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Summary

Mapping weed densities within crops has convention-

ally been achieved either by detailed ecological

monitoring or by field walking, both of which are time-

consuming and expensive. Recent advances have

resulted in increased interest in using Unmanned Aerial

Systems (UAS) to map fields, aiming to reduce labour

costs and increase the spatial extent of coverage. How-

ever, adoption of this technology ideally requires that

mapping can be undertaken automatically and without

the need for extensive ground-truthing. This approach

has not been validated at large scale using UAS-derived

imagery in combination with extensive ground-truth

data. We tested the capability of UAS for mapping a

grass weed, Alopecurus myosuroides, in wheat crops.

We addressed two questions: (i) can imagery accurately

measure densities of weeds within fields and (ii) can

aerial imagery of a field be used to estimate the

densities of weeds based on statistical models developed

in other locations? We recorded aerial imagery from 26

fields using a UAS. Images were generated using both

RGB and Rmod (Rmod 670–750 nm) spectral bands.

Ground-truth data on weed densities were collected

simultaneously with the aerial imagery. We combined

these data to produce statistical models that (i) corre-

lated ground-truth weed densities with image intensity

and (ii) forecast weed densities in other fields. We show

that weed densities correlated with image intensity, par-

ticularly Rmod image data. However, results were mixed

in terms of out of sample prediction from field-to-field.

We highlight the difficulties with transferring models

and we discuss the challenges for automated weed map-

ping using UAS technology.

Keywords: black-grass, distribution, drones, modelling,

precision agriculture, site-specific weed management,
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Introduction

One of the problems with managing weed populations

is that weeds are non-uniformly distributed at almost

every spatial scale at which we study them. Weeds are

undoubtedly patchily distributed within fields (Wilson

& Brain, 1991; Nordmeyer, 2006). At the higher scales

of fields, farms and landscapes, there can also be con-

siderable variations in weed abundance (Thornton

et al., 1990; Gabriel et al., 2005). Indeed, even at the

national scale, some regions contain more weeds than

others (Marshall, 2009). Such variations reflect the

combined imprint of environment and management

history (Fried et al., 2008). This non-uniform
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distribution of weeds has long been recognised and,

for over a century, attempts have been made to under-

stand the factors that contribute to variation in weed

distributions; for example, as long ago as 1913,

Brenchley (1913) attempted to understand how soil

and management contribute to variation in the occur-

rence of weed species in the United Kingdom.

Understanding the distributions of weeds requires

that they are monitored. Monitoring of weed popula-

tions has typically focused on small-scale detailed stud-

ies. For example, a literature search focusing on weed

surveys prior to 2008 showed that 84% of all previous

field plots were smaller than 1 m2 (Queenborough

et al., 2011). Moreover, monitoring effort is typically

limited in terms of the number of observers available,

so that most sampling protocols sacrifice spatial scale

for intensity. This means that effective sampling areas

may be relatively small; for instance, in one of our pre-

vious demographic studies, we estimate that the sam-

pled area was only 3% of the total experimental area

(total experimental area = 36 9 48 = 1728 m2; moni-

tored area = 48 m2; Lintell Smith et al., 1999). Limited

sampling of this sort presents many issues, because sys-

tems can vary dramatically both spatially and tempo-

rally (Craufurd & Wheeler, 2009).

Large-scale mapping has been undertaken to build

up pictures of weed distributions at regional and land-

scape scales (Lawrence et al., 2006; Barnett et al.,

2007; Cuneo et al., 2009). These analyses are usually

based on coarse estimates of weed abundance. In the

coarsest form, there are atlas measurements of occur-

rence at a scale as large as 10 9 10 km (Preston et al.,

2002). Even at this scale, data are useful in analysing

large-scale geographical drivers of occurrence such as

climate (Storkey et al., 2014). Field-scale estimates of

occurrence (presence/absence) or prevalence (density)

have also been used to build up large-scale pictures of

the abundance of weeds (Joseph et al., 2006). Such

data are extremely valuable in generating insights into

the factors that drive weed abundance (Westbury

et al., 2008; Henckel et al., 2015).

