme varies: Finland (1999), Germany (2005), the U.K.

(1976), The Netherlands (1990) and Spain (1994). Annual site-level

abundance indices are calculated from counts made at weekly intervals

over the course of the season using a standardized Pollard-walk meth-

odology. Owing to the pronounced patterns of abundance seen in but-

terfly numbers over the course of a season, abundance indices are

derived from these weekly counts by fitting a general additive model

(GAM) and generating a measure of the area under the curve (Dennis,

Freeman, Brereton, & Roy, 2013). Where counts are missing, the GAM

provides an interpolated estimate based on counts made at other sites

in the same bioclimatic zone (Metzger et al., 2013; Schmucki et al.,

2016). This method has been demonstrated to generate unbiased

abundance estimates and to outperform a simple linear interpolation

method, which would be the alternative to our chosen approach

(Schmucki et al., 2016). To prevent spurious estimates, sites with

> 50% observations missing were removed before analysis (Schmucki

et al., 2016). To model inter-annual changes in abundance, an index of

population growth was calculated from the relative change in abun-

dance between two consecutive years, ln(Nt 1 1) 2 ln(Nt21 1 1),

which is hereafter referred to as relative growth rate. Sites with < 5

years of non-zero data were removed before further analysis.

We obtained climate data from the European Climate and Assess-

ment Dataset project (ECAD; Haylock et al., 2008). This dataset is a

gridded dataset of daily temperature (in degrees Celsius) and precipita-

tion (in millimetres) since 1950 at a 25 km resolution (0.228 rotated grid,

Version 12.0; Haylock et al., 2008). This spatial resolution is fairly

coarse, but it is the only available European climatic dataset with the

required temporal resolution. Sites for which there were no climate

data, typically because they fell in coastal grid cells that were not cov-

ered by the climate surface, were removed. To ensure that climatic data

matched as closely as possible the conditions at the monitoring site, we

used the 7.5 arc-second (�250 m) resolution Global Multi-resolution

Terrain Elevation Data map (GMTED) to exclude sites whose elevation

differed by > 150 m from the mean elevation within a 25 km cell.

The influence of climatic variables on population growth rates can

vary between different life stages (Radchuk, Turlure, & Schtickzelle,

2013), the timing of which can vary across the species’ range (Schmucki

et al., 2016). To accommodate this regional and temporal variation, we

used information about the flight period of each species, defined at the

level of the bioclimatic zone (Metzger et al., 2013), to tailor climatic

indices to specific periods of the butterfly’s life cycle. For each species

in each latitudinal band (see Section 2.2), we first obtained an average

flight curve from relative abundances over the course of the season,

following the methodology of Schmucki et al. (2016). We then

extracted daily temperature and precipitation variables for each 25 km

grid cell, using four time periods that reflect different life stages occur-

ring in an annual cycle: the post-flight, over-wintering, pre-flight and

flight periods (Figure 1), and standardized these to unit standard devia-

tion. Flight-period temperature and precipitation were then defined as

the mean of the daily temperature and precipitation indices falling

between the 10th and 90th percentiles of this flight-period distribution.

We used the same process to define the pre-flight and post-flight
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periods as the 3 months before and after the flight period. The over-

winter period was defined as November–January for all species in all

zones (Figure 1). Although over-winter periods could be defined over dif-

ferent time periods, for example December–February, this results in sub-

stantial overlap between over-winter and adjacent time periods for some

species in some regions. This particular definition was therefore chosen

on the basis that it minimizes such overlaps, and these are marginal

where they do occur. Analyses are restricted to univoltine species, for

which our methods of defining life-cycle periods are most appropriate.

2.2 | Process model of population growth rates

To model the influence of weather variables on population growth rate in

different portions of each species range, the range was subdivided into

latitudinal sections. Models were constructed at this regional level rather

than at the site level because individual sites typically had too few data

to reliably fit the climate models (the longest time series was 33 years,

and on average a site had data from 9 years), necessitating a higher level

of grouping. Latitudinal bands were constructed at 28 intervals on the

basis that this maximized the number of models we could construct with

reasonable sample sizes, with population growth rate then modelled as a

function of weather variables within each latitudinal band. Models were

constructed for each latitudinal band with > 150 data points (species/

site/year combinations). Supporting Information Figure S1 displays the

spatial distribution of sites for each species. For each species, in each lati-

tudinal band, population dynamics were modelled on the logarithmic

scale using the stochastic Gompertz model of population growth,

Nit5Nit21exp ai 1 logNit211W1it1 . . .1W8it1 Eit21ð Þ (1)

where Nit is abundance at the ith site at time t, ai is a varying site inter-

cept, Wjit is the jth weather variable at site i at time t, and Et21 is a nor-

mally distributed error term. Taking logs and rearranging to express in

terms of relative growth rate this becomes,

yit5 xit2 xit215ai1xit211W1it211 . . .1W8it211Eit21 (2)

where xit and xit21 are the logarithmic abundances at site i and times t and

time t2 1, respectively, and yit is thus the relative population growth rate

at site i in year t. To confirm that the weather terms included in these mod-

els had significance for the population dynamics of the species modelled,

we used F-tests to compare each model with a reduced model containing

no weather terms. Collinearity of weather variables in each model was

assessed using pairwise Pearson correlation coefficients. Only 2.4% (43 of

1,792) of pairwise comparisons had absolute correlation coefficients > .7,

and therefore the vast majority of individual parameter estimates were

considered robust to collinearity.

2.3 | Butterfly species inclusion

Twelve univoltine species were sufficiently well represented across at least

four latitudinal bands to be included in analyses (at least 150 data points in

a latitudinal band; Figure 2 and Supporting Information Figure S1), with a

total of 52 species/latitudinal band combinations. The 12 species were as

follows: orange tip, Anthocharis cardamines; ringlet, Aphantopus hyperantus;

dark-green fritillary, Argynnis aglaja; silver-washed fritillary, Argynnis paphia;

pearl-bordered tritillary, Boloria euphrosyne; green hairstreak, Callophrys

rubi; purple hairstreak, Favonius quercus; brimstone, Gonepteryx rhamni;

meadow brown, Maniola jurtina; gatekeeper, Pyronia tithonus; Essex skip-

per, Thymelicus lineola; and small skipper, Thymelicus sylvestris. One species,

brimstone, over-winters as an adult, and we are consequently unable to

distinguish between over-wintering individuals and those that emerged

that year. To check that this did not alter our conclusions, we therefore

also ran the analyses excluding this species. These did not qualitatively

affect our results and we therefore report only the full analysis with this

species included. Although the distributions of our focal species vary, they

all have a pan-European distribution, with some extending slightly into

north Africa (which was taken into account when defining range edges;

see Section 2.4.1).

2.4 | Assessing variation in sensitivity to weather

2.4.1 | Measuring range position

In order to establish how population sensitivity to weather varies

across the latitudinal range of each species, we constructed a measure

FIGURE 2 Sites retained after exclusion based on criteria outlined
in the text, with 28 latitudinal bands overlaid (dotted lines)

FIGURE 1 Schematic diagram of life-cycle periods and their corre-
spondence to two annual abundance indices, Nt and Nt21. Life-cycle
periods are as follows: post flight-period (postFP), over-wintering
period (OW), pre-flight period (preFP) and flight period (FP)
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of relative north–south geographical range position of the data for

each latitudinal band, defined along a vector from each species’ north-

ern and southern latitudinal range edges. To do this we first calculated,

for each latitudinal band, the average latitude of all data points in the

model, lataverage, weighted by the number of data points from each site.

This was then expressed as a proportional range position, through the

following conversion:

Relative range position; RRP5
lataverage2 latmin

latmax2 latmin
(3)

where latmax and latmin are the latitudes of the species’ northern and

southern range extents defined from the European butterfly atlas

(Kudrna et al., 2011), and from Tennent (1996) for species whose distri-

butions extended into north Africa (i.e., the relative range position met-

ric does not impose an artificial boundary at the southern European

range edge). Thus, our measure of relative range position scales

between zero (southern range edge) and one (northern range edge).

Owing to the predominantly European global distribution of all

species modelled here, absolute latitude and the derived relative range

position are highly correlated (Pearson correlation coefficient of .80).

Consequently, it is not possible to distinguish between the effects of

absolute latitude and relative latitude. We continue to report results in

terms of relative latitude, but this opens up the possibility that patterns

of sensitivity may be driven by alternative factors associated with abso-

lute latitude, rather than distance from the range edge per se. We dis-

cuss alternative explanations in the Discussion section.