Mapping weed densities is thus a trade-off

between precision and extent; fine-scale ecological

monitoring generates detailed data on small scales,

while large-scale surveys generate coarse data across

large extents. To bridge this gap, Queenborough

et al. (2011) developed density-structured monitoring

approaches for arable weeds. This approach gener-

ates field-scale maps of weed distributions. Within-

field mapping is relatively coarse (a 5-point scale for

assigning density states within large plots of size

20 9 20 m), but the approach is readily up-scaled to

hundreds of fields during a field season for a small

team (e.g. 2 or 3 observers). Based on readily

available resources (i.e. field walking/monitoring in

small teams), this represents a compromise approach

that generates large numbers of within-field maps at

among-farm farm and regional scales. Data from

such monitoring can be used to parametrise predic-

tive ecological models (Freckleton et al., 2011) and

henceforth be useful in solving a key problem that

many models face, lack of comprehensive data (Tre-

dennick et al., 2017).

Measuring weeds in an agricultural setting is

undoubtedly useful for the monitoring and manage-

ment of farm systems (Huang & Asner, 2009), but

arguably limited by the trade-off between precision

and extent. However, recent technological advances

have resulted in a step change in the potential to col-

lect detailed ecological data at large scales. Unmanned

Aerial Systems (UAS) are flying robots that can collect

varied data, including colour and hyperspectral ima-

gery allowing vegetation indices to be constructed, as

well as environmental data (Nonami, 2007; Torres-

S�anchez et al., 2014). Prior to the introduction of

UAS, satellites and manned aircraft were the only way

of capturing aerial imagery of landscapes, with numer-

ous applications in the monitoring and management of

ecological systems (Kerr & Ostrovsky, 2003; Pettorelli

et al., 2005). There have been attempts to use imagery

generated by such platforms to map weeds on the field

scale, but poor resolution of the imagery has previ-

ously limited its application (Lamb & Brown, 2001;

Thorp & Tian, 2004).

A typical hobby grade UAS will have a pixel resolu-

tion of 2.8 cm pixel�1 when flown at 100 m altitude,

flight time of 25 min and cost around €1000, therefore

providing high resolution and low-cost imagery for

small survey areas. Compared with field walking and

conventional ecological monitoring techniques, this

technology offers considerable potential for addressing

the trade-off between resolution and extent. Conse-

quently, there has been a substantial increase in inter-

est in the use of UAS for mapping in the precision

agriculture sector (Zhang & Kovacs, 2012).

Although UAS offer great potential to produce

detailed data over large spatial extents, ultimately, they

will be useful in research and management only if they

can be shown to generate large amounts of reliable

data. There have been attempts to use remote sensing

to map populations in detail (Huang & Asner, 2009),

but they have been limited in spatial and temporal

scales (L�opez-Granados, 2011; Rasmussen et al.,

2013). Nevertheless, there is significant commercial

interest in the applications of UAS in agriculture.

However, this interest has largely not translated

beyond a proof of principle with some of the commer-

cial ventures over promising, under delivering and
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subsequently failing (Catapult Satellite Applications,

2016).

Ultimately, for UAS-derived imagery to be useful

in weed monitoring, several conditions must be ful-

filled. First, most importantly, it must be shown that

imagery correlates closely with weed density. This is

an obvious requisite for this technology to be practi-

cally useful. However, this is very difficult to test

because to do so requires density data from many

fields at fine spatial resolution to ground truth the

imagery from UAS. As noted above, such data are

difficult to acquire. Second, especially for management

applications, the pipeline of data processing from

image capture to weed density maps should include as

few steps as possible. This is so that the technology is

readily useable. Third, the platform and imagery

should ideally be robust to variations between fields

and observation conditions, so that minimal tuning or

subjective interpretation by analysts is required. These

conditions can be relaxed to varying degrees if addi-

tional local and context-specific data are available.