2.4.2 | Assessing sensitivity to weather in relationship to

relative range position

We measured climatic sensitivity as the partial R2 value for the suite of

all weather terms in each model (i.e., the difference in R2 compared

with a model containing only site and density dependence terms;

Myers-Smith et al., 2015). Increasing partial R2 values reflect increasing

sensitivity to weather. Likewise, the importance of density dependence

was measured as the partial R2 value for the density dependence term

in each model. Our approach of using a metric derived from one set of

models as response variables in other models is equivalent to that used

in a number of other papers assessing spatial variation in population

dynamics (e.g., Morrison, Robinson, & Pearce-Higgins, 2016; Myers-

Smith et al., 2015).

Latitudinal variation in partial R2 measures was analysed using

mixed-effects models, with a random Gaussian intercept on species,

using the lme4 package in R (Bates, Mächler, Bolker, & Walker, 2015).

Three models of increasing complexity were fitted (Equations 4–6).

Model improvement through adding latitudinal predictors was tested

with an F-test with the Kenward–Rogers correction for estimating d.f.

in a mixed-modelling framework (Bolker et al., 2009) using the pbkrtest

package in R (Halekoh & Højsgaard, 2014). We calculated mixed-effect

R2 values for these models based on the framework outlined by Naka-

gawa and Schielzeth (2013).

Sensitivity5 sj1E (4)

Sensitivity5 sj1RRP1E (5)

Sensitivity5 sj1RRP1 RRP21E (6)

where sj is a random species intercept, RRP is the relative range

position for each model, and E is a normally distributed error term.

To check whether phylogenetic relationships between the mod-

elled species could influence our conclusions, we constructed a

second model that incorporated the phylogeny of Brooks et al.

(2017) into the random effects structure using the MCMCglmm

package (Hadfield, 2010). We found that the phylogenetic variance

terms approached zero and the model fit was almost identical (Sup-

porting Information Appendix S1 and Figure S2). We therefore

report models that do not incorporate phylogeny in the main

manuscript.

Sensitivity of butterfly population dynamics to weather could,

in principle, be driven partly by either (a) variation in weather vari-

ability across the range (i.e., increased exposure rather than

increased sensitivity) or (b) through heightened topographic heter-

ogeneity buffering populations from weather effects. We recog-

nize that it may also be possible that habitat may modify response,

but this is difficult to quantify formally, and we expect its influ-

ence to be minimal (see Discussion). To assess the influence of

points (a) and (b), we quantified (a) weather variability for each

species/latitudinal band combination (measured as standard devia-

tions, averaged across weather variables), and (b) the average

topographic heterogeneity (SD) within 500 m of each site (using

the GMTED raster), including each of these as additional predic-

tors in models. As a final robustness check, we also included total

latitudinal range size (latmax 2 latmin) as a predictor in models.

These additional predictors had a negligible influence on overall

model fit and do not qualitatively affect our results (see Support-

ing Information Appendix S1).

2.4.3 | Testing for asymmetry in climatic sensitivity

between northern and southern portions of range

We further set out to assess whether there was any evidence of asym-

metry in the latitudinal relationship by assessing whether the rate of

change in climatic sensitivity with latitude varied between the northern

and southern halves of the range. To do this, we defined the relative

range position in terms of distance from the range centre (i.e., differ-

ence between the relative range position and the range centre, .5) and

allowed the slope to vary depending on whether the relative position

was in the northern or southern half of the range:

Sensitivity5 sj1distance1I RRP<0:5ð Þ1 distance3 I RRP<0:5ð Þ1E
(7)