For example, variations in observation conditions (e.g.

weather, light, soil, crop colour) can be accommo-

dated by collecting ancillary data for calibration.

However, this requires extra steps in data collection

and analysis that may prove challenging or impractical

in many applications. To date, although UAS are

increasingly being used in field situations, the answers

to these questions are largely unknown.

In this paper, we explore the potential for simple inex-

pensive UAS to acquire images that can be used in weed

mapping. We focus on the use of readily available ‘off-

the-shelf’ systems that can be used by researchers, agro-

nomists and farm managers for quantitative analysis of

weed distributions. The first major question we address is

whether imagery from such platforms is capable of mea-

suring weed densities? To do this we combine imagery

from UAS with an extensive data set on weed popula-

tions across 26 fields. The second question is whether we

can use models transferably across fields?We address this

by developing statistical models that relate imagery and

weed densities for one field and asking whether these

accurately transfer to other sites. We show that in princi-

ple UAS-derived imagery closely relates to weed densi-

ties. However, we highlight various challenges in

automating the collection and analysis of data.

Materials and methods

Study system

The weed Alopecurus myosuroides Huds. (black-grass)

in winter wheat (Triticum aestivum L.) was chosen as a

study system. This weed species has significant

economic impacts on crop yields and is prevalent

throughout northern Europe (Twining & Clarke,

2009). Black-grass has been shown to significantly

reduce yields when present (Blair et al., 1999) and

infests approximately 70% of fields in the United

Kingdom (Black-Grass Research Initiative, BGRI

unpubl. obs.).

We selected study sites that included both large and

small farm sizes and differing crop rotations within

each of the following five geographical regions in the

United Kingdom: Oxfordshire, Bedfordshire, Norfolk,

Lincoln and Yorkshire. Farm size varied from 80 to

3000 ha. Crop rotations varied from continuous crop-

ping of winter wheat, to an 8-crop rotation.

Alopecurus myosuroides populations were censused

from the 1st of June 2015 to the 27th of July 2015,

during which time, the weeds were mature and visually

distinct, corresponding to 87–89 on the BBCH scale

respectively (Lancahsire et al., 1991). In this period, 26

fields were surveyed across the five regions. This sam-

ple of 26 fields is by far the largest data set on within-

field weed distributions to have been used to assess the

effectiveness of UAS technology. However, not all 26

georectified images were suitable for full analysis, due

to poor data quality, resulting in 18 full fields suitable

for full analysis.

Weed population monitoring

We used the density-structured approach (Taylor &

Hastings, 1998) implemented by Freckleton et al.

(2011) and Queenborough et al. (2011), in which five

discrete density states (absent, low, medium, high, very

high) were used to estimate A. myosuroides plant num-

bers. These discrete density-structured observations

have been shown to be representative of counts of

plants (Freckleton et al., 2011; Queenborough et al.,

2011). The advantage of the density-structured

approach over individual plant head counts is that it

allows populations to be estimated very rapidly, per-

mitting data to be collected at far greater spatial extent

while also reducing fieldwork costs. Existing research

suggests that misclassification between observers of

density states is negligible (Collett, 2002).

Plots were 20 9 20 m, which is a convenient scale

for monitoring(Queenborough et al., 2011). Surveys

were performed by a team of three trained observers

and the outcome of surveying on each field is a grid of

density state measurements of the whole field (see

Fig. 1 for an example). The five density states were

assigned using the quartiles of densities determined in

the Farm Scale Evaluation of GM crop trials (Heard

et al., 2003). The five density states counted

A. myosuroides plants per 20 m2 in bands of 0, 1–160,
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161–450, 451–1450 and 1451+ respectively for absent,

low, medium, high and very high-density state observa-

tions.