where sj is a random species intercept, ‘distance’ is the distance

from the range centre (scaling between zero at the range centre

and .5 at a range edge), and I is an indicator function for range posi-

tion (i.e., one in the southern half of the range and zero in the

northern half). If there is no asymmetry in latitudinal pattern, both

halves of the range should display similar slopes, with no interac-

tion term between slope and range portion. Degrees of freedom

were estimated using the Satterthwaite approximation (Bates et al.,

2015).
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3 | RESULTS

Population dynamics were frequently associated with weather, with F-

tests demonstrating that the inclusion of weather terms significantly

improved 75% of models (39 out of 52; Supporting Information Table

S1), and for each species this was the case in at least two regions

(Figure 3). Individual parameter estimates for weather terms vary in

magnitude and direction, with 31% being significant across the 52

models (p� .05; Supporting Information Table S2). The precise form of

the relationships between butterfly population growth rate and

weather is highly variable across life stages, both within and across spe-

cies, but significant parameter estimates are distributed in a fairly even

manner across life stages and weather variables (Supporting Informa-

tion Table S2). Models typically explained c. 40% of variation in popula-

tion dynamics (mean R250.39; Supporting Information Table S3), with

variable contributions from weather terms in these (partial R2 values

range from 1 to 22%, with a mean value of 5%). Negative density

dependence was ubiquitous, with all models containing significant neg-

ative parameter estimates for log-density (p< .05; Supporting Informa-

tion Table S2). Partial R2 values for density dependence terms were

uniformly larger than those for weather terms, with a mean partial R2

of 29% (range, 1–52%; Supporting Information Table S3). Although the

inclusion of weather terms significantly improved model performance,

the ability of the final models to predict relative growth rate remained

highly variable, and a large amount of residual variation remained unex-

plained (mean residual root mean squared error50.69; Supporting

Information Table S3).

There was support for latitudinal variation in sensitivity to weather,

with the partial R2 values for weather terms in butterfly population

dynamic models displaying curvature across the gradient of relative

range position, with lowest sensitivity to weather in populations closer

to the centre of the species’ European distribution (Figure 4). The

explanatory capacity of weather variables, as measured by partial R2,

displays a distinct latitudinal pattern, with the model containing quad-

ratic terms performing better than both intercept-only (F-test for differ-

ence between these two models: F2,44.458.46, p< .001) and linear-

slope models (F1,42.62516.08, p< .001). For the quadratic model, the

curve inflection point (minima) is at a relative range position of .52 (i.e.,

close to the centre of species’ latitudinal range). Latitudinal terms

explained a reasonable proportion of the variation in partial R2 values,

with a marginal R2 of 24%. Conversely, there were no statistically sig-

nificant patterns of latitudinal variation in density dependence when

measured by partial R2 values (linear model: F1,46.1350.28, p5 .602;

quadratic model: F2,42.9450.19, p5 .830; Figure 5).

Measures of climatic sensitivity were tested for asymmetry in the

change in sensitivity across the latitudinal gradient using a break-point

at the range centre (RPP50.5). These indicate an average increase of

.20 units partial R2 per .1 increase in distance from the range centre

(t53.87, d.f.546.9, p> .001), but no significant difference in slope

between the upper and lower range halves (t50.57, d.f.544.0,

p5 .570; Figure 6).

4 | DISCUSSION

Modelling population dynamics of regional populations of 12 univoltine

butterfly species suggests that populations towards species’ range

edges are relatively more sensitive to weather than those in the range

centre. This pattern contrasts with the uniform strength of density

dependence across species’ latitudinal distributions. There was limited

evidence of asymmetry in sensitivity, with the amount of variation in

population dynamics driven by weather variables being similar at north-

ern and southern range boundaries.

Our analyses focus on populations’ relative position within a spe-

cies range, because ecological theory predicts that range-edge popula-

tions will be more sensitive to weather conditions because of

inhospitable conditions at the edge of species’ fundamental niche space

(Oliver, Roy, Brereton, & Thomas, 2012). Our results appear to be

robust to a range of potential alternative explanations, including the

effects of phylogeny, latitudinal extent of species’ distributions and var-

iation in inter-annual variation in weather conditions across the range.

Given that we focus on widely distributed species whose ranges are

centred on a single region there is, however, an inevitable strong corre-

lation between a population’s relative range position and absolute lati-

tude. Consequently, it is difficult to tease apart the effects of relative

and absolute range position, with most of our range-edge populations

being located in Spain and Finland. It is thus possible that butterfly

populations in these two countries display heightened sensitivity to

weather for reasons that are unrelated to range position. This seems

unlikely, however, given that there are no systematic differences in site

selection across schemes, nor did we find any influence of topographic

heterogeneity on butterfly populations’ sensitivity to weather. In princi-

ple, higher habitat quality or connectivity could also partly buffer but-

terfly populations from adverse conditions, thus reducing their

apparent sensitivity to weather (e.g., Oliver et al., 2012); however, our

focal countries in central Europe typically have greater agricultural

FIGURE 3 Number of models by species, where each model for
each species is for a different latitudinal band. Darker shading
indicates that inclusion of climate terms resulted in significant
model improvement (F-test; p� .05)
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intensification and habitat fragmentation and lower quality habitats

than in Spain and Finland (EEA, 2016), which would act in opposition

to the observed pattern.

One mechanism that could drive heightened sensitivity to weather

at range edges is if species’ range margins coincide with climatic toler-

ances (i.e., range limits are determined by climatic factors), as height-

ened sensitivity would then be expected in more peripheral regions of

the species’ range (Myers-Smith et al., 2015; Oliver et al., 2012). This

may arise as a result of conditions towards the range edge becoming

increasingly sub-optimal, resulting in relatively larger changes in orga-

nism performance as weather conditions vary. For example, if the ‘per-

formance curve’ (Deutsch et al., 2008) that relates species’

performance to weather is unimodal, with declines to either side of this

optimum, the rate of change in fitness is relatively larger in more

peripheral regions than in the range centre (Vasseur et al., 2014).

Importantly, if species displayed a strong degree of adaptation to

local climate, we would not observe range-wide patterns in weather

sensitivity, as species would be uniformly sensitive to local climatic

FIGURE 4 Partial R2 values for the weather terms in each model by their relative position within the geographical range (i.e., each point is
a species/latitudinal band combination). The upper panel displays partial R2 values for all species; the lower panel displays same results, split
by species. The fitted curve displays the quadratic model (best supported of the three alternative models), with 95% confidence band
overlaid
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conditions (Bennett, Wernberg, Joy, de Bettignies, & Campbell, 2015;

Myers-Smith et al., 2015). Adaptation could arise as a result of intra-

specific variation in tolerance (Fischer & Karl, 2010) or through behav-

ioural plasticity, for example, behavioural thermoregulation (Buckley,

Ehrenberger, & Angilletta, 2015). Our finding that increased sensitivity

is observed towards the range edges thus suggests general limitations

to these mechanisms of climatic adaptation and supports the hypothe-

sis that latitudinal range limits are at least partly explained by climate.

This complements previous results that document elevational range

contraction for several European butterfly species in Spain (Wilson

et al., 2005) and recent northern range-edge expansions as a result of

climate change (Mair et al., 2012).

An alternative mechanism that could drive the observed increase

in sensitivity towards range edges is a reverse density dependence

effect. If factors such as density dependence are relatively more impor-

tant in the species’ range core than at the edges (i.e., show a reverse

pattern to climatic sensitivity), these could mask climatic influences

towards the range centre (Sæther et al., 2008). This could potentially

FIGURE 5 Partial R2 values for the density dependence terms in each model by their relative position within the geographical range (i.e.,
each point is a species/latitudinal band combination). The upper panel displays partial R2 values for all species; the lower panel displays the
same results, split by species. The fitted line displays the intercept-only model (best supported of the three alternative models), with the
95% confidence band overlaid
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arise as a result of lower population densities towards the range edge

or through variation in the importance of intra- or interspecific compe-

tition across the range (e.g., Leisnham, Lounibos, O’Meara, & Juliano,

2009). However, the lack of relationship in our results between latitudi-

nal position within a species’ range and density dependence effects

suggests that the observed latitudinal gradient in climatic sensitivity

exists independently of variation in the strength of density

dependence.

The overall pattern that we find is one of heightened sensitivity to

weather towards southern and northern range limits. Models of spe-

cies’ presence/absence data at coarse spatial scales typically indicate

Gaussian response curves in relationship to long-term climate averages

(Boucher-Lalonde et al., 2014), whereas species response curves that

model changes in individual performance in relationship to short-term

temperature are typically asymmetrical, with steeper declines above

optima than below (e.g., Ara�ujo et al., 2013; Deutsch et al., 2008).