Collection of UAS images

To collect the UAS imagery data, we used a commer-

cially available DJI Phantom 2 (Austin, 2010). Two

cameras were used to collect images. Firstly, a modi-

fied GoPro Hero3 (‘GoPro Official Website – Cap-

ture + share your world � HERO3 +’. https://gopro.c
om/update/hero3_plus. Last accessed 24 February

2017) with a filter (https://event38.com/product/cus

tom-ngb-filter-glass-for-diy-camera-conversion/) was

used to capture modified colour aerial images and a

16.5 mm focal length, non-fisheye lens was installed to

reduce the image distortion (RmodGB: blue, B: 390–
520 nm; green, G: 470–570 nm; red-edge, Rmod 670–
750 nm). Such images have been shown to be useful

for mapping in an agricultural context (De Castro

et al., 2015). Secondly, a Canon s100 (‘Canon Power-

Shot S100 Black Refurbished | Canon Online Store’.

https://shop.usa.canon.com/shop/en/catalog/powershot-

s100-black-refurbished. Last accessed 24 February

2017) was used to provide RGB images with focal

length set to 24 mm. Spectral data can be found via

the respective online sources. The images were stored

in RAW format, and the cameras were triggered to

capture images every 1.5 s via software control. White

balance was set using a calibration card prior to each

flight. The flights were flown autonomously in a grid

pattern that used a 60% side and front overlap at a

height of 100 m, this ensured optimal coverage of the

target (Ballesteros et al., 2014). The average area cov-

ered over the 30 flights was 5.32 ha, an average GSD

of 3.2 cm pixel�1 and an average flight time of 11 min.

Data processing: image stitching

Individually, each image represents a limited view of

the field. For field-scale analysis, it is necessary to

combine these subsamples into one image of high qual-

ity. We used a commercial desktop solution for this

Agisoft (‘Agisoft PhotoScan’. http://www.agisoft.com/.

Last accessed 1 February 2017). We then cropped the

UAS imagery to the extents of the accompanying den-

sity state grids using the georeferenced orthomosaics

on a field-by-field basis. We manually applied a soil

thresholding mask, to cut out pixels that were

observed to be soil on a field-by-field basis to remove

the pixels of soil that are present in the tramlines or

patches of bare ground in the field that could intro-

duce a bias. This was performed in imageJ (‘ImageJ –
RSB Home Page’. 2016. <https://imagej.nih.gov/ij/last

accessed 25 October 2016) by visual inspection of the

amount of bare soil visible in each image. We then

combined the data sets, so that every pixel had their

respective three spectral band values, a location in geo-

space and an observed density state which was depen-

dent on its location within the field.

A B C

Fig. 1 For illustrative purposes, this field was flown twice, and the camera was changed for each flight. With (A) greyscale colour

enhanced Rmod and (B) RGB. This allows for side by side visual comparison of the image data, with the same underlying level of black-

grass, (C) overlay of the ground-truthed observed density states. The legend corresponds to the accompanying density states that were

recorded, ranging from very high (v) to absent (0).
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Data analysis

Analysing correlations between weed surveys and

imagery

The objective of the first set of analyses was to assess

the ability of the mean pixel values of the 20 9 20 m

plots for the respective spectral bands to capture

explain variation in density states. A series of multiple

linear regression models were fitted and then used to

predict density states. A least squares model was fitted

to the RGB data set using the spectral bands red,

green and blue as the predictors and observed density

state as the response variable. A second regression

model for Rmod used the spectral bands red-edge

(Rmod), green and blue as predictors, and observed

density state as the response variable.

Testing predictive performance of images

The second set of analyses was designed to test predic-

tive performance of statistical models fitted to imagery.

We used a random forest classifier to evaluate the

spectral data’s ability to discern weed densities. A ran-

dom forest model is an ensemble learning method that

utilises classification and regression tree (CART) anal-

ysis (Breiman, 2001). The model was applied in two

ways: (i) to predict the presence/absence of black-grass

and (ii) to discriminate between areas of high and very

high A. myosuroides observations. We used the same

spectral bands as the linear models for the respective

data sets and fitted the random forest model with

32 000 trees. The spectral data sets were split into

training and testing data at the 20 9 20 m scale, with

the training data being used to build a random forest

model and the testing data being used for predicting

against. The data were split 80/20 respectively.

Area under the curve (AUC) and accuracy (ACC)

were used as metrics to test the ability of the random

forest model to predict the presence/absence of

A. myosuroides. AUC is a measure of the area under a

ROC (receiver operating characteristic) curve and is an

alternative measure of goodness of fit. ACC is equal to

the probability that a classifier will rank a randomly

chosen positive instance higher than a randomly cho-

sen negative one (Fawcett, 2006). This metric is impor-

tant for assessing the predictive ability of the models.

Field-to-field predictions

The aim of this analysis was to measure the predictive

performance of models by testing the extent to which a

model developed in one field could be used to predict

densities of weeds in other fields. We selected the Rmod

data set for further analysis as this generated the best

correlations between observed and fitted density from

the linear regression models. To test the field-to-field

predictive ability, we fitted a cubist model for each of

the eight individual fields for which Rmod data were

available (Table 1). Cubist models are rule-based mod-

els that are created in a similar way to the random for-

est models but the terminal leaves contain linear

regression models (Quinlan, 1992), thus allowing com-

parison to the initial analysis. Cubist models were cho-

sen as they provide an ensemble classifier approach,

resulting in an average prediction for the ensemble, as

opposed to the single snapshot of the previous models.

These models were constructed using all the data for

each individual field and then used to predict the den-

sity states of the remaining fields. We assessed the per-

formance of these models by recording the correlations

between the predictions and the independent ground-

truthed observations.

Results

Explanatory power of UAS imagery

Examples of the different types of image that we used

for building the models were produced by stitching the

individual images together to form one analysable image

(Fig. 1). Visual comparisons of Fig. 1A–C indicated

that, visually at least, the variation was greater in the

Rmod images. The grid overlay (Fig. 1C) represents the

ground-truthed data that we use for training the models.

We found that the variation within the images

obtained from the UAS correlates with weed densities

measured in the field. The accuracy of the method

however varies with the data set used (Fig. 2) and

between fields (Table 1). The linear model can charac-

terise the relationship broadly across all the spectral

bands. The RGB data performs well in some fields;

however, overall the relationship between density states

and the mean pixel values per 20 9 20 m plot is

weaker, with a R2 value of 0.29 compared with the

Rmod R2 value of 0.41 as evidenced in Fig. 2. Overall,

we find that the Rmod data set has the largest R2 value

(0.41) when fitted to the entire data set, as well as the

best performing individual field (0.46).

Predictive ability

We used the random forest models described in

Table 1 to test whether we could distinguish between

areas with (presence) and without (absence)

A. myosuroides. The RGB data set performed best

overall (AUC = 0.88, Acc = 0.68). We also tested the

ability of the random forest models to differentiate

between areas of high and very high levels of

A. myosuroides. Most fields being surveyed in the 2015

field season did not contain the full range (absent to
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very high) of A. myosuroides levels, thus we have rela-

tively fewer data point to test this capability with.

Nevertheless, the models still show a strong ability to

distinguish between areas of high and very high levels

of A. myosuroides. The Rmod data set has the highest

AUC (0.95), but the corresponding accuracy (0.61) is

the lowest of the data sets, this is an important factor

to consider due to the lack of data and potential for

false-positives. The RGB data set shows a lower AUC

(0.91) than Rmod but with a higher accuracy (0.87).

Field-to-field predictions

The heatmaps in Fig. 3 summarise the overall analysis

of inter-field predictions. Each cell in the respective

matrices represents a correlation coefficient of the

observed density states and predicted states from the

cubist models that have been trained on only one

field’s worth of data. The results from this analysis are

mixed. Although some correlations are relatively high,

the average correlation for all the models was relatively

weak (0.34). This suggests that the cubist models were

locally over-fitting the relationship between density

state and the spectral signal, resulting in poorer

field-to-field transferability of the models.