These respective relationships generate divergent expectations; the

former suggests that range-wide sensitivities to weather conditions

might be symmetrical, with weather being equally important at both

range edges, whereas the latter suggests that asymmetry is likely to be

observed. Asymmetry could also arise as a consequence of recent rapid

climate change, with improving climatic conditions at northern range

edges, combined with lagged response rates in northward range expan-

sion (Devictor, Julliard, Couvet, & Jiguet, 2008), bringing northern pop-

ulations closer to their optimal conditions and thus reducing sensitivity

to local weather conditions (Oliver et al., 2012). In contrast, climatic

degradation in southern Europe (warming and drying trends; Hartmann

et al., 2013) may push populations at trailing range edges more fre-

quently into peripheral regions of their performance curves, in which

performance is more strongly affected by weather variation. Our ability

to discern between these two competing hypotheses is somewhat lim-

ited, but our results fail to support the longstanding theory that abiotic

limitation is relatively more important at northern range limits (Gaston,

2003).

Density dependence consistently appears to be a more important

driver of population dynamics than weather, even in regions where

sensitivity to weather is greatest. This suggests that, for many popula-

tions, fluctuations in weather conditions will be partly compensated for

by density dependence effects, unless there are a large number of cli-

matically adverse years in close succession (Oliver et al., 2015) or

adverse conditions coincide with additional environmental change. It is

unclear what the specific drivers of density dependence might be, but

it is possibly caused in part by host plant resource availability and

responses to natural enemies (e.g., Boggs & Inouye, 2012). Although

our density dependence estimates are in line with other studies that

use similar methodologies and/or datasets (e.g., Nowicki et al., 2009;

Roy, Rothery, Moss, Pollard, & Thomas, 2001), observation error is

known to inflate the strength of negative density dependence (Freckle-

ton, Watkinson, Green, & Sutherland, 2006). A caveat that therefore

applies to our results (and others, such as the cited studies) is that,

owing to the imperfect correspondence between true and measured

abundance, our estimates of density dependence may be overestimates

(Freckleton et al., 2006). However, as the abundance measures used

here are informed by many observations collected over the course of

the season (Dennis et al., 2013), we expect any biases arising from

observational error to be relatively small.

Both temperature and precipitation appeared to have important

effects on butterfly population dynamics, with no clear distinction

between the two in terms of either their coefficient estimates or statis-

tical significance (Supporting Information Table S2). Although

FIGURE 6 Model fits for asymmetry analysis. Plotted is each model’s partial R2 for the suite of weather terms against the distance from
the range centre. Filled circles indicate points that lie in the southern range half [i.e., relative range position (RRP)<0.5], whereas open
circles indicate points that lie in the northern range half (i.e., RRP>0.5). The modelled latitudinal relationship (outlined in the Methods) is
illustrated with a dotted line for the southern range half and a continuous line for the northern part of the range (grey shading indicates the
95% confidence bands)
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temperature is often assumed to be a key driver of organism perform-

ance, these results suggest that it is important to consider the role of

precipitation in addition to temperature, which has particular relevance

for forming accurate forecasts of population performance under cli-

mate change (McDermott Long et al., 2016; Sinclair et al., 2016). There

also appears to be substantial intraspecific variation in the precise form

of the weather associations across the range, which many species dis-

tribution modelling approaches explicitly assume is not the case. Fur-

ther exploration of this intraspecific spatial variation in population

dynamics in response to weather is thus an important area of future

study.

The size of the datasets used here necessitated the pooling of obser-

vations both within latitudinal bands and across species (in the mixed-

effects framework). Although the overall pattern is one of increased sen-

sitivity towards range margins, this result is tempered by the typically

weaker within-species pattern and the limited number of observations

for any single species. Future work to investigate range-wide patterns of

sensitivity to various environmental drivers at a finer spatial grain for

individual species would thus be of considerable interest.

The observation that heightened sensitivities to weather occur

towards the latitudinal limits of butterflies adds to previous work docu-

menting directional patterns of sensitivity across climatic gradients (e.g.,

Ettinger et al., 2011; Myers-Smith et al., 2015). In particular, we were

able to extend previous work by investigating patterns that occur

towards both range edges simultaneously, rather than one in isolation.

There are two key implications of this work. Firstly, the existence of

heightened sensitivity at range edges suggests that population-level

responses to ongoing climatic change will not be uniform across the

range, but are likely to be greatest at species’ range boundaries where

population dynamics are most strongly determined by weather. Secondly,

because sensitivity to weather varies across species’ latitudinal range

extent, caution is required when extrapolating from studies conducted in

part of a species’ range or when using projection methodologies that do

not take intraspecific variation in responses to weather into account.
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