Discussion

Our main finding was that aerial images collected with

a low-cost UAS (<€1000) have the potential to be used

to map populations of A. myosuroides. However, our

results indicate that if this technology is to be applied

at a large scale in an automated way, then there are

several issues that need to be addressed. Secondly, our

analyses of within-field variation using simple statisti-

cal models show that it is possible in principle to cap-

ture the variation in weed densities. However, models

developed in one field rarely perform well when

applied elsewhere, indicating that locally they were

over-fitting the relationship between density state and

the spectral signal. This means that currently the inter-

pretation of such imagery is limited without supporting

ground-truthed data; the ultimate objective of our

research is to be able to generate estimates of densities

from imagery without the need for detailed ecological

surveys. Year on year transferability is currently being

assessed. We have highlighted that there are challenges

in generating robust predictive models that relate vari-

ation within images to weed densities within fields, yet

are applicable across multiple sites. Our work has

revealed areas that need to be streamlined for the

Linear model Random forest

Field num-

ber R2 P-value d.f.

P/A

AUC

P/A

Acc

H/VH

AUC

H/VH

Acc

RGB

1 0.1568 0.0015 134 0.9140 0.8390 N/A N/A

2 0.0344 0.4195 200 0.4354 0.4354 N/A N/A

3 0.0308 0.8234 113 0.5167 0.5069 N/A N/A

4 0.1670 0.0013 127 0.6923 0.5618 N/A N/A

5 0.1549 0.0000 234 0.8357 0.6027 0.3333 0.8165

6 0.1305 0.0135 124 0.7452 0.5707 N/A N/A

7 0.0836 0.0126 202 0.8743 0.6781 0.7598 0.5849

8 0.0270 0.6304 189 0.5654 0.5319 N/A N/A

9 0.4555 0.0000 94 0.8397 0.8094 N/A N/A

Overall 0.2937 <2.2E-16 1481 0.8828 0.6827 0.9073 0.8658

Rmod

10 0.0596 0.1127 187 0.5807 0.5215 N/A N/A

11 0.2533 0.0000 128 0.9281 0.6238 0.7346 0.6072

12 0.1528 0.0003 163 0.7547 0.5869 N/A N/A

13 0.4577 <2.2E-16 146 0.9152 0.7186 0.8692 0.6822

14 0.2372 0.0006 92 0.6908 0.6321 0.8153 0.5545

15 0.1289 0.0347 107 0.4635 0.4881 N/A N/A

16 0.0729 0.1006 156 0.5759 0.5365 N/A N/A

18 0.1365 0.0001 212 0.6899 0.5739 N/A N/A

Overall 0.4132 <2.2E-16 1247 0.8008 0.6373 0.9500 0.6069

R2 values from the fitted regression models of density state as a prediction of the

spectral bands are shown for the individual fields and for the entire data sets, RGB

and Rmod respectively. The random forest results show the ability of the data to pre-

dict the presence/absence (P/A) of black-grass using the metrics area under a curve

(AUC) and accuracy (ACC). A random forest model was also used to discriminate

between high and very high (H/VH) levels of black-grass using the same metrics.

Table 1 Explanatory power of imagery

acquired by unmanned aerial systems to

describe weed densities within fields
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methodology to become more of a tool for manage-

ment applications.

Choice of spectral frequency

We found the most informative spectral frequency to

be red-edge (Rmod). Of the sets of spectral bands we

tested, Rmod captured the relationships between the

pixel values and ground observations of

A. myosuroides density state most accurately. There is

an extensive literature on the uses of indices such as

NDVI (Normalized Difference Vegetation Index) and

EVI (Enhanced vegetation index) with the use of satel-

lite data (Xie et al., 2008; Pettorelli, 2013). These

indices have been used in conjunction with some UAS

studies, although they have mainly been proof of con-

cept, due to technical limitations and their focus on

small scale, high value crops, such as vines (Turner

et al., 2011; Primicerio et al., 2012), while rarely

addressing ecological monitoring problems.

Choice of analysis

Torres-S�anchez et al. (2014) used UAS to map weeds

in an agricultural setting, although they primarily

focused on capturing the aerial images in early season

for the crops. This means that there are discernible

rows of the crop from time of planting. Object-based

image analysis (OBIA) has been the most commonly

used methodology to detect weeds when studying this

type of data (Pena et al., 2013). This approach is use-

ful in the management of weeds in the early part of

the season and has applications informing in-season

decisions. Late in the season, rows are not discernible

in crops like cereals, which have dense overlapping

canopies when mature and hence these approaches are

likely to be less useful.

Our approach focused on late-season imaging of the

crops. This reflects in part the purpose of our original

modelling framework (Freckleton et al., 2011; Queen-

borough et al., 2011), which was to parameterise eco-

logical models to project future weed densities.

Monitoring late-season weed numbers should give

insight into where the weeds will emerge next year due

to seed set. Rather than inform current management

practices, such information can be used to make deci-

sions in subsequent seasons, such as patch-spraying

(Audsley, 1993) or variable-sowing densities (Chauhan

et al., 2011). The two approaches (late season versus

early season monitoring) can work in conjunction with

one another. One useful application of combining

approaches would be to check the effectiveness of the

management decisions previously made. However, the

technical challenges of monitoring at different times

are likely to be somewhat different.

Automation

To be of general use in both research and manage-

ment, the process should be as automated as possible,

requiring minimal interventions by the analyst. How-

ever, this requires that several key problems are solved.

Most notably, as indicated by our results, images vary

Fig. 2 Fits of density state, against ground-truthed observed data

for the Rmod (A) and RGB (B) data sets respectively. The models

were trained on 80% of the data and then tested against the

remaining data for the predictions. Fits were generated from the

linear regression models (see text for details).
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from field-to-field, so that the relationship between

density and image intensity is not fully transferable

from one field to another. Increasing the comparability

of images is thus a key priority, for example through

accounting for variable lighting and by standardising

spectra.

A key assumption of image interpretation is that we

are detecting A. myosuroides. In the current analysis,

we have specifically focused on A. myosuroides and we

have extensive ground-truth data to test the ability of

imagery to detect this. In an automated system, we

would ideally be able to proceed with minimal ground-

truth data. The extent to which variation resulting

from, for example, poor crop establishment, other

weeds or disease, rather than the presence of

A. myosuroides is unknown. In terms of in-field man-

agement, this may not matter; output could still be

informative to the farmer and agronomist. Variation in

image intensity within-field maps would act as ‘sign-

posts’ to areas of the field that we have shown to be

different from the normal crop. They would then be

able to field walk-specific locations. This means that

ground-truthing of the maps is still required to detect

what the actual causes of the variation in the field are

and automation would not be achieved. However, for

the purposes of wide-scale mapping for larger areas or

as a research tool, it will be important to examine how

distinct factors can be distinguished. For example, yel-

lowing of a wheat crop owing to disease such as Puc-

cinia striiformis f.sp. tritici (yellow rust) (Moshou

et al., 2004) should be distinguishable from

A. myosuroides based on spectral characteristics.

When looking at ways to automate data collection,

one important issue is setting a threshold for the detec-

tion of soil. In our current methodology, we manually

set the threshold for each field by viewing the his-

togram of the pixel intensities in imageJ and then man-

ually removing the pixels that fell below a cut-off

value. This analytical step could be improved using

several approaches. For example, an OBIA system

could be used to detect tramlines and then set an

applicable boundary either side of each track to mask

all the soil pixels from the analysis. Alternatively, a

clustering-based image thresholding technique such

Otsu’s method could be applied (Shorter & Kasparis,

2009). The challenge is to determine how such an

Fig. 3 Heat map matrix, prediction correlation plots for a cubist model derived from field 1 to field 8 on the axis respectively from the

Rmod data set. High correlation values indicate higher prediction accuracies of density states. The darker the cell, the higher correlation

between the models predictions and the observed density state. White cells indicate NA’s, these occur when the trained model did not

predict a density state for every class that was present.
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algorithm flexibly accounts for differences in soil col-

our between fields.

We find similarities between this work and that of

Dvo�r�ak et al. (2015), in that they used UAS to map

alien invasive species using pixel-based classification.

They also highlighted the challenges of unstable scene

illumination, an issue that individual field analysis pre-

sented. By compiling all the respective grid square data

into one data set, rather than the current field-by-field

data sets, we hope to mitigate some of the variation

introduced by the unstable lighting conditions. New

sensor technologies to combat issues such as this are

constantly being released; one example is the recent

announcement of an integrated imaging system and

sun irradiance sense from MicaSense called Sequoia.

Limitations and future work

The limitations of this technology and methodology

are that it is not completely independent of field walk-

ing to gather the ground-truthed data. The statistical

methods used here are relatively unsophisticated and

are potentially not utilising all the features of the cur-

rent data. The current feature design of only using the

mean pixel value for each 20 9 20 m grid is rudimen-

tary, so in further studies, we would include more fea-

tures, such as spatial correlation and field management

histories. Nonetheless, this methodology has potential

to amplify the work of field surveying, allowing data

to be gathered on a scale that is currently unachievable

for a small team. A team of field surveyors can pro-

duce a more accurate map of A. myosuroides than our

current UAS method. Indeed, such data can be entered

onto a computer at the time of mapping and a field-

scale map generated that, if an Internet connection is

available, can be immediately uploaded and dis-

tributed. In contrast, the analysis of UAS-derived data

requires several steps, including image stitching that

can take several hours of computational time.

The advantages of using UAS are in terms of scale

and a minimal analysis needed to assess

A. myosuroides levels. There is generally expected to be

a trade-off between extent of measurement and preci-

sion, and this is true for arable weeds (Marshall,

1988). As we have shown recently, relatively coarse

data can be extremely valuable for measuring weed

populations, if they are available at sufficiently large

scales (Queenborough et al., 2011; Freckleton et al. in

revision). In the case of imagery from UAS, it is

potentially possible to generate finer-scale maps than

can be generated using techniques such as the field

walking methods of Queenborough et al. (2011) and at

greater speed. Hence, there is the potential for

UAS-derived imagery to allow a step change in the

extent and accuracy of data collection.

There has been work to integrate the use of UAS

into Site Specific Weed Management (SSWM) as the

UAS allows for efficient and repeatable collection of

spatial data (Torres-S�anchez et al., 2013). Their study

set out to describe the technical specifications and

configuration of a UAS that can be used in SSWM.

Farmers already use A. myosuroides maps, such as

those generated by our ground-truthed data, to imple-

ment variable seed-rate planting (Helen Hicks pers.

obs.). This allows farmers to plant crops at a higher

seed density in areas known to have had high weed

burdens in the previous year. The aim of this is to

outcompete A. myosuroides in the early stages of ger-

mination, resulting in less A. myosuroides setting seed

(Timmermann et al., 2003). The development of

UAS-based weed mapping systems has the potential

to provide weed maps more quickly and at a lower

cost to the farmer. It is also important to understand

that this work is tackling one of the most challenging

issues in the field of weed mapping, identifying one

mature grass within another mature grass, and

therefore, there may be an upper limit in prediction

accuracy.

In addition to developing technology that could be

used for informing agronomic decision-making, devel-

opment of these data collection and processing tech-

niques are important for research. A major factor in

collection of population monitoring data is the diffi-

culty in collecting enough data for model development

within time and budget constraints (Bryson et al.,

2014). The new methodology developed here, using

UAS to collect highly detailed images of populations

and building predictive statistical models, could poten-

tially be applied to many population monitoring stud-

ies, such as rangeland and invasive weed mapping

(Rango et al., 2009; Hung et al., 2014). However, our

results indicate that there are obstacles to be overcome

particularly if we are to avoid extensive ground-truth-

ing and be able to readily apply such methodology to

different fields and farms.
